
An Empirical Comparison of Mutant Selection Approaches

Rahul Gopinath
Oregon State University

gopinath@eecs.orst.edu

Amin Alipour
Oregon State University

alipour@eecs.orst.edu

Iftekhar Ahmed
Oregon State University

ahmedi@eecs.orst.edu
Carlos Jensen

Oregon State University
cjensen@eecs.orst.edu

Alex Groce
Oregon State University
agroce@gmail.com

ABSTRACT
Mutation analysis is a well-known method for measuring the
quality of test suites. However, it is computationally inten-
sive compared to other measures, which makes it hard to use
in practice. Choosing a smaller subset of mutations to run
is a simple approach that can alleviate this problem. Mu-
tation operator selection has been heavily researched. Re-
cently, researchers have found that sampling mutants can
achieve accuracy and mutant reduction similar to operator
selection. However, the empirical support for these conclu-
sions has been limited, due to the small number of subject
programs investigated. The best sampling technique is also
an open problem.

Our research compares a large number of sampling and
operator selection criteria based on their ability to predict
the full mutation score as well as the consistency of mu-
tation reduction ratios achieved. Our results can be used
to choose an appropriate mutation reduction technique by
the reduction and level of fidelity to full mutation results
required.

We find that all sampling approaches perform better than
operator selection methods, when considering ability to pre-
dict the full mutation score as well as the consistency of
mutation reduction ratios achieved.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging
Testing Tools

General Terms
Measurement, Verification

Keywords
Test frameworks, empirical analysis, mutation operators

1. INTRODUCTION
Mutation analysis is a method for evaluating the quality

of test suites. It involves producing a family of mutants, pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

grams with small differences from the original program, and
evaluating the effectiveness of test suites against these mu-
tants [15, 2]. Previous research [3] suggests that mutations
thus introduced behave in a fashion similar to real faults,
with respect to the difficulty of detection.

One of the impediments to wider adoption of mutation
analysis is its high computational cost. The set of simple mu-
tants for even a moderate sized program can be very large,
making mutation analysis prohibitively time consuming.

A major strain of research into cost-reduction of mutation
analysis is to choose a smaller, representative, set of mu-
tants [23, 14] — often called the do fewer approach. This
approach can be generally divided into selective strategies
and sampling strategies.

Selective mutation strategies attempt to select a repre-
sentative subset of mutation operators based on heuristics
and statistical analysis, and apply this subset of operators
to generate mutants instead of applying the whole set of mu-
tation operators [19, 27]. Recent work suggests that using
statement deletion alone can be an effective approach [27].

Sampling strategies seek to randomly select a set of rep-
resentative mutants. This was investigated first by Acree [1]
and Budd [6], who proposed using only x% of all mutants
produced. Wong and Mathur found that random sampling
with ratio as low as 10% could provide accurate results [14].

Recent work [31, 30] has investigated the relative merits of
random sampling strategies and operator selection. Random
sampling can perform as well as or better than operator
selection, in these studies; and a strategy of either sampling
based on program elements or one combining both program
element-based sampling and operator selection was best.

However, as pointed out by Zhang et al. [30], the field has
a serious lacuna in large scale research, both in the size of
the programs studied, and in the number and diversity of
programs, which reduces our confidence in all results. This
is true for selective mutation studies, sampling studies, and
also for comparatively newer studies that attempt to com-
bine methods. This is particularly worrisome if mutation
analysis is to gain wider acceptance among testing profes-
sionals. Further, quite a few of the influential studies [22,
20, 28, 17] were conducted on older programming languages
such as Fortran, with operators specific to the language, and
are not directly applicable to newer languages such as Java.
Finally, with bytecode based mutation engines like PIT [7]
and Javalanche [25] (a do faster approach for eliminating the
compilation step to gain execution speed), operators based
on source code modification are no longer applicable, and
their equivalents in bytecode need to be identified and com-

pared with other approaches. A detailed discussion of these
issues can be found in Section 2.

We have attempted to rectify this situation with a large
scale study of real world programs. As detailed in Section 3,
we sample 188 Java programs from Github, with size rang-
ing from 50 LOC to 100 KLOC, which should allow widely
applicable statistical inferences to be made. We provide the
results from running both the original project’s (presum-
ably human-generated) test suites and also automatically
generated test suites using random testing, increasing the
applicability of our findings to both testers in traditional de-
velopment who are interested in applying mutation analysis
to suite evaluation and to researchers who seek to compare
test suites quickly to evaluate testing techniques.

One note about our, and other researchers, evaluation cri-
teria is in order. We, like others, use the ability of a sample
to correlate well to the score over all mutants as a measure
of sampling quality. The underlying reason for this is that,
while many mutants have little ability to distinguish between
good and bad test suites, some smaller set of mutants show
subtle deficiencies in suites that are not clear from, say, code
coverage. The full set of mutants obviously contains these
mutants, and correlating with (rather than matching) the
full mutation score is a strong indicator that many of these
discriminatory mutants have been preserved in a sample.

Section 3 discusses the sampling and operator selection
strategies we study in detail, and the results of our experi-
ment are given in Section 5, followed by detailed discussion
of what these results imply in Section 6. The specific con-
tributions of this paper are:

• Our study is the largest so far in terms of both the size
of programs involved (50 LOC to 100 KLOC), and the
number of programs analyzed (188 unique open source
projects) for mutant reduction strategies. This allows
for stronger and more widely applicable conclusions
about effectiveness.

• We compare a much larger number of mutant reduc-
tion strategies than previous studies. We compare with
respect to the predictive power (correlation with the
full mutation score), expected mutant reduction, and
the stability of the amount of mutant reduction ex-
pected. Our sampling strategies include some that
were suggested by other researchers, as well as a few
novel strategies not previously considered.

• Our recommendations are useful for both testing re-
searchers who might be comparing automatically gen-
erated test suites, and software testers in real world
working to produce and evaluate manual test suites.

• Most importantly, we find that random sampling strate-
gies perform better than operator selection strategies
in consistently predicting the final mutation score while
obtaining stable computational reduction.

2. RELATED WORK
There are several approaches to reducing the cost of muta-

tion analysis. These were categorized by Offutt and Untch [23]
into three approaches: do fewer, smarter, and faster. The
do fewer approaches include selective mutation and mutant
sampling, while weak mutation, parallelization of mutation
analysis, and space/time trade-offs are grouped under the

umbrella of do smarter. Finally do faster approaches include
mutant schema generation methods, code patching etc.

The idea of using a subset of mutants was conceived along
with mutation analysis itself. Budd [6] and Acree [1] showed
that even 10% sampling can achieve 99% accuracy for the fi-
nal score. The idea was further investigated by Mathur [16],
Wong et al. [29, 28], and Offutt et al. [22] using the Mothra [9]
mutation operators for Fortran. Mathur [16, 28] suggested
constrained mutation where only two operators were used.

