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Abstract—Mutation analysis is a well-known, but computa-
tionally intensive, method for measuring test suite quality. While
multiple strategies have been proposed to reduce the number of
mutants, there is inconclusive evidence for their utility due to the
limited number and size of programs used for validation, and a
lack of comprehensive comparative studies. Traditional evaluation
criteria for mutation reduction also rely on mutation-adequate
suites, which are rare in practice.

We propose novel criteria for evaluating reduction strategies
for non-mutation-adequate test suites, directly linked to the actual
use of mutation analysis during development — to ensure that
tests check for many different possible faults. We evaluate using
both these criteria and the traditional criteria with 201 real-
world projects, and show that the popular strategies — operator
selection, and stratified sampling (on operators or program
elements) — are at best marginally better than random sampling,
and are often worse.

I. INTRODUCTION

Mutation analysis is the best approach for evaluating the
quality of test suites. It involves producing a family of mutants
(programs with small differences from the original program)
used to evaluate the effectiveness of test suites by attempting
to detect these mutants [1], [2]. Studies by Andrews et al. [3],
[4] and more recently by Just et al. [5] suggest that mutations
resemble and can simulate the behavior of real faults. However,
mutation analysis of test suites has not been widely adopted as
an actual software engineering practice [6], despite the need for
tools able to evaluate tests [7]. A major impediment to wider
adoption is its high computational cost; the set of mutants for
even a moderate sized program can be very large, and their
evaluation prohibitively time consuming.

A major approach to cost-reduction of mutation analysis
is choosing a smaller, representative set of mutants [8], [9]
— often called the do fewer approach. This approach can be
divided into selective strategies and sampling strategies. The
selective mutation strategy is to select a smaller representative
subset of mutation operators based on heuristics and statistical
analysis, and use these in the mutation analysis instead of
the entire set of mutation operators [10], [11]. Sampling
strategies seek to randomly select a representative subset of
mutants to use in the same way. Acree [12] and Budd [13]
proposed using only a small fraction of randomly selected
mutants to evaluate a test suite. Wong and Mathur found that
randomly sampling as few as 10% of mutants could provide
representative results [14]. Recent studies have found that the
sample size required to achieve adequacy in mutation sampling
increases at a rate of O(n

1
4 ) as program size (n) increases [15].

While some of the recent studies [16], [17] have examined
the relative merits of random sampling and operator selection
strategies, Zhang et al. [17] point out that the field suffers

from a lack of large scale studies, both in terms of the size of
programs studied, and in the number and diversity of programs
studied. This reduces our confidence in existing results. Most
studies in this area are based on experiments with at most
a dozen programs, which casts doubts on the generalizability
of the results. We also note that several seminal studies on
mutation reduction techniques [14], [18]–[20] use older pro-
gramming languages such as Fortran, with operators specific
to these languages. Further, the findings based on source-
based mutants may not be directly applicable to mutants based
on bytecode, such as those produced by Javalanche [21] and
PIT [22], which are becoming common in both research [17],
[23], [24] and industry.

Given these limitations, this paper studies different mutant
reduction strategies with an emphasis on helping practicing
software testers. For this reason, we evaluated different reduc-
tion strategies on a large number of Java programs using the
popular bytecode-based mutation tool PIT [22]. We sampled
201 open source Java projects with between 50-116K lines of
code (excluding comments and test cases) from Github and the
Apache Foundation. This set of projects includes many popular
Java projects regularly used in research and industry (such as
Apache Common Lang, Common Math and Joda Time). For
our mutation analysis, we chose to use PIT, a fast and easy to
use Java mutation tool, used by researchers in the past [23],
[24] due to its wide range of operators. In total, this study
examines 799,028 mutants and 67,881 JUnit test cases with
200,110 asserts. We investigated five classic mutation selection
techniques: Constrained [14], E-Selective [19], Javalanche
[21], Variable Reduction [25], and N-Selection [18], and two
sampling approaches: element-based [17] and operator-based
sampling [14]. We compare the effectiveness of each against
pure random sampling.

While the test suites of many open source programs are
far from adequate,1 they should satisfy a different require-
ment: namely, each test was almost always added through
considerable manual labor [26], and was at least believed
to be useful (the number of test cases correlates with the
quality of software [26]). Therefore, any test omitted creates a
potential for missed faults. An effective mutation reduction
strategy should therefore identify the smallest possible set
of non-redundant mutants to exercise the largest possible
non-redundant test suite2, and perform better than random
selection. The cardinality of minimal test suite (which is same
as the cardinality of the corresponding minimal mutant set)
was suggested by Ammann et al. [27] as a measure of quality
of a test suite.

1 Mutation adequate test suites are suites with maximal mutation coverage;
usually much less than 100% after discounting equivalent mutants.

2We only approximate a minimal suite, with greedy methods [27].



All test cases are not created equal, so we use assertion
counts as well as the raw number of test cases, as the assertion
count is a proxy for the number of features a test case verifies,
shown to be correlated with fault detection by Fraser et al. [28].
Our basic claim is that an easy way to evaluate a mutant
reduction strategy is to see if it promotes test suites with a
large number of non-redundant test cases, or at least test suites
with a large number of asserts.

The traditional mutation reduction strategy evaluation [20]
involves finding the minimal adequate test suite for the re-
duced set of mutants suggested by the reduction strategy,
and computing the ratio of mutants killed by this test suite
and the original set of mutants killed3. However, since this
criteria is not applicable for real-world programs which almost
always are non-mutation adequate [29], we modify the criteria
to suit non-mutation-adequate test suites. To ensure that our
modification does not introduce any errors, we evaluate our
criteria on four large projects with adequate test suites.

There could be other ways to evaluate mutation reduction
strategies; for example one could imagine a criteria that
encourages hardest to detect — yet not-equivalent mutants, or
another based on the cost of evaluation of mutants. However,
such criteria would not be useful for the basic purpose of
mutation analysis — as an adequacy measure of the test suites
targeting all kinds of bugs, not just hard to find bugs, or the
easiest tests to evaluate.