A number of studies in the past have looked at the relative
merits of operator selection and random sampling criteria.
Wong et al. [28] compared x% selection of each mutant type
with operator selection using just two mutation operators,
and found that both achieved similar accuracy and reduction
(80%).

Mresa et al.[17] used the cost of detection of mutants as a
means of selection to define a set of operators. They found
that if very high mutation score (close to 100%) is required,
x% selective mutation is better than operator selection, and,
conversely, for lower scores, operator selection would be bet-
ter if the cost of mutants is considered.

Zhang et al. [32] compared operator based mutant selec-
tion techniques to random mutant sampling. They found
that none of the selection techniques are superior to random
sampling, with the same number of mutants. They also
found that uniform sampling of mutations is more effective
for larger subjects compared to equal sampling of mutation
operators and the reverse is true for smaller subjects.

Recently, Zhang et al. [30] confirmed that sampling as few
as 5% of mutants was sufficient for a very high correlation
(99%) with full mutation score, while sampling even fewer
mutants has good potential for retaining a high accuracy
of prediction. They investigated eight sampling strategies
on top of operator-based mutant selection and found that
sampling strategies based on program components (methods
in particular) performed best.

Some studies have tried to find the set of sufficient muta-
tion operators that reduce the cost of mutation but maintain
correlation with the full mutation score. Offutt et al. [22]
suggested an n-selective approach with step-by-step removal
of operators with most numerous mutations. Barbosa et
al.[5] provided a set of guidelines for selecting such muta-
tion operators. Namin et al.[18, 26] formulated the problem
as a variable reduction problem, and found that just 28 out
of 108 operators in Proteum were sufficient.

Using only the statement deletion operator was first sug-
gested by Untch [27], who found that it had the highest cor-
relation (R2 = 0.97) with the full mutation score compared
to other operator selection methods, while generating the
smallest number of mutants. This was further reinforced by
Deng et al. [10] who defined deletion for different language
elements, and found that an accuracy of 92% is achieved
while reducing the number of mutants by 80%.

Our work is most closely related to that of Zhang et
al. [30]. We extend the scope of their study with a much
wider range of mutation approaches and base our results on
a much larger set of real-world projects.

3. METHODOLOGY
Our selection of programs was driven by a few overrid-

ing concerns. Our primary requirement was that our results
had to be as widely applicable as possible for real-world
programs. Secondly, we strived for a statistically significant

CB

CC

DC

EMV

ES

I

IC

IN

M

NC

NMC

RC

RI

RS

RV

VMC

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Original

CB

CC

DC

EMV

ES

I

IC

IN

M

NC

NMC

RC

RI

RS

RV

VMC

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Randoop

Figure 1: The relative contribution of mutation operators in terms of fraction of mutants produced and detected. The
produced mutants are shown with black outline while detected mutants have blue border and shade.

result, reducing the number of variables present in the exper-
iments. For this reason we chose a random sample of Java
projects from Github [11] that use the popular maven [4]
build system, following the methodology we used previously
in an ICSE 2014 paper [13]. As in that work, we utilize
two kinds of of test suites: the original test suites present
in a limited number of projects, and automatically gener-
ated test suites from Randoop [24]. From this set of test
suites, After eliminating those that took too long to finish,
we sampled 107 suites each for both original and Randoop
generated test suites, Since there was some overlap between
projects with original test suites, and those with generated
test suites, we had 81 unique projects each in both sets. The
remaining 26 projects had both flavors of test suites.

We ran mutation analysis on this set of projects using
PIT[7]. However, since the operators provided by PIT are
limited, we extended PIT to provide newer operators that
are similar to operators provided by other mutation systems.
The set of operators that we used is provided in Table 1.
Figure 1 shows the distribution of mutants and the relative
detection rates of each mutation operator for our projects.
In the figure, there are two box-plots corresponding to each
mutation operator on the Y-axis. The black box represents
the relative frequency of the particular mutation operator
in the total mutants produced. For example, for projects in
the (Randoop) generated set, the operator NMC contributed
about 34% of the total number of mutants produced while
RV contributed about 7%. Similarly, the blue shaded box-
plot represents the relative frequency of particular muta-
tion operator in the total mutants detected. For example,
NMC contribution in the detected mutants was 23% while
that of RV was 15%.

For a detailed description of each mutation operator, please
refer to PIT documentation [8]. PIT was also modified to
provide random selection of mutants according to various
criteria. Finally, to remove random noise, each criteria de-
scribed was run four times, and the results averaged to pro-

IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove non-void method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS Replace switch labels with default (thus removing them)
RC Replace boolean conditions with true
NC Replace boolean conditions with false

Table 1: PIT Mutation Operators (We have used
abbreviations instead of operator names.)

duce the final result.

3.1 Sampling Criteria
We used several different sampling criteria, some of which

has been suggested in the literature before, some which are
variants of previously suggested criteria, and a few novel
ones. For each sampling criteria, we sampled mutants on a
decreasing power scale, sampling 1/2, 1/4, 1/8, 1/16, 1/32,
1/64 of the total mutants.

3.1.1 x% selection
The simplest sampling approach consisted of using x% se-

lection as suggested by Budd [6]. In this criteria, we choose
a specific fraction of the complete set of mutants. This cri-
teria also serves as a baseline for verifying the effectiveness
of other criteria.

3.1.2 Sampling over program elements and variants
Following the suggestion of Zhang et al. [30], we extended

x% selection criteria to sample from within different program

elements. We sampled in increasing order of scope, — line,
method and class (project scope is just x% selection).

We used the formula by Zhang et al. [30],

sample(x) = bx+ random(0..1)c

to correctly sample decimal numbers. Next, we slightly mod-
ified this criteria, and instead of sample() which uses prob-
ability to manage the decimal numbers, we applied round()
to obtain the nearest whole number, which was used as the
number of samples to be chosen from the population. The
new strategy ignores program elements with small number
of mutants. This strategy can potentially guide mutation
generation toward more complex program elements. That
is, if the number of mutants dropped below a threshold de-
termined by the mutant reduction ratio, that program ele-
ment would not contribute any mutants to the final result.
Conceptually the idea is that mutants of more complex code
have more discriminatory power (and may correspond better
to real faults — though we do not evaluate this concept).

Next, we explored in the other direction, by forcing the
program elements to return at least one element by using
ceil(). That is, irrespective of the fraction being sampled,
the simplest elements always contributed at least one mu-
tant to the total sample, ensuring coverage but also giving
priority to complex elements.

3.1.3 Lines per element and variants
Our previous research [13] found that statement coverage

was highly correlated with mutation score for a project. This
immediately suggests that perhaps choosing one mutant per
line may be sufficient to achieve a close approximation of
the final mutation score. Further, statement deletion has
been researched previously [27, 10] and has been found to
reduce the number of mutants well, with negligible decrease
in effectiveness. This also provides a nice comparison with
similar numbers of mutants between operator selection and
random sampling of mutants.

We extended sampling to levels coarser than methods, i.e.
method, class, and project. We sampled n mutants from a
method (class or project), where n is the number of state-
ments in the method (class or project).

This provided a test of the hypothesis of how important
a mutation sampling’s relationship to simple code coverage
is. This was extended to class and project scope also.

For the first variant, we applied the x% sampling to the
result of the first sampling based on line counts. That is,
in the case of methods, we first selected linecount mutants
each from each method, and applied the x% selection to
this result. For example, for 1/2 sampling on methods if
one method had 10 lines and another had 20, we sampled 10
mutants from the first, and 20 from the second, and from the
combined 30 mutants, we sampled 15. For the second vari-
ant, we did the sampling in one go, where we chose linecoun-
t/x number of mutants from each program element. That
is, in the previous example, only 5 mutants from the first
and 10 mutants from the second method would be chosen.

3.1.4 One per element
Another simple strategy of sampling we experimented with

is to just choose one mutant per program element, in the or-
der line, method, class.

3.1.5 x% selection per operator

This strategy, first suggested by Wong et al. [28] samples
an equal percentage of mutants from each operator.

3.2 Operator Selection
For selective methods, we tried mutation operators sug-

gested by Wong et al. [28], Offutt et al. [20, 10], and, Namin
et al. [26]. Since Javalanche [25] utilized operator selection
mechanisms, we also compared the Javalanche operators for
operator selection. Note that all of these techniques except
Javalanche have targeted C programs. Thus, some of these
operators may be sensible in C but not in Java. For exam-
ple, deletion of return statement is tolerated in C, not in
Java. Moreover, there were a few operators that were not
supported by the PIT, and could not be implemented easily
(as mentioned below).

3.2.1 Constrained Mutation
Wong et al. [28]. They selected ROR and ABS from
Mothra for mutation analysis. We used operators CB and
NC to model ROR operator. There are no comparable op-
erators to ABS in PIT.

3.2.2 E-Selective
Offut et al. [20]. They selected ABS, UOI, LCR, AOR,
ROR from Mothra operators. We have used IN, M, CB, and
NC. PIT does not have any operator comparable to LCR.

3.2.3 Javalanche
Javalanche [25]. Javalanche uses Negate Jump Condition,
Omit Method Call, Replace Arithmetic Operator, and Re-
place Numerical Constant operators. We have used NC,
VMC, NMC, M, ICand EMVto model them.

3.2.4 Variable Reduction
Namin et al. [26]. They have tried to reduce the mutation
operators of Proteum analysis tool which is for C programs.
They suggest 28 operators which many of them are not ap-
plicable in Java, and some not in PIT. We used by IN, M,
Iand NC.

3.2.5 N-selection
Offut et al. [22]. They suggested removal of n most nu-
merous operators. In our experiment, the order of operators
was NMC, NC, RC, DC, RV, IC, CC, EMV, VMC, M, CB,
I, RI, RS, ES, and IN. We discarded one at each step and
evaluated the effectiveness at each n.

3.2.6 Statement Deletion
The basic statement deletion was modeled on the work by

Deng et al. [10]. The operations on single statements were
modeled using VMC, NMC, CC, EMV, and RI for simple
statements, and using RC for control structures. RC re-
places boolean conditions with false, resulting in removal
of the conditional block. The operator for return values
was modeled using RV, which is similar. The operators for
while, for, and if statements were modeled using DC, which
replaced the boolean condition with true, which removed
the effect of conditional. The switch statement deletion was
modeled using RS which replaced the first 100 labels with a
default label, resulting in the switch element being deleted.
Due to the constraints of the architecture of PIT only the
first 100 labels were replaced. Deleting try/catch was not
necessary at bytecode level. Finally, to get an accurate esti-
mation of the effect of true statement deletion, we grouped

the mutants by line, and considered each line a single virtual
mutant (that is, the total number of mutants is equal to the
total number of lines). Further, killing any mutant from a
line resulted in marking the virtual mutant for that line as
killed. This gave us the mutation score for the virtual state-
ment deletion operator. We note that the approximation
of simple statement deletion, especially when arithmetic op-
erators are involved, is not complete. However, as seen in
Figure 1, the number of mutants produced by M operator is
very small. We also note that our approximation does not
account for the increase in ease of detection when multiple
mutations are combined together due to the coupling effect.
This also means that not all the lines may be mutated ,since
there may be no applicable operators. However, given the
constraints of a bytecode based mutation system, we believe
that our procedure is reasonable.

4. ANALYSIS
For the purposes of comparing between the criteria, we

computed the linear correlation between sampled mutation
score and full mutation score. Since for the baseline sam-
pling criteria, no mutants sampled implies none generated,
our model was

µ{Mall|Mreduced} = β1 ×Mreduced

where Mall is the mutation score of original mutation anal-
ysis and Mreduced is the mutation score of the sample.

We reported the correlation for this linear regression. We
also report the expected multiplier factor β1 for the sampled
mutation score. This factor determines the ease of detecting
mutants in the sampling criteria. That is, if the multiplier
factor is small, then the sample mutation score was larger
than the full mutation score, and hence it was easier to de-
tect mutants in the sample.

Next, for each criterion, we computed the reduction of mu-
tants given by the ratio between sampled mutants and total
number of mutants. We also compute standard deviation
of the mutant reduction, which determines the consistency
of results. A large standard deviation suggests that the mu-
tant reduction ratio achieved is very much dependent on the
project. Therefore, as a heuristic, we suggest looking at only
those methods which have a mean reduction ratio at least
twice the standard deviation.

A few projects did not return any results for some large
reduction factors. Thus the number of valid results from
projects is also collected in the result tables.

5. RESULTS
Our results for random sampling over program elements

using sample(x) are given in Table 2. The result of the
variation using round(x) is given in Table 3 and that using
ceil(x) is given in Table 4. The first column in each table
provides the scope of sampling: per project, per class, per
method, or per line. The second column (÷) provides the
fraction involved. The third column contains the R2 value
obtained between the mutation score of the sampling criteria
used and the full mutation score. The fourth column (µred)
the mutant reduction factor, which is the average of total
mutants divided by the number of mutants sampled. The
fifth column (σred) is the standard deviation of the same.
As we explained in the analysis, the sixth column contains

the valid responses obtained. The seventh column (β1) is
the multiplier factor (coefficient reported by the regression.)