Our results indicate that none of the reduction strategies
evaluated provide any practical advantage over pure random
sampling.4

Contributions:

• Our study is the largest so far in terms of both the
size of programs involved (50-116K lines, excluding
comments and tests), and the number of programs
analyzed, (201 open source projects, totaling 1, 241K
lines of code) for evaluating mutant reduction strate-
gies under representative conditions.

• We examine a larger number of mutant reduction
strategies than previous studies, including all the com-
mon and influential strategies for operator selection,
and strata-based sampling.

• We use multiple evaluation criteria, applicable to both
real-world non-adequate test suites, and traditional
mutation adequate test suites.

• We find that current mutation reduction strategies sel-
dom perform better than random sampling of mutants.

Organization. Section II describes previous research in muta-
tion reduction strategies. Section III discusses the sampling and
operator selection strategies we study in detail. The analysis
we used is explained in Section IV, and results of experiments
are detailed in Section V. A detailed discussion is provided in
Section VI. Threats to validity are in Section VII. Section VIII
summarizes our findings and conclusion.

3Mresa et al. call this the operator mutation score [20].
4We reached a similar conclusion when we used another traditional measure

of comparison — correlation between full and selected mutation scores.
See [30] for more details.

II. RELATED WORK

According to Mathur [31], the idea of mutation analysis
was first proposed by Richard Lipton, and formalized by
DeMillo et al. [32] A practical implementation of mutation
analysis was done by Budd et al. [33] in 1980.

Mutation analysis subsumes different coverage mea-
sures [13], [34], [35]; the faults produced are similar to
real faults in terms of the errors produced [36] and ease
of detection [3], [4]. Just et al. [5] investigated the relation
between mutation score and test case effectiveness using 357
real bugs, and found that the mutation score increased with
effectiveness for 75% of cases, which was better than the 46%
reported for structural coverage.

Performing a mutation analysis is usually costly due to the
large number of test runs required for a full analysis [9]. This
is one of the chief barriers to more widespread adoption of the
technique. There are several approaches to reducing the cost
of mutation analysis, categorized by Offutt and Untch [8] as:
do fewer, do smarter, and do faster. The do fewer approaches
include selective mutation and mutant sampling, while weak
mutation, parallelization of mutation analysis, and space/time
trade-offs are grouped under the umbrella of do smarter.
Finally, the do faster approaches include mutant schema gen-
eration, code patching, and other methods.

The idea of using only a subset of mutants was conceived
along with mutation analysis itself. Budd [13] and Acree [12]
showed that even 10% sampling approximates the full mutation
score with 99% accuracy. This idea was further explored by
Mathur [37], Wong et al. [14], [38], and Offutt et al. [18] using
Mothra [39] for Fortran.

A number of studies have looked at the relative merits
of operator selection and random sampling criteria. Wong et
al. [14] compared x% selection of each mutant type with
operator selection using just two mutation operators and found
that both achieved similar accuracy and reduction (80%).
Mresa et al. [20] used the cost of detection as a means of
operator selection. They found that if a very high mutation
score (close to 100%) is required, x% selective mutation is
better than operator selection, and, conversely, for lower scores,
operator selection would be better if the cost of detecting
mutants is considered.

Zhang et al. [16] compared operator-based mutant selection
techniques to random sampling. They found that none of the
selection techniques were superior to random sampling. They
also found that uniform sampling is more effective for larger
programs compared to strata sampling on operators5, and the
reverse is true for smaller programs. Recently, Zhang et al. [17]
confirmed that sampling as few as 5% of mutants is sufficient
for a very high correlation (99%) with the full mutation score,
with even fewer mutants having a good potential for retaining
high accuracy. They investigated eight sampling strategies
on top of operator-based mutant selection and found that
sampling strategies based on program components (methods
in particular) performed best.

Some studies have tried to find a set of sufficient mutation
operators that reduce the cost of mutation but maintain corre-

5 The authors choose a random operator, and then a mutant of that operator.
This is in effect strata sampling on operators given equal operator priority.
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Fig. 1: The detected mutants plotted against the total number
of mutants. This suggests that the mutation scores were not

biased with respect to project size.

lation with the full mutation score. Offutt et al. [18] suggested
an n-selective approach with step-by-step removal of operators
that produce the most numerous mutations. Barbosa et al.
[40] provided a set of guidelines for selecting such mutation
operators. Namin et al. [25], [41] formulated the problem as a
variable reduction problem, and found that just 28 out of 108
operators in Proteum were sufficient for accurate results.

Using only the statement deletion operator was first sug-
gested by Untch [11], who found that it had the highest
correlation (R2 = 0.97) with the full mutation score compared
to other operator selection methods, while generating the
smallest number of mutants. This was further reinforced by
Deng et al. [42] who defined deletion for different language
elements, and found that an accuracy of 92% is achieved while
reducing the number of mutants by 80%.

In operator and mutant subsumption, operators or mutants
that do not significantly differ from others are eliminated.
Kurtz et al. [43] found that a reduction up to 24 times
can be achieved using subsumption alone, even though the
result is based on an investigation of a single program, cal.
Research into subsumption of mutants also includes Higher
Order Mutants (HOM), whereby multiple mutations are intro-
duced into the same set of mutants, reducing the number of
individual mutants by subsuming component mutants. HOMs
were investigated by Jia et al. [44], [45], who found that they
can reduce the number of mutants by 50%.

Our work is an extension of previous work on comparison
of mutation reduction strategies [16], [17], with a wider range
of mutation approaches, and a larger set of large real-world
projects. This makes our work more generalizable and usable
by practicing testers.