Table 5 provides the results for line count criteria where
the sampling was conducted after combining program ele-
ments, and Table 6 contains the results for line count criteria
where the sampling was conducted inside each program ele-
ment. Similarly Table 8 contains the results for the criteria
of one mutant per program element.

Finally, Table 9 contains the results when only a single
operator is used, and Table 10 contains the results for spe-
cific operator selection criteria. The first columns in these
two tables contain the particular operator or operator selec-
tion applied, and the fraction column (÷) is absent. The
remaining columns are same as previous tables. The TSDL
row is the result of applying only the higher order mutant
equivalent to statement deletion. All the N-sel rows are the
results of N-selective operator selection strategies [19], using
the order of operators from Figure 1. The complete data
(only for original test suites) is visualized in Figure 3.

Our data will be available for replication on publication [12]

6. DISCUSSION
From our data, we see that for original and generated test

suites, the mutant reduction ratio and standard deviation
were similar for stable strategies (where the standard devi-
ation of the reduction achieved was less than half of the re-
duction achieved). This suggests that our analysis is equally
applicable for both original test suites and generated ones.

Analyzing the scores further, we note that the correlation
(R2) achieved by sampling is generally lower for generated
test suites. As the sampling denominator increases, the cor-
relation reduces drastically for generated test suites while
correlation remains strong for original test suites. Secondly,
we also observe that the multiplier factor β1 is smaller for
generated test suites than original test suites. This obser-
vation holds good for all sampling and operator selection
strategies examined. Both these factors together suggest
that generated test suites have a higher variability in their
sampled mutation scores than original test suites. We note
that since β1 was generally smaller for generated test suites
than original test suites, the full mutation score correspond-
ing to a sampled mutation score for generated test suites
would be lower than what would be expected from the orig-
inal test suite. Further, the amount of mutant reduction
possible such that the sampled mutation scores still has a
high enough correlation with the total score is lower for gen-
erated test suites.

Considering different sampling strategies, based on their
stability and mutation reduction achieved, we note that us-
ing simple sampling (sample(x)) produced the most stable
results. For both generated and original test suites, this
strategy produced valid results for all different scopes and
sampling ratios. It also was able to achieve a highest mu-
tation reduction of 72.63, with high stability. That is, only
1.37% of the original mutants were needed to produce a
highly correlated (R2 = 0.97) mutation score, with minimal
deviation (σ = 6.36) for original test suites. While the cor-
relation is weaker for generated test suites it is still quite
strong, with R2 = 0.90

Our round(x), the strategy of ignoring low complexity el-
ements, did not pay off, with line scope having a tendency
to become unstable and low correlated at low sampling ra-
tios. At very low sampling ratio (1/64), the strategy with

Original
scope ÷ R2 µred σred valid β1
line 1/2 0.99 2.00 0.05 106 0.99
method 1/2 0.99 1.99 0.02 107 0.99
class 1/2 0.99 1.99 0.02 107 0.99
project 1/2 0.99 2.29 0.44 99 0.99
line 1/4 1.00 4.00 0.14 106 0.99
method 1/4 0.99 3.99 0.07 107 0.99
class 1/4 0.99 3.99 0.04 107 0.98
project 1/4 0.99 4.50 0.21 99 0.99
line 1/8 0.99 8.02 0.44 107 0.97
method 1/8 0.99 8.01 0.30 107 0.99
class 1/8 0.99 7.98 0.16 107 0.98
project 1/8 0.99 9.11 0.81 99 0.98
line 1/16 0.98 16.34 1.81 106 0.97
method 1/16 0.99 16.00 0.73 107 0.99
class 1/16 0.99 15.98 0.37 107 0.99
project 1/16 0.99 18.00 1.11 99 0.98
line 1/32 0.98 33.16 9.61 107 0.96
method 1/32 0.98 32.10 4.21 107 0.98
class 1/32 0.97 31.87 1.59 107 0.97
project 1/32 0.98 36.11 2.26 99 1.00
line 1/64 0.96 67.25 24.62 107 0.92
method 1/64 0.97 62.67 10.19 107 0.95
class 1/64 0.95 64.92 7.60 107 0.99
project 1/64 0.97 72.63 6.36 99 0.95

Generated
scope ÷ R2 µred σred valid β1
line 1/2 0.95 2.00 0.08 107 0.87
method 1/2 0.97 2.00 0.08 107 0.92
class 1/2 0.97 1.99 0.06 107 0.91
project 1/2 0.96 2.20 0.16 107 0.86
line 1/4 0.97 3.98 0.31 107 0.86
method 1/4 0.96 4.01 0.33 107 0.89
class 1/4 0.96 3.98 0.12 107 0.87
project 1/4 0.97 4.38 0.25 107 0.91
line 1/8 0.92 8.15 1.07 105 0.84
method 1/8 0.94 7.87 0.65 107 0.82
class 1/8 0.94 7.99 0.48 107 0.85
project 1/8 0.95 8.75 0.52 107 0.85
line 1/16 0.87 16.14 2.59 106 0.74
method 1/16 0.91 16.36 2.24 107 0.85
class 1/16 0.85 15.97 1.39 106 0.94
project 1/16 0.91 17.44 1.48 106 0.84
line 1/32 0.86 33.04 15.20 107 0.75
method 1/32 0.88 31.61 5.75 105 0.80
class 1/32 0.88 32.34 5.72 105 0.75
project 1/32 0.89 35.38 3.41 107 0.82
line 1/64 0.67 68.54 26.21 103 0.66
method 1/64 0.58 67.33 22.35 103 0.64
class 1/64 0.70 66.56 17.99 104 0.63
project 1/64 0.90 69.95 8.05 106 0.76

Table 2: The sample(x)% random selection criteria results.

Original
scope ÷ R2 µred σred valid β1
line 1/2 0.99 1.61 0.08 107 0.99
method 1/2 0.99 1.89 0.05 107 0.99
class 1/2 0.99 1.97 0.02 107 0.98
project 1/2 0.98 2.24 0.07 99 0.99
line 1/4 0.98 3.77 0.33 107 0.99
method 1/4 0.99 3.88 0.19 107 0.99
class 1/4 0.99 3.94 0.05 107 0.98
project 1/4 0.99 4.50 0.25 99 0.98
line 1/8 0.98 11.32 2.88 107 0.97
method 1/8 0.99 8.24 0.47 107 0.98
class 1/8 0.99 7.90 0.15 107 0.98
project 1/8 0.98 8.98 0.44 99 0.99
line 1/16 0.93 71.82 48.12 105 0.90
method 1/16 0.99 17.86 2.62 107 0.96
class 1/16 0.99 16.11 0.77 107 0.99
project 1/16 0.97 17.97 0.94 99 0.97
line 1/32 0.83 879.29 811.90 67 0.85
method 1/32 0.97 44.31 14.50 107 0.95
class 1/32 0.98 33.07 2.93 107 0.97
project 1/32 0.98 36.05 2.26 99 0.99
line 1/64 0.52 2032.47 1106.57 20 0.66
method 1/64 0.93 163.19 144.71 99 0.91
class 1/64 0.97 72.54 12.59 107 0.94
project 1/64 0.96 71.83 6.72 99 0.94