III. METHODOLOGY

Our selection of sample programs was driven by a few
overriding concerns. Our primary requirement was that our

IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove non-void method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS Replace switch labels with default (thus removing them)
RC Replace boolean conditions with true
DC Replace boolean conditions with false

TABLE I: PIT Mutation Operators (We use abbreviations
instead of operator names.)
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Fig. 2: Subsumption rate between operators. Note that
subsumption is not a symmertical relation. No operators

come close to full subsumption. This suggests that none of
the operators studied are redundant.

results should be as representative as possible of real-world
programs – our results should be applicable for both non-
adequate test suites (which occur frequently during devel-
opment), and stable well tested projects with adequate test
suites. Secondly, we strove for a statistically significant result,
reducing the number of variables present in the experiments.

For this reason, we conducted our study in two parts.
In the first part we evaluated the effectiveness of different
mutation reduction strategies on a large set of real-world
projects containing non-adequate test suites. In the second part,
we evaluated the same strategies using four large real-world
mature projects with adequate test suites. This allowed us to
have confidence in the wide applicability of our results.



projects mutants muscore tests asserts
commons-lang3 32323 79.89 2828 16270
commons-math 122484 73.21 6743 17956
commons-configuration 18198 74.92 5216 11184
jodatime 32293 72.29 5120 22330

TABLE II: Projects with adequate test suites that are used
for second part of analysis

For the first part, we chose a large random sample of Java
projects from Github [46]6 and the Apache Software Founda-
tion [47] that use the popular maven [48] build system. From
an initial 1, 800 projects, we eliminated aggregate projects, and
projects without test suites, which left us with 796 projects. Out
of these, 326 projects compiled (common reasons for failure
included unavailable dependencies, compilation errors due to
syntax, and bad configurations). Next, projects that did not
pass their own test suites were eliminated since the analysis
requires a passing test suite. We also removed all projects with
trivial test suites, leaving only those that had at least a 10%
mutation score, leaving us with 201 projects. The distribution
of detected mutants (y-axis) against that of the total mutants (x-
axis) is given in Figure 1. This shows both the size of projects
under consideration and the mutation scores obtained, and a
reasonably non-biased distribution at least as far as mutation
scores and project sizes are concerned. Our set of projects, as
well as the complete data set for replication of this study is
available for download7.

We ran our mutation analysis on this set of projects using
PIT [22], a tool used in several previous studies [23], [24],
[49], [50]. However, since the operators provided by PIT are
limited, we extended PIT to provide new operators similar to
those provided by other mutation systems. The set of operators
that we used is provided in Table I. In order to ensure that the
operators that we added were not redundant, we computed
their operator subsumption matrix, presented in the Figure 2.
In the figure, the amount of subsumption is indicated by the
shading, with same operators subsuming themselves entirely.
This suggests that the operators we used were non-redundant,
with a maximum subsumption of only 43%. Note that the
subsumption relation is not symmetric, since it captures the
non-overlapping portions of any pair of mutants. For a detailed
description of each mutation operator, please refer to the PIT
documentation [51].

We also modified PIT to report the entire test matrix of
tests × failures rather than just the first test to fail. To
remove the effects of random noise, results for each criteria
were averaged over ten runs.

For the second part, we selected the four largest well
tested projects from our sample, that had an adequate test
suite. These are given in Table II. We follow the standard
practice in mutation research [16], [17], [41] of assuming
undetected mutants in well tested projects to be equivalent.
We also note that these projects have been used previously in

6Github allows us access only a subset of projects using their search API.
We believe this should not confound our results.

7 We hope that new mutation reduction strategies will make use of our
collection of programs, and the detection matrix of individual test cases against
individual mutants. The test matrix sufficient to test a new approach on our
set of programs (without running mutation analysis) is available for download
at http://eecs.osuosl.org/rahul/ase2015/.

similar research [17]. The same set of operators and sampling
criteria as in the first part were used on these projects.

A. Sampling Criteria

We used several sampling criteria suggested in the liter-
ature. For each sampling criteria we sampled mutants on a
decreasing power scale, sampling fractions 1

2 , 1
4 , 1

8 , 1
16 , 1

32 ,
and 1

64 of the total mutants.

1) Uniform random sampling: The simplest sampling ap-
proach suggested by [13], where a fraction of the complete
set of mutants is chosen at random, and serves as a baseline.

2) Stratified random sampling over mutation operators:
First suggested by Wong et al. [14], this strategy samples
the same proportion of mutants from each operator. While
Wong seems to treat this as equivalent to x% selection, this
sampling is subtly different from pure random sampling in that
it provides a stratified sampling based on mutation operators.

3) Stratified random sampling over program elements:
Following the suggestion of Zhang et al. [17], we extended x%
selection to sample from within different program elements.
We sampled in increasing order of scope, — line, method and
class (project scope is just x% selection). We used the formula
from Zhang et al. [17] for sampling fractional values.

sample(x) = bx+ random(0..1)c

B. Operator Selection

For selective methods, we evaluated the mutation opera-
tors suggested by Wong et al. [14], Offutt et al. [19], [42],
and Namin et al. [41]. Since Javalanche [21] uses operator
selection mechanisms, we included operators suggested by
Javalanche separately. Note that all of these techniques except
for Javalanche have targeted C programs. Thus, some operators
may make sense in C but not in Java. For example, deletion
of the return statement is tolerated by C compilers, but not
in Java. Moreover, there were a few operators that could only
be partially implemented in PIT (as below).

1) Constrained Mutation: Wong et al. [14] selected ROR
and ABS from Mothra for selective mutation. The ABS oper-
ator was chosen because it forces users to consider all parts of
the input domain, and ROR because it forces users to consider
values of predicates. ROR mutates relational operators, while
ABS replaces variables and expressions by their positive or
negative absolute value, or zero. CB and NC from PIT are a
good mapping for ROR. Similarly, IN is able to partially cover
the ABS functionality.