Generated
scope ÷ R2 µred σred valid β1
line 1/2 0.98 1.57 0.14 107 0.89
method 1/2 0.97 1.84 0.15 107 0.89
class 1/2 0.96 1.97 0.07 107 0.92
project 1/2 0.96 2.19 0.16 107 0.88
line 1/4 0.90 3.92 0.95 106 0.93
method 1/4 0.89 4.01 0.88 107 0.90
class 1/4 0.96 3.92 0.22 107 0.92
project 1/4 0.98 4.36 0.25 107 0.92
line 1/8 0.87 12.90 6.71 103 0.82
method 1/8 0.89 8.44 0.94 105 0.84
class 1/8 0.94 7.83 0.50 107 0.85
project 1/8 0.93 8.74 0.49 107 0.91
line 1/16 0.78 75.67 58.83 95 0.79
method 1/16 0.89 19.29 6.65 101 0.99
class 1/16 0.96 16.15 1.98 105 0.91
project 1/16 0.90 17.36 1.83 107 0.82
line 1/32 0.23 852.04 808.62 44 0.36
method 1/32 0.79 44.91 14.21 99 0.85
class 1/32 0.91 35.46 7.54 103 0.82
project 1/32 0.90 35.31 3.48 104 0.85
line 1/64 0.04 4214.24 6367.58 13 0.29
method 1/64 0.54 158.37 121.07 84 0.60
class 1/64 0.82 76.29 23.25 100 0.72
project 1/64 0.80 70.36 9.55 103 0.80

Table 3: The round(x)% random selection criteria results.

method scope also becomes unstable and low correlated. On
the whole round(x) did not perform as well as sample(x)

The strategy of ensuring coverage with ceil(x) also did not
perform well. While the results were generally stable, the
reduction ratios achieved were lower than sample(x), with
similar correlations.

For line count strategies, only the external sampling pro-
duced consistent results, which were again not as good as
round(x) for similar reduction ratios. Secondly, we had hy-
pothesized that coverage was a significant contributor to
having a high correlation with the full mutation score. How-
ever we could find no evidence in support of this hypothesis
with line, method, class, and project scope showing similar
correlation and consistency at similar reduction ratios.

The one per element strategy did not have stable results
in general except for at the scope of line (at which point it
was same as the count-per-element strategy).

While the x% per operator strategy produced consistent
results, its consistency was not as good as sample(x), and
was either on par with or worse than sample(x) in R2.

Considering mutation operators, only three operators NC,
RC,and DC had consistent results (and only for original test
suites). The n-selection strategy had high correlation and
consistency (though low reduction ratio) until 7-selection
(removing the seven most numerous operators) for both gen-
erated and original test suites. Javalanche did not have a
high mutation reduction ratio, though it had high R2 for
both kinds of test suites. The other operator selection meth-

Original
scope ÷ R2 µred σred valid β1
line 1/2 0.99 1.61 0.08 107 0.99
method 1/2 0.99 1.89 0.05 107 0.99
class 1/2 0.99 1.97 0.02 107 0.99
project 1/2 0.99 2.24 0.08 98 0.99
line 1/4 0.99 2.24 0.23 107 0.99
method 1/4 0.99 3.36 0.27 107 1.00
class 1/4 0.99 3.88 0.15 107 0.99
project 1/4 0.98 4.50 0.26 99 0.99
line 1/8 0.99 2.65 0.43 107 0.99
method 1/8 0.98 5.50 0.83 107 1.00
class 1/8 0.99 7.43 0.43 107 1.00
project 1/8 0.97 8.94 0.39 99 0.99
line 1/16 0.98 2.74 0.51 107 0.98
method 1/16 0.98 7.98 1.98 107 0.99
class 1/16 0.98 13.65 1.37 107 0.99
project 1/16 0.98 17.76 0.97 99 0.97
line 1/32 0.98 2.75 0.52 107 0.98
method 1/32 0.97 10.22 3.59 107 0.99
class 1/32 0.98 23.71 4.64 107 0.99
project 1/32 0.98 34.87 2.24 99 0.97
line 1/64 0.99 2.75 0.52 107 0.98
method 1/64 0.96 11.55 5.15 107 0.99
class 1/64 0.96 36.95 11.23 107 0.98
project 1/64 0.97 67.92 4.73 99 0.97

Generated
scope ÷ R2 µred σred valid β1
line 1/2 0.97 1.57 0.14 107 0.87
method 1/2 0.97 1.84 0.15 107 0.88
class 1/2 0.98 1.97 0.07 107 0.93
project 1/2 0.95 2.18 0.11 107 0.88
line 1/4 0.96 2.12 0.34 107 0.86
method 1/4 0.94 3.20 0.55 107 0.79
class 1/4 0.96 3.80 0.25 107 0.86
project 1/4 0.97 4.34 0.26 107 0.89
line 1/8 0.93 2.46 0.55 107 0.81
method 1/8 0.89 5.14 1.42 107 0.70
class 1/8 0.95 7.18 0.89 107 0.88
project 1/8 0.94 8.62 0.68 107 0.83
line 1/16 0.94 2.53 0.62 107 0.84
method 1/16 0.86 7.48 3.03 107 0.64
class 1/16 0.91 12.69 2.60 107 0.81
project 1/16 0.90 16.79 1.83 107 0.80
line 1/32 0.94 2.54 0.62 107 0.83
method 1/32 0.82 9.71 5.21 107 0.59
class 1/32 0.89 20.97 6.47 107 0.78
project 1/32 0.89 32.20 5.86 107 0.86
line 1/64 0.94 2.54 0.62 107 0.83
method 1/64 0.81 11.10 6.90 107 0.57
class 1/64 0.86 31.99 14.03 107 0.77
project 1/64 0.86 61.26 14.11 107 0.82

Table 4: The ceil(x)% random selection criteria results.