2) E-Selective: Proposed by Offutt et al. [19]. Mothra sup-
ports three main classes of operators; Replacement (operand)
mutators, Expression (operator) mutators, and Statement mu-
tators. The operator selections used in this paper are groupings
of these operators: ES, ER, RE, RS, E.

The best strategy identified by Offutt et al [19]. was
the E-Selective strategy, which chooses only those mutators
that modify operators. For Mothra, these were ABS, UOI,
LCR, AOR, and ROR. UOI operates by incrementing or
decrementing arithmetic expressions by 1, LCR changes the
relational operators, and AOR mutates arithmetic operators.

http://eecs.osuosl.org/rahul/ase2015/


To accomplish the same with PIT, we divided the PIT
operators similarly. Operand mutators are IC, EMV, and IN.
Operator mutators are M, CB, NC, RC, and DC. Statement
mutators are given by RV, I, VMC, NMC, CC, RI, ES, RS.
We report the results of all combinations: ES, ER, RS, E, R,
and S.

3) Javalanche: Javalanche [21], [52] adapts for Java byte-
code, the E-Selective operator set suggested by Offutt et
al. [19] for Fortran and implemented in C by Andrews et al. [3].
The original operators adapted by Andrews were 1) replacing
an integer constant by its predecessor, successor, or by a small
constant, 2) replacing arithmetic or boolean operators by an
operator of the same class, 3) negating boolean conditions in
control flow, and 4) statement deletion.

This translated [21] to 1) replace numerical constant op-
erators. 2) replace arithmetic operator, and 3) negate jump
condition. The last operator, 4) the omit method call, was
added later [52].8 These map directly to PIT operators IC,
M, NC, and VMC.

4) Variable Reduction: Proposed by Namin et al. [41].
Namin framed the question as a statistical problem of finding
the minimum set of operators that can best predict the final
mutation score. That is, given that M is the final mutation
score, and m1,m2,. . . ,mn are mutation scores given by n
mutation operators, Namin wanted to find the smallest set of
mutations that can predict M from the set of m1..n. This boils
down to finding the linear regression model.

Emulating variable reduction methodology for our experi-
ment, we took advantage of the limited set of operators to run
a complete subset model comparison to obtain the best model
given by

µMs = 0+.55nmc+.2rc+.1dc+.2rv+.1cc+.7emv+.02m+.02ri

with R2 = 0.96. This suggests that the variables we are
interested in are NMC, RC, DC, RV, CC, EMV, M, and RI.

5) N-selection: Offutt et al. [18] suggested removal of the
n most numerous operators. In our experiment, the order of
operators was NMC, RV, IC, DC, NC, RC, VMC, CC, EMV,
M, CB, I, RI, RS, ES, and IN. We discarded one at each step
and evaluated the effectiveness at each n.

6) Statement deletion emulation: Statement deletion based
operator selection is based on the work by Deng et al. [42].
The operations on single statements were modeled using VMC,
NMC, CC, EMV, and RI for simple statements, and using
RC for control structures. RC replaces boolean conditions
with false, resulting in removal of the conditional block. The
operator for return values was modeled using RV, which is
similar. The operators for while, for, and if statements were
modeled using DC, which replaced the boolean condition with
true, which removed the effect of the conditional. The switch
statement deletion was modeled using RS, which replaced
the first 100 labels with a default label, resulting in the
switch element being deleted. Due to the constraints of the

8 We have already given a translation of the original operators suggested
by Offutt as they apply to PIT. Here, we are evaluating how the translation
implemented by Javalanche works. Javalanche has since this publication, added
more operators to the default set. However it is not clear if they belong to
a selected set under some criteria or if Javalanche is simply attempting to
increase its repertoire of mutations.

architecture of PIT only the first 100 labels were replaced.
Deleting try/catch was not necessary at the bytecode level.

Note that we are not attempting to evaluate statement
deletion mutation directly. Rather, we have chosen a set of
operators that could be involved in deletion of statements.
This means that in order to translate the results from our
experiment back to the original statement deletion operator,
we rely on some assumptions. We rely on a coupling effect: if
a test is able to kill a mutant in this set, then it should kill it
even when it is in combination with other mutants of this set
(resulting in the deletion of the statement in question). That
is, since statement deletion is a higher order mutant, according
to the coupling hypothesis, it should fail more often than its
component mutants, and should result in a lesser number of
tests selected than the component faults taken separately, and
hence a lower test utility. (If all tests detected all deleted
statements, only a single test would be present in the minimal
test suite).

Finally, reported results of statement deletion are based on
component mutants involved in the emulation of true statement
deletion. While this has no impact on the utility measures and
strategy effectiveness, the mutation share differs between true
statement deletion, and emulated statement deletion, and only
the emulated mutation share is reported9.

IV. ANALYSIS

For the purpose of comparing different mutation reduction
strategies, we computed the average test utility, and assert
utility of different strategies, defined below.

To evaluate a mutation reduction strategy, we use the
strategy to select a subset of mutants. We then collect all test
cases that killed any of the selected mutants. Next, we compute
the minimal, non-redundant test suite that detects all of these
mutants. This is repeated and averaged over multiple runs, and
we report the average.

M and Mstrategy denote the original set of mutants and
the reduced set of mutants, respectively. A test suite composed
of test cases that are able to kill a mutant m where m ∈
Mstrategy is in Tstrategy, and the total number of asserts in
Tstrategy is given by asserts(Tstrategy). We find the minimal
test suite that is capable of killing all mutants in Mstrategy

using a greedy algorithm iteratively choosing the test cases
with the largest amount of kills of remaining mutants. We
denote this the “minimal” set min(Tstrategy). Similarly, for a
baseline, we build a set of randoml mutants Mrandom, such
that |Mrandom| = |Mstrategy|. Given any set of tests T , the
total number of mutants that can be killed by the test cases in
T is given by kill(T ).

Test utility (Ut) approximates the extra tests a selection
strategy requires, compared to a random sampling, to kill the
same number of mutants. The result is reported as a percentage
of the non-redundant tests above the random sample (the
baseline). That is, the test utility is given by:

Ut =
|min(Tstrategy)|
|min(Trandom)|

− 1

9If n mutants in a statement were needed to emulate the statement deletion,
the mutation share is reported based on n rather than based on the single
statement deletion mutation that was emulated



Positive values show that the strategy requires more tests
than random selection (it is better than random selection), and
a negative test utility indicates that the strategy needs fewer test
cases (it is worse than random testing). Values close to zero
denote that the strategy tested performed similar to random
selection. Note that the comparison here is between the size
of tests and does not imply any subset relationship between
test suites.

Since the assertions in a test were found to have a signif-
icant (albeit medium – 0.35) correlation with fault detection
and mutation kill rate [28], we also compute the number of
assertions in the test cases required by a strategy. If a test
case does not have any assertions, we assume its number of
assertions to be one (to account for uncaught exceptions and
other kinds of failure).

The assert utility (Ua) is computed as the difference
between the number of assertions in the selected non-redundant
test cases and the number of assertions in the random sample.
As before, it is reported as a percentage of the asserts of the
non-redundant tests of the random sample:

Ua =
|asserts(min(Tstrategy))|
|asserts(min(Trandom))|

− 1

The baseline effectiveness (Er) is computed by getting
the number of mutants selected by the strategy under test,
and selecting the same number of mutants randomly. We then
collect the test cases that kill any of these mutants, and apply
the same test cases against the original (complete) set of
mutants. The result is then divided by the original number
of detected mutants:

Re =
|kill(Trandom)|
|kill(M)|

The traditional mutation reduction criteria strategy effec-
tiveness10(Es) is computed by collecting all the test cases that
detect any of the mutants selected by the strategy under test,
and applying these to the complete set of mutants. The score
obtained is divided by the original number of detected mutants,
and the effectiveness above that of baseline is reported:

Es =
|kill(Tstrategy)|
|kill(M)|

−Re

All values are reported as percentage (multiplied by 100).

It has to be noted that having a good test utility does
not preclude a reduction strategy from having a poor strategy
effectiveness or vice versa. It is possible for a strategy to
select mutants such that there are a number of independent
tests killing each mutant; however, if the tests kill no other
mutants than the strategy selected ones, the strategy will have
very poor strategy effectiveness. A similar argument applies for
the inverse — a strategy selects a small number of very strong
tests, which are able to kill most other mutants. However, we
would expect a strong test that kills a much larger number of
mutants than its peers to be distinguished by a larger number
of assert statements. By computing the assert utility, we guard
against such a possibility. We require only a strong positive

10also called operator mutation score by Mresa et al. [20]

utility in any one of the criteria to judge a strategy to be
useful. However, a negative or inconsequential results with all
the three criteria is a strong statement on the non-utility of the
strategy in question.

V. RESULTS

This section presents the results of our experiments. Each
experiment was repeated ten times and averages were used to
avoid random noise in results. We analyze results in detail,
and then summarize overall patterns.

A. All Projects

We evaluated our criteria on 201 projects.

1) Operator Selection: in Table III, looking at test and
assert utility, we see that there are a few selective strategies
that perform best. Notably, the statement modification strategy
S-Selective does about 1.7% better than random selection for
test utility, and RE-Selective 1.07% in assert utility. It also
seems S-Selective has a slight advantage of 0.24% in strategy
effectiveness.

For N-selection, given in Table IV, the best test utility
was for removal of NMC, RV, IC, DC, and NC, which
resulted in an advantage of 2.76%. Assert utility was best for
just removing NMC, (1.45%). The best strategy effectiveness
(0.36%) was for removal of operators until VMC.

2) Stratified sampling over operators: For stratified sam-
pling over operators (Table V), the best test utility appears to
be at 1

4 , which gives an advantage of 1.12% over baseline, and
also has best assert utility (1.08%), while strategy effectiveness
was best for 1

2 (0.01%).

3) Stratified sampling over program elements: For strati-
fied sampling over program elements (Table VI), there appears
to be a small but consistent advantage for most sample
fractions. The best test utility achieved was 3.57% for line-
based 1

8 sampling, and best assert utility was for method-based
1
32 sampling (4.38%). The 1

32 class-based sampling had the
best strategy effectiveness of 1.13%.

Summary. Operator selection strategies produce mutant sets
that has slight positive utility at best (the utility is often neg-
ative) over random selection. Strata-based sampling tends to
produce a positive utility when the elements sampled produces
large enough mutants to provide a representative sample for
the given sampling fraction.

B. Selected Projects

We evaluated our criteria on four projects: commons-lang3,
commons-math, commons-configuration, jodatime.

1) Operator Selection: in Table VII, looking at test and
assert utility, we see that there are a few strategies that perform
best. Notably, the statement modification strategy S-Selective
does about 4.43% better than random selection for test utility,
and has an advantage of 1.83% in assert utility. It also seems
to have a slight advantage of 0.15% in strategy effectiveness.

For N-selection, given in Table VIII, the best test utility was
for removal of NMC, resulting in a test utility advantage of
0.89%, and best assert utility of 0.94% . This also has a strategy



The operator selection results for all projects.