Original
scope ÷ R2 µred σred valid β1
line 1/1 0.99 2.75 0.52 107 0.98
method 1/1 0.98 2.75 0.52 107 0.98
class 1/1 0.99 2.75 0.52 107 0.98
project 1/1 0.99 2.76 0.53 99 0.98
line 1/2 0.99 5.34 0.99 107 0.98
method 1/2 0.99 5.34 0.99 107 0.98
class 1/2 0.99 5.34 0.99 107 0.98
project 1/2 0.99 5.51 1.08 99 0.99
line 1/4 0.98 10.67 2.12 107 0.97
method 1/4 0.99 10.67 2.12 107 0.97
class 1/4 0.99 10.67 2.12 107 0.99
project 1/4 0.99 10.99 2.10 99 0.98
line 1/8 0.98 21.72 4.27 107 0.98
method 1/8 0.98 21.72 4.27 107 1.00
class 1/8 0.98 21.72 4.27 107 0.99
project 1/8 0.98 22.13 4.40 99 1.00
line 1/16 0.98 46.54 11.53 107 0.94
method 1/16 0.97 46.54 11.53 107 0.96
class 1/16 0.97 46.54 11.53 107 0.95
project 1/16 0.98 44.30 9.19 99 0.99

Generated
scope ÷ R2 µred σred valid β1
line 1/1 0.95 2.55 0.63 107 0.87
method 1/1 0.95 2.54 0.62 107 0.86
class 1/1 0.95 2.54 0.62 107 0.90
project 1/1 0.97 2.55 0.63 107 0.90
line 1/2 0.94 4.89 1.22 107 0.85
method 1/2 0.95 4.89 1.22 107 0.84
class 1/2 0.94 4.89 1.22 107 0.84
project 1/2 0.96 5.05 1.26 107 0.84
line 1/4 0.92 9.89 2.65 107 0.86
method 1/4 0.92 9.88 2.64 107 0.84
class 1/4 0.85 9.89 2.65 107 0.81
project 1/4 0.97 10.14 2.48 107 0.87
line 1/8 0.87 20.15 5.25 106 0.72
method 1/8 0.90 20.15 5.25 106 0.78
class 1/8 0.87 20.15 5.25 106 0.83
project 1/8 0.93 20.21 5.27 107 0.86
line 1/16 0.91 44.95 12.84 102 0.86
method 1/16 0.93 44.95 12.84 102 0.83
class 1/16 0.92 44.95 12.84 102 0.82
project 1/16 0.88 40.81 10.97 105 0.76

Table 5: The line count selection criteria results.

Original
scope ÷ R2 µred σred valid β1
method 1/2 0.98 6.88 1.47 106 0.96
class 1/2 0.99 5.34 0.99 107 0.99
method 1/4 0.98 18.44 9.72 107 0.95
class 1/4 0.99 10.67 2.12 107 0.99
method 1/8 0.94 61.61 40.25 104 0.92
class 1/8 0.98 21.72 4.27 107 0.99
method 1/16 0.91 238.66 214.95 81 0.90
class 1/16 0.97 46.54 11.53 107 0.96

Generated
scope ÷ R2 µred σred valid β1
method 1/2 0.84 6.68 1.78 105 0.94
class 1/2 0.92 4.89 1.22 107 0.82
method 1/4 0.79 17.56 6.88 102 1.04
class 1/4 0.87 9.89 2.65 107 0.82
method 1/8 0.72 57.28 37.09 96 0.86
class 1/8 0.83 20.15 5.25 106 0.78
method 1/16 0.50 174.92 107.33 67 0.58
class 1/16 0.94 44.95 12.84 102 0.89

Table 6: The line count selection criteria results (within).

ods performed poorly on generated test suites, while they
had high correlation and reasonable stability on original test
suites. However, for comparable mutation reduction levels,
they all performed worse than random sampling strategies.

Considering different sampling strategies, we see a few
general patterns. The first is that sampling strategy can pre-

dict the final score with very minimal loss up to a fraction of
1
64

of the total number of mutants. We did not cut off with
the 99% rule as mentioned byZhang et al. [30] (originally
proposed by Offutt et al. [21] for a different measurement),
and instead observe that we obtained R2 = 0.97 which pro-
vides a high confidence in the accuracy of prediction of the

Original
scope ÷ R2 µred σred valid β1
block 1/1 0.99 3.89 0.75 107 1.00
line 1/1 0.99 2.75 0.52 107 0.98
method 1/1 0.96 12.28 6.74 107 0.99
class 1/1 0.95 79.63 81.64 107 0.97
line 1/2 0.99 5.34 0.99 107 0.98
method 1/2 0.96 22.10 12.25 107 0.98
class 1/2 0.94 79.68 81.61 107 0.96
line 1/4 0.98 10.67 2.12 107 0.97
method 1/4 0.96 45.98 32.33 107 0.97
line 1/8 0.98 21.72 4.27 107 0.98
method 1/8 0.95 109.23 61.94 106 0.95
line 1/16 0.98 46.54 11.53 107 0.94
method 1/16 0.90 322.67 235.35 94 0.89

Generated
scope ÷ R2 µred σred valid β1
block 1/1 0.90 4.04 1.21 107 0.76
line 1/1 0.95 2.55 0.63 107 0.87
method 1/1 0.79 12.01 8.42 107 0.56
class 1/1 0.81 63.26 68.83 107 0.69
line 1/2 0.94 4.89 1.22 107 0.85
method 1/2 0.80 21.25 15.06 107 0.56
class 1/2 0.80 63.26 68.83 107 0.70
line 1/4 0.92 9.89 2.65 107 0.86
method 1/4 0.73 44.05 35.81 107 0.54
line 1/8 0.87 20.15 5.25 106 0.72
method 1/8 0.75 114.93 97.44 98 0.48
line 1/16 0.91 44.95 12.84 102 0.86
method 1/16 0.72 295.94 259.87 75 0.40

Table 7: The one per element selection criteria results.

Original
scope ÷ R2 µred σred valid β1
operator 1/2 0.99 2.26 0.14 99 0.98
operator 1/4 0.99 4.47 0.15 99 0.99
operator 1/8 0.98 9.05 0.56 99 1.00
operator 1/16 0.99 17.98 1.16 99 0.98
operator 1/32 0.98 36.02 2.70 99 0.98
operator 1/64 0.97 71.67 10.42 99 0.97

Generated
scope ÷ R2 µred σred valid β1
operator 1/2 0.96 2.18 0.13 107 0.87
operator 1/4 0.95 4.39 0.31 107 0.90
operator 1/8 0.89 8.82 0.63 107 0.86
operator 1/16 0.93 17.65 2.55 107 0.84
operator 1/32 0.80 34.70 4.03 106 0.80
operator 1/64 0.83 66.77 12.95 106 0.79

Table 8: The x% per operator criteria results.