Strategy Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
Constrained -7.47 -6.04 12.93 -0.71 94.03
E-Selective -6.12 -5.11 32.89 -1.65 96.86
S-Selective 1.70 0.92 53.38 0.24 99.61
R-Selective -2.35 0.44 13.73 -0.20 95.60
ES-Selective -0.05 -0.11 86.27 0.01 99.99
RS-Selective -3.59 -2.39 46.62 -0.23 98.63
RE-Selective 1.58 1.07 67.11 0.11 99.76
Javalance -3.39 -2.25 61.43 -0.02 99.30
VarReduction 0.77 0.56 73.41 0.01 99.96
SDL 0.88 0.01 65.02 0.02 98.93

TABLE III: The operator selection strategy

Removed Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
rm.nmc 1.84 1.45 70.38 0.03 99.94
rm.rv 0.25 -0.52 59.90 0.10 98.84
rm.ic 0.52 -0.27 52.10 0.06 98.82
rm.dc -0.16 -1.09 43.77 0.18 98.70
rm.nc 2.76 0.70 32.30 0.22 98.55
rm.rc 1.64 -2.08 23.11 0.24 98.20
rm.vmc 1.44 -3.07 19.00 0.36 97.91
rm.cc -4.94 -4.62 12.93 -0.30 96.17
rm.emv -13.15 -12.52 6.99 -4.57 81.55
rm.m -14.67 -15.85 4.49 -6.92 78.07
rm.cb -16.68 -19.40 3.03 -7.23 73.18
rm.i -20.50 -28.69 1.80 -14.36 68.27
rm.ri -25.12 -20.84 0.58 -6.73 27.34
rm.rs -6.25 -7.58 0.15 -0.84 21.43
rm.es -10.08 -13.35 0.02 -0.81 4.12

TABLE IV: The N-selective strategy. Each row removes the named mutation operator from the preceding row

Fraction Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 0.35 0.27 50.18 0.01 99.51
1/4 1.12 1.08 24.98 -0.03 98.35
1/8 0.43 0.79 12.40 -0.11 96.77
1/16 -1.70 -1.61 6.17 -0.85 94.07
1/32 -2.04 -1.28 3.07 -2.14 89.36
1/64 -4.13 -3.67 1.53 -3.24 80.61

TABLE V: The operator-based x% sample strategy

Fraction Elt Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 line 1.42 1.11 50.06 0.14 99.52
1/4 line 3.37 2.97 25.08 0.16 98.49
1/8 line 3.57 3.71 12.67 0.12 96.90
1/16 line -0.19 -0.14 6.23 -0.83 94.01
1/32 line -2.02 -1.70 3.14 -2.05 89.01
1/64 line -2.91 -1.25 1.55 -2.90 79.67
1/2 method 1.16 0.98 49.91 0.04 99.46
1/4 method 2.91 2.52 25.09 0.29 98.38
1/8 method 2.29 1.96 12.42 0.21 96.81
1/16 method 2.68 2.79 6.17 0.04 94.21
1/32 method 3.01 4.38 3.13 0.68 88.54
1/64 method 0.52 0.61 1.60 -1.62 80.18
1/2 class 0.96 0.63 49.96 0.02 99.44
1/4 class 1.34 1.04 24.97 0.02 98.49
1/8 class 2.84 3.02 12.53 0.57 96.75
1/16 class 1.94 2.68 6.22 0.66 94.06
1/32 class 3.50 3.61 3.15 1.13 89.13
1/64 class 0.55 1.87 1.53 -0.55 80.28

TABLE VI: The element-based x% sample strategy

Format: The test and assert utility shows how good the mutation strategy is in selecting non-redundant test cases as
percentage difference. The mutation share is the fraction of mutants selected by the strategy compared to the full set. The
strategy effectiveness shows the total mutants caught by a test suite selected by the strategy mutants, and is provided as

comparison to baseline effectiveness in percentage.



The operator selection results for selected projects.

Strategy Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
Constrained -15.69 -11.62 13.92 -0.24 98.89
E-Selective -12.76 -10.59 37.10 -0.98 99.86
S-Selective 4.43 1.83 51.16 0.15 99.85
R-Selective -12.64 -7.76 11.74 -0.88 98.52
ES-Selective 0.01 -0.20 88.26 0.00 100.00
RS-Selective -10.48 -8.07 48.84 -0.06 99.92
RE-Selective 3.43 1.77 62.90 0.05 99.94
Javalance -4.98 -3.49 58.68 0.03 99.94
VarReduction 1.64 1.12 72.08 0.03 99.97
SDL 2.84 0.67 61.55 0.04 99.95

TABLE VII: The operator selection strategy

Removed Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
rm.nmc 0.89 0.94 74.04 0.01 99.99
rm.rv -4.31 -4.06 63.67 -0.02 99.97
rm.ic -4.45 -4.36 53.11 -0.01 99.95
rm.dc -5.18 -5.44 48.55 0.01 99.93
rm.nc 0.34 -1.72 36.94 0.06 99.85
rm.rc -3.90 -10.56 21.75 -0.78 99.33
rm.vmc -8.95 -13.66 18.64 -0.60 99.09
rm.cc -24.96 -21.26 14.62 -1.51 98.66
rm.emv -28.60 -24.92 11.73 -4.07 97.56
rm.m -29.96 -25.25 6.04 -5.31 96.12
rm.cb -37.74 -36.51 3.87 -7.90 93.95
rm.i -42.07 -37.40 2.32 -14.75 90.21
rm.ri -44.36 -52.22 0.77 -12.74 74.21
rm.rs -16.61 -15.33 0.27 8.59 52.88
rm.es -27.85 -16.68 0.19 -6.72 38.74

TABLE VIII: The N-selective strategy. Each row removes the named mutation operator from the preceding row

Fraction Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 -0.03 -0.06 50.00 0.00 99.93
1/4 0.10 0.16 25.00 0.00 99.61
1/8 0.34 0.40 12.50 0.06 98.73
1/16 -0.15 -0.18 6.25 0.22 96.59
1/32 -0.38 -0.51 3.13 -0.27 93.42
1/64 0.29 2.84 1.56 -0.20 87.77

TABLE IX: The operator-based x% sample strategy

Fraction Elt Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 line 2.95 2.00 50.01 0.04 99.93
1/4 line 4.41 3.18 25.03 0.13 99.63
1/8 line 3.82 3.31 12.45 0.35 98.77
1/16 line 3.57 3.62 6.22 0.34 96.77
1/32 line 1.53 1.61 3.12 0.57 93.22
1/64 line 1.83 2.41 1.56 0.66 87.83
1/2 method 2.18 1.41 49.98 0.04 99.93
1/4 method 3.95 3.22 25.00 0.13 99.62
1/8 method 5.71 4.90 12.53 0.39 98.75
1/16 method 6.57 6.26 6.25 1.06 96.59
1/32 method 7.02 6.44 3.12 1.36 93.25
1/64 method 4.52 5.03 1.57 1.11 88.21
1/2 class 0.75 0.36 50.01 0.00 99.94
1/4 class 0.96 0.76 25.01 0.01 99.63
1/8 class 1.16 1.20 12.50 0.08 98.75
1/16 class 2.50 2.80 6.25 0.11 96.80
1/32 class 2.41 3.71 3.13 0.07 93.52
1/64 class 4.59 6.30 1.56 1.02 87.65

TABLE X: The element-based x% sample strategy

Format: The test and assert utility shows how good the mutation strategy is in selecting non-redundant test cases as
percentage difference. The mutation share is the fraction of mutants selected by the strategy compared to the full set. The
strategy effectiveness shows the total mutants caught by a test suite selected by the strategy mutants, and is provided as

comparison to baseline effectiveness in percentage. (The format is same as previous page).



effectiveness ( 0.01%). However, the best strategy effectiveness
was given by removal of NMC, RV, IC, DC, NC, RC, VMC,
CC, EMV, M, CB, I, RI, and RS (8.59%).

2) Stratified sampling over operators: For stratified sam-
pling over operators (Table IX), the best test utility appears
to be at 1

8 , with 0.34% over baseline, and best assert utility
was 2.84% for 1

64 sampling. The best strategy effectiveness
obtained was 0.22% for 1

16 sampling.

3) Stratified sampling over program elements: For strati-
fied sampling over program elements (Table X), there appears
to be a small consistent advantage for most sample fractions.
The best test utility achieved was 7.02% for method-based 1

32
sampling, and an assert utility of 6.44% for 1

64 and strategy
effectiveness of 1.36% for 1

32 sampling.

Summary. As in Subsection V-A, operator selection strategies
produce mutant sets that have slight positive utility at best over
random selection. Similarly, strata-based sampling tends to
produce a positive utility when the elements sampled produce
enough mutants to provide a representative sample for the
given sampling fraction (which is smaller than with projects in
Subsection V-A, on account of the large average project size).

VI. DISCUSSION

An important concern for a software tester during devel-
opment is whether a newly added test contributes towards the
effectiveness of a test suite. Not all tests are useful — some
are redundant — recall that we use minimal test suites for our
test utility and assert utility measures, averaged over multiple
runs. Even if tests are not equal, a new test will improve a test
suite if it increases the average size of a minimal test suite.
Hence, the average size of a minimal test suite is a reasonable
measure for the utility of a set of mutants.

The second question is whether the test suite selected by a
subset of mutants is similarly effective to the test suite selected
by the full set of mutants. This is the question answered by
the traditional criteria of strategy effectiveness.

It is possible for our criteria to return contrary results to
the traditional criteria. For a pathological example, consider
a set of test cases with a single strong test case, and a large
number of weak test cases. This can result in a high strategy
effectiveness if the strong test is included, and a low test
utility due to the very low number of non-redundant test cases.
Similarly, if the strong test case is excluded, it can result in
a high test utility, while having a low strategy effectiveness
if the mutants discarded by the strategy are same ones that
are killed by the strong test. However, we consider a mutation
strategy useful if it has some utility for at least one of these
criteria.

It is very rare for a project under development to have a
mutation-adequate test suite. Hence it is important to ensure
that the criteria we use are tested on real-world programs with
non-adequate test suites, across the whole range of mutation
scores. For this reason, the first part of our analysis is done on
a large number of real-world projects with a range of mutation
scores. The second part of our analysis concentrates on large
real-world projects with adequate test suites in order to ensure
that our results remain valid even for such projects: developers
want a strategy that works throughout a project’s life cycle.

The interesting thing to note here is that there is no consis-
tent winning strategy. That is, there is no strategy that provides
an advantage over all others for both kinds of project. Second,
operator selection strategies provide little benefit (or even
decrease performance) over random selection for even strategy
effectiveness (the traditional criteria), which is surprising given
previous research in the field.

A similar conclusion can be drawn for N-Selection, an
operator selection strategy we considered separately. While it
provided a small advantage in strategy effectiveness for the
removal of several operators, the advantage or disadvantage
is rather inconsistent, and when the mutation share of the
remaining mutants drops to less than 10%, it is almost always
disadvantageous compared to random selection.

The results indicate that operator selection strategies in
general tend to be either disadvantageous (sometimes by a
large difference), or where advantageous, this is by a very
small margin compared to the baseline. There is a possible
reason for this result: the three measures that we examined
encourage mutation reduction strategies that result in mutants
with the largest amount of variation in terms of tests detecting
them, and any selection process that results in a reduction in
variation tends to get penalized. It is possible that the operators
chosen during operator selection produced mutants that were
more similar to each other than the full set of mutants, and
hence resulted in reduced variation. We see no reason why
reduced variation is a benefit.

The strata-based random selection strategies fare a little
better. While they are mostly advantageous, the advantage
gained is always rather small — below 10%. Strata-based
selection is founded upon a simple assumption; mutants within
strata are more similar to each other than to those outside,
and strata-based selection works well for approximating full
mutation scores [17], [30] when this assumption is met. Our
results indicate that while there exists a small advantage, this
advantage is almost always less than 1% compared to the
baseline for strategy effectiveness. One factor to consider in
strata-based sampling is that it is effective only as long as all
the elements of a given strata can provide samples for a given
fraction. A 1

64 fraction sample for a statement generating 10
mutants is effectively zero, and hence statement-based strata
may no longer be useful for 1

64 samples. This effect can be seen
in the negative utility and strategy effectiveness for smaller
fractions for various strata.