Original
operator R2 µred σred valid β1
TSDL 0.95 6.85 5.47 101 0.82
IN 0.54 3542.79 2658.47 15 0.58
RV 0.95 15.12 9.73 107 0.94
M 0.79 184.75 252.49 92 0.82
VMC 0.85 32.33 41.63 105 0.94
NC 0.97 11.63 3.88 107 0.84
CB 0.88 97.00 115.39 106 0.83
I 0.89 178.87 203.51 103 0.71
NMC 0.97 3.88 3.71 107 1.00
CC 0.93 18.58 10.46 105 1.05
IC 0.94 14.46 11.92 107 0.99
RI 0.89 178.87 203.51 103 0.71
EMV 0.90 27.24 18.54 104 0.86
ES 0.70 1301.75 1523.32 47 0.56
RS 0.65 363.30 597.14 47 0.66
RC 0.97 11.63 3.88 107 0.95
DC 0.98 11.63 3.88 107 0.95

Generated
operator R2 µred σred valid β1
TSDL 0.91 5.78 6.83 105 0.72
IN 0.78 2767.00 2062.97 8 0.21
RV 0.74 19.35 17.35 106 0.50
M 0.44 195.86 250.58 72 0.61
VMC 0.26 20.52 20.43 105 0.81
NC 0.76 14.92 11.83 99 0.75
CB 0.72 117.35 135.85 86 0.70
I 0.50 233.23 253.06 76 0.49
NMC 0.89 3.44 3.62 106 1.02
CC 0.83 16.54 8.68 103 0.63
IC 0.75 15.78 11.59 101 0.87
RI 0.49 233.23 253.06 76 0.50
EMV 0.72 30.46 64.32 101 0.45
ES 0.01 1386.19 1612.68 27 0.13
RS 0.07 347.48 482.93 27 0.62
RC 0.74 14.92 11.83 99 0.85
DC 0.73 14.92 11.83 99 0.85

Table 9: Operators

Original
operator R2 µred σred valid β1
Wong01 0.98 9.83 3.24 107 0.86
Offutt96 0.97 8.58 3.12 107 0.86
Javalanche 0.99 1.62 0.15 107 0.98
Namin08 0.97 9.06 3.30 107 0.85
14-sel 0.72 1313.41 1533.80 52 0.60
13-sel 0.69 514.99 1146.97 52 0.68
12-sel 0.89 119.26 124.96 104 0.73
11-sel 0.90 66.27 65.26 104 0.73
10-sel 0.90 34.36 28.04 106 0.80
9-sel 0.92 27.00 25.76 107 0.82
8-sel 0.95 10.78 5.84 107 0.95
7-sel 0.96 7.08 3.19 107 0.95
6-sel 0.97 4.79 2.01 107 1.00
5-sel 0.98 3.28 0.93 107 1.01
4-sel 0.98 2.54 0.59 107 1.01
3-sel 0.99 2.02 0.32 107 1.01
2-sel 0.99 1.69 0.21 107 1.00
1-sel 0.99 1.46 0.17 107 0.98
0-sel 0.99 1.00 0.01 106 0.99

Generated
operator R2 µred σred valid β1
Wong01 0.78 13.15 11.64 99 0.77
Offutt96 0.78 11.92 11.27 99 0.79
Javalanche 0.97 1.54 0.17 107 1.00
Namin08 0.78 12.47 11.24 99 0.78
14-sel 0.07 1201.44 1534.04 28 1.02
13-sel 0.07 474.45 1230.40 28 0.67
12-sel 0.46 174.10 183.77 78 0.50
11-sel 0.48 93.75 94.34 78 0.51
10-sel 0.65 60.24 87.81 87 0.70
9-sel 0.62 42.17 41.90 92 0.72
8-sel 0.50 11.92 10.17 107 0.92
7-sel 0.84 6.63 3.04 107 0.76
6-sel 0.90 4.45 2.01 107 0.78
5-sel 0.92 3.17 0.89 107 0.84
4-sel 0.92 2.50 0.67 107 0.78
3-sel 0.93 2.05 0.40 107 0.78
2-sel 0.95 1.76 0.31 107 0.82
1-sel 0.95 1.55 0.28 107 0.83
0-sel 0.97 1.00 0.03 105 0.92

Table 10: Operator Selection

●●●

●

●● ●●●●●●● ●●●●●●● ●●●●●●●●●

●●●●●
●●●●●●●● ●●●●●●●●●●●●● ●●●●●

●
●
●●
●●

●

●

●

●
●

●

●●●●●●●●
●●●●
●● ●●

●

●●●●
●
●
●
●
●

●

●●
●

●

●

●

●

●
●●

●●

●
● ●

●

●

●●

●●

●

●

●

●

●
●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

1/2 1/4 1/8 1/16 1/32 1/64
sample ÷ all

re
du

ct
io

n

type

project

class

method

line

sample(x)

Figure 2: The effect of sampling reductions, Original set R2 > 0.90. Notice the hierarchy of spread within boxplot for similar
sampling ratios (÷) project < class < method < line i.e. project is better

full score.
The second pattern is that fractional sampling based on

projects appears to be better than that based on classes,
which in turn is better than methods and lines, with regard
to the stability of the result (i.e. low standard deviation).
This is not clear at lower levels of reduction (< 1/32), but
becomes more pronounced for lower ratios (see Figure 2).
There seems to exist a hierarchy of sampling, whereby as
sampling becomes more fine grained stability decreases. We
did not observe the pattern found by Zhang et al. [30] where
method-based sampling had the best correlations. In fact,
in our measurements, the opposite may be true, with project
based sampling having the highest R2 a majority of the time.

The third ”pattern” is that the simplest sampling scheme
— simple random sampling — performs best compared to
sampling schemes that tried to provide higher weight to spe-
cific elements based on specific criteria. Additionally, oper-
ator selection seems to be generally worse off in predicting
the final mutation score than any of the random selection
schemes. In principle, if we could devise sampling methods
that somehow captured only the most discriminative mu-
tants for programs, they might perform better than any of
these; our results suggest that most schemes that (we as-
sume) aim at this goal do not in fact achieve the goal over a

large body of programs, and so tend to perform worse than
simply randomly sampling the whole pool of mutants, which
has attractive simplicity in the absence of a better strategy.

7. THREATS TO VALIDITY
While we have taken every care to ensure that our results

are valid, and to eliminate the effects of random noise, our
results are subject to the following threats to validity.

Our results were observed on open source Java programs
from the Github repository, using the maven build system.
Further, only those projects that successfully completed mu-
tation testing within a designated amount of time were cho-
sen. This implies that if there is a confounding factor in play
that affects the relation between the full mutation score and
sampling mutation score, it might cause our results to be
either wrong or less applicable.

Secondly, we had to rely on the PIT mutation testing tool,
and had to extend its capabilities to some extent for our
purposes. Software bugs are a fact of life. While every care
has been taken to avoid them, there is still some possibility
of some bugs having escaped us.