A general pattern seems to be that none of the mutation
reduction strategies provide a practical large benefit over the
baseline of random sampling — the simplest strategy of all
— and they likely do not provide enough benefit to justify the
additional complexity involved in implementing the various
reduction strategies. Importantly, this finding seems to be true
irrespective of the criteria used to judge; both test utility and
strategy effectiveness provide similar results. This suggests
that, at least from the perspective of a software tester wishing
to use mutation analysis as an evaluation criteria during de-
velopment (either to judge which tests to add, or to determine
if a stopping criteria has been met), random sampling is the
easiest, and most effective, way to reduce the computational
requirement of mutation analysis.

This result merits another question. Should we attempt to



find better reduction methods? What is the best we can do?
Our preliminary [53] analysis shows that a maximum strategy
effectiveness of up to 58.2% is possible (in theory) against
random sampling on average using the full mutation results.
However, this may not be practically achievable as it relies on
perfect stratification and the knowledge of actual kills11.

While it is tempting to draw further conclusions from the
data we collected, the lack of a clear winner across the board
and the rather small differences from the baseline in the best
case make it difficult to isolate real patterns from random noise.

VII. THREATS TO VALIDITY

While we have taken care to ensure that our results are
unbiased, and have tried to eliminate the effects of random
noise, our results are subject to the following threats to validity.

Threats due to sampling bias: To ensure representativeness
of our samples, we opted to use search results from the Github
repository of Java projects that use the Maven build system.
We picked all projects that we could retrieve given the Github
API, and selected from these only based on constraints of
building and testing. However, our sample of programs could
be biased by skew in the projects returned by Github.

Projects of small size and low coverage: Since we used
real-world projects with real test suites, the size, coverage,
and hence the mutation scores are representative of real world
projects. Unfortunately, given that a large majority of these
projects are in the process of development, some of them had
low coverage and mutation score, and very few had adequate
test suites. However, our analysis remains the same even with
well-tested high-coverage projects.

Bias due to tool used: As our focus was on the practical
advantages of different mutation reduction strategies for a
practicing tester, we relied on a popular mutation tool used
in industry — PIT. However, PIT does have some drawbacks
such as an incomplete repertoire of mutation operators and an
imperfect mapping to source level mutants. While we have
done our best to extend PIT to provide a reasonably sufficient
set of mutation operators, and have tried to map the source
level mutants to bytecode level mutants, some imperfections
may still exist. However, given that we have captured the
original reasoning behind the strategies, and also that previous
research on same area has used Javalanche, which operates
under similar constraints, we believe that the influence on our
results is minimal.

VIII. CONCLUSION

Our analysis suggests that while some of the various
more complex mutant reduction strategies produce slightly
advantageous mutant sets, the advantage gained is usually
very small. None of the common operator selection strategies
performed notably and consistently well against random sam-
pling, irrespective of the criteria used for evaluation. While
some individual operators had a mean positive test utility or a
mean positive strategy effectiveness, the effect itself was too
small (on the order of one or two mutants or tests) to be of
much help for a tester in the real world. A similar result is

11 Minimal mutants [27] may provide another post-hoc measure.

seen for operator-based x% selection and for element-based
x% strategies, which only show a marginal advantage in test
utility. This may not be worthwhile, considering the additional
complexity of implementation required. This suggests that the
best approach for a working tester is to rely on the simplest
scheme of all — random selection of mutants.

It might be asked, why do we endorse pure random
sampling when there are advantages (however small) for some
more complex methods? First, there is the fact that these
are “more complex” methods: given that random sampling
is extremely simple to implement and very likely to be bug-
free, it is therefore reasonable to prefer it to other methods,
in the absence of compelling advantages to justify the added
complexity. Our data suggests the gains from complexity are
very small indeed.

Second, we follow Hamlet’s principle, formulated in dis-
cussing random testing [54]: in the absence of a rational basis
for systematic methods, random methods are best at avoiding
bias. That is, we are not aware of any way that the various
mutant reduction strategies are biased against finding certain
kinds of bugs. But we also do not have the information to
detect biases if these exist. Random selection, at least, should
only be as biased as the full set of mutations produced, and is
thus safer to use in the absence of a deeper understanding of
how mutants and real faults relate.

There is a second possible point of interest in our results:
as with coverage metrics [23], using a large body of real-
world open source projects to perform experiments seems to
favor simple and easily-implemented approaches more strongly
than more limited academic research samples using only a
few benchmark projects. We speculate that the inadequacies of
real-world test suites may frequently be more simply predicted
and evaluated than those of typical research subjects: these are
typically smaller or involve less easily distinguished test suites,
or in other cases only consider well-tested programs. There is
also an inherent danger in using only a small sample of the
same academic benchmarks over and over again. We may end
up seeing patterns that are specific to the subjects, and not
present in the wider population. The non-performance of the
popular strategies against a more widely-drawn data set such as
ours may be seen as a possible symptom of such over-fitting.

Our advice to mutation analysis researchers is to ensure
that any reduction strategies proposed are validated using a
large number of real-world projects, and to ensure that any
reduction criteria proposed maintains the original amount of
variation. We make available our collection of programs and
mutation testing results from them for this purpose.

Our advice to mutation tool implementors is two fold:
try to provide as much sources of variation as possible, and
avoid questionable operator selection strategies that reduce
overall variation. You can always reduce the number of mutants
produced by random sampling of the mutants produced.

We give similar advice to the practicing tester: pure random
sampling is the best method for mutation reduction for a
generic project. Avoid operator selection unless the operators
thus rejected are sure to be subsumed by others, and use
strata-based sampling only when you can be sure that all
strata elements can produce representative samples for a given
sampling fraction.
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