8. CONCLUSION

●●●
●

●●●●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●●●●

●
●●●

●

●

0

5

10

15

20

25

0 20 40 60
µred

σ r
ed

sampling

● sample(x)

num.lines(x)

one.per.elem(x)

op.x%(x)

opsel(x)

type

●

●

●

●

●

●

line

method

class

project

x% operator

operator selection

Figure 3: The mean reduction of mutants vs its standard deviation. Original set, main variations of sampling, only
observations with R2 > 0.9 and 2× σred < µred are shown here. Notice that operator selection is has high σ for

corresponding µ, and project based sampling is better for high reduction (note that x and y axis are in different scales)

Our analysis suggests that simple random sampling —
that is, at the project level — works best when compared
to more sophisticated schemes of sampling. Further, we also
note that random sampling performs better in predicting
final mutation score than operator selection.

This suggests that the best way to reduce the computa-
tional requirements of mutation analysis is fortunately easy
to apply in almost any setting, given a tool that produces a
good starting set of mutants. Namely, randomly sampling
the total mutant population, even with very small sample
sizes, can effectively predict the results of running all mu-
tants, but at only a fraction of the computational cost. Not
only is this method simple and effective, but it is also quite
stable compared to some alternatives, with a low standard
deviation in effectiveness across projects, for both original
and random test suites.

There is a second possible point of interest here: as with
coverage metrics used to predict mutation scores [13], using
a large body of actual open source code to perform exper-
iments seems to favor simple and easily-implemented ap-
proaches much more strongly than limited experiments on
more academic subjects. We speculate that the inadequa-
cies in real world test suites, or even in randomly generated

tests for real world programs, may frequently be more simply
predicted and evaluated than for typical research subjects,
which may be smaller or involve less easily distinguished test
suites.

9. REFERENCES
[1] A. T. Acree, Jr. On Mutation. PhD thesis, Atlanta,

GA, USA, 1980. AAI8107280.

[2] P. Ammann and J. Offutt. Introduction to software
testing. Cambridge University Press, 2008.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages
402–411. IEEE, 2005.

[4] Apache Software Foundation. Apache maven project.
http://maven.apache.org.

[5] E. F. Barbosa, J. C. Maldonado, and A. M. R.
Vincenzi. Toward the determination of sufficient
mutant operators for c. Software Testing, Verification
and Reliability, 11(2):113–136, 2001.

[6] T. A. Budd. Mutation Analysis of Program Test Data.
PhD thesis, New Haven, CT, USA, 1980. AAI8025191.

[7] H. Coles. Pit mutation testing. http://pittest.org/.

[8] H. Coles. Pit mutation testing: Mutators.
http://pitest.org/quickstart/mutators.

[9] R. A. DeMillo, D. S. Guindi, W. McCracken,
A. Offutt, and K. King. An extended overview of the
mothra software testing environment. In Software
Testing, Verification, and Analysis, 1988., Proceedings
of the Second Workshop on, pages 142–151. IEEE,
1988.

[10] L. Deng, J. Offutt, and N. Li. Empirical evaluation of
the statement deletion mutation operator. In IEEE
6th International Conference on Software Testing,
Verification and Validation., Luxembourg, 2013.

[11] GitHub Inc. Software repository.
http://www.github.com.

[12] R. Gopinath. Replication data for: A comparison of
mutation approaches.
http://dx.doi.org/10.7910/DVN/24936.

[13] R. Gopinath, C. Jensen, and A. Groce. Code coverage
for suite evaluation by developers. In 36th
International Conference on Software Engineering,
2014.

[14] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649–678,
2011.

[15] R. J. Lipton. Fault diagnosis of computer programs.
Technical report, Carnegie Mellon Univ., 1971.

[16] A. Mathur. Performance, effectiveness, and reliability
issues in software testing. In Computer Software and
Applications Conference, 1991. COMPSAC ’91.,
Proceedings of the Fifteenth Annual International,
pages 604–605, 1991.

[17] E. S. Mresa and L. Bottaci. Efficiency of mutation
operators and selective mutation strategies: An
empirical study. Software Testing Verification and
Reliability, 9(4):205–232, 1999.

[18] A. S. Namin and J. H. Andrews. Finding sufficient
mutation operators via variable reduction. In
Proceedings of the 2nd Workshop on Mutation
Analysis (MUTATION’06), page 5, 2006.

[19] A. Offutt, G. Rothermel, and C. Zapf. An
experimental evaluation of selective mutation. In

Software Engineering, 1993. Proceedings., 15th
International Conference on, pages 100–107, 1993.

[20] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient
mutant operators. ACM Trans. Softw. Eng. Methodol.,
5(2):99–118, Apr. 1996.

[21] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient
mutant operators. ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(2):99–118,
1996.

[22] A. J. Offutt, G. Rothermel, and C. Zapf. An
experimental evaluation of selective mutation. In
Proceedings of the 15th international conference on
Software Engineering, pages 100–107. IEEE Computer
Society Press, 1993.

[23] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting
the orthogonal. In Mutation testing for the new
century, pages 34–44. Springer, 2001.

[24] C. Pacheco and M. D. Ernst. Randoop random test
generation. http://code.google.com/p/randoop.

[25] D. Schuler and A. Zeller. Javalanche: Efficient
mutation testing for java. In ESEC/FSE ’09:
Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 297–298, Aug. 2009.

[26] A. Siami Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient mutation operators for measuring test
effectiveness. In Proceedings of the 30th international
conference on Software engineering, pages 351–360.
ACM, 2008.

[27] R. H. Untch. On reduced neighborhood mutation
analysis using a single mutagenic operator. In
Proceedings of the 47th Annual Southeast Regional
Conference, ACM-SE 47, pages 71:1–71:4, New York,
NY, USA, 2009. ACM.

[28] W. Wong and A. P. Mathur. Reducing the cost of
mutation testing: An empirical study. Journal of
Systems and Software, 31(3):185 – 196, 1995.

[29] W. E. Wong. On mutation and data flow. PhD thesis,
Citeseer, 1993.

[30] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid.
Operator-based and random mutant selection: Better
together. In IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2013.

[31] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random
mutant selection? In Proceedings of the 32Nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 435–444,
New York, NY, USA, 2010. ACM.

[32] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random
mutant selection? In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 435–444. ACM, 2010.

http://maven.apache.org
http://pittest.org/
http://pitest.org/quickstart/mutators
http://www.github.com
http://dx.doi.org/10.7910/DVN/24936
http://code.google.com/p/randoop

	Introduction
	Related Work
	Methodology
	Sampling Criteria
	x% selection
	Sampling over program elements and variants
	Lines per element and variants
	One per element
	x% selection per operator

	Operator Selection
	Constrained Mutation
	E-Selective
	Javalanche
	Variable Reduction
	N-selection
	Statement Deletion

	Analysis
	Results
	Discussion
	Threats to Validity
	Conclusion
	References

