Measuring Effectiveness of Mutant Sets

Rahul Gopinath*, Amin Alipour†, Iftekhar Ahmed‡, Carlos Jensen§, and Alex Groce¶

Department of EECS, Oregon State University

Email: *gopinath@eecs.orst.edu, †alipour@eecs.orst.edu, ‡ahmed@eecs.orst.edu, §cjensen@eecs.orst.edu, ¶agroce@gmail.com

Abstract—Redundancy in mutants, where multiple mutants end up producing the same semantic variant of a program, is a major problem in mutation analysis. Hence, a measure of effectiveness that accounts for redundancy is an essential tool for evaluating mutation tools, new operators, and reduction techniques. Previous research suggests using the size of the disjoint mutant set as an effectiveness measure.

We start from a simple premise: test suites need to be judged on both the number of unique variations they detect (as a variation measure), and also on how good they are at detecting hard-to-find faults (as a measure of thoroughness). Hence, any set of mutants should be judged by how well it supports these measurements.

We show that the disjoint mutant set has two major inadequacies — the single variant assumption and the large test suite assumption — when used as a measure of effectiveness in variation. These stem from its reliance on minimal test suites. We show that when used to emulate hard to find bugs (as a measure of thoroughness), disjoint mutant set discards useful mutants.

We propose two alternatives: one measures variation and is not vulnerable to either the single variant assumption or the large test suite assumption; the other measures thoroughness. We provide a benchmark of these measures using diverse tools.

I. INTRODUCTION

Software engineering relies on mutation analysis [1], [2] as a means of measuring the test suite quality. Mutation analysis involves exhaustive generation of a syntactically defined set of faults, and evaluation of a test suite’s ability to detect the resulting variants of the program. Mutation score is taken to correlate with the ratio of detectable variants to total number of variants. The terms used are given in Box 1.

A key concern in mutation analysis is whether the generated mutants are sufficient to generate all possible variants of the program. Given that not all mutants produce unique variants, another key concern [3] is to avoid generation of redundant mutants. That is, using only a single representative mutant for each variant. Researchers have identified various techniques for reducing redundancy in generated mutants: these include selective mutation, static subsumption, mutation clustering to identify similar mutants, static analysis of generated mutants, and other approaches. Recently [4] it was found that there is limited utility in mutation reduction strategies compared to random sampling, and it was more worthwhile to investigate additional effective mutation operators, rather than strategies for removal of mutants, however intelligent.

Whether it is for comparison between two mutation reduction strategies, or evaluation of effectiveness of a new mutation operator, a measure of effectiveness of a set of mutation operators is required. Mutation analysis is a means of assessing the quality of a test suite, and any measure of effectiveness should consider how well a given set of mutants achieves this objective. A test suite should be judged on two main criteria: detecting and preventing as many unique variants as possible (measure of variation), and, detecting subtle bugs (measure of thoroughness). Correspondingly, a given set of mutants may be judged by the ratio of the unique variants it contains to the size of the full set of possible variants. It may also be judged by the ease of detection for the variants induced by it.

Considering the first requirement, given a set of mutants, and a reduction strategy, one may judge the effectiveness of the strategy by the fraction of original unique variants that the reduction strategy was able to preserve in the reduced set. That is, for an ideal reduction strategy, each mutant in the reduced set should correspond to a unique variant, and each variant in the original set of mutants should have a unique mutant associated with it in the reduced set. Theoretically [5]–[7] this can be done by running all possible test sets — T^U against each mutant, identifying its unique signature, and removing those mutants that are subsumed1. This is however, undecidable as a consequence of Rice’s theorem [9]. Ammann et al. [6] suggest a compromise: rely on the minimal test suite (denoted as Td). Td is the smallest test suite such that Td ⊆ T and kills the complete mutant set M. Then, identify the minimal subset of mutants (we denote it by Md) that requires at least Td to completely kill. These are called the disjoint set by Kintis et al. [10], and minimal mutants by Ammann et al. [6]. We adopt the name disjoint mutant set for this paper because this was the original moniker [10], and also because we propose an alternative minimal set of mutants. There is, unfortunately, a problem with the minM.

Mutation reduction techniques and newer mutation operators are not added with a particular test suite in mind. They typically take into account only static characteristics; the set of mutants should not depend on the test suite used — especially if mutants are used to judge test suite quality. Hence, the aim for a measure of effectiveness of mutants should be to identify unique variants that are produced from a set of mutants. The test suites are only incidental to this requirement.

Does the theoretical minimum2 disjoint mutant set satisfy

1 Traditionally [5], [7], [8] subsumption is based on all execution paths. That is, \(\text{kill}(m_a, T^U) \rightarrow \text{kill}(m_a, T^U) \) when \(m_a \) subsumes \(m_b \). However, Ammann et al. [6] use dynamic subsumption, which relies only on the available test set. That is, \(\text{kill}(m_a, T) \rightarrow \text{kill}(m_b, T) \) when \(m_a \) subsumes \(m_b \).

2 Minimum set is the smallest sized set among minimal sets.
Does mutation adequate test suites, the size of the theoretical minimum set using a disjoint mutant set the best measure of effectiveness in this respect? Our aim here is to show that disjoint mutant set does not select all the hardest mutants, and that subsumption can be used to define hardness — and thus provide a more informative measure.

A. Problems with size of disjoint mutant set as a measure of effectiveness

The explicit assumptions made [6] in theoretical disjoint mutant set are: a comprehensive test suite and a fixed set of mutants. However, using the theoretical disjoint mutant set as the true set of unique variants involves a few more implied assumptions. Let us imagine that we have a large set M of non-redundant mutants ($|M| = m$) each producing a different variant, and a minimum test suite T containing a set of test cases ($|T| = t$) which, when we are using T, is adequate to kill every mutant in the set of mutants. Say we create a super test case T' by joining together all other test cases, and add it to T, creating T'. Plainly, both T and T' are adequate for M. Now, according to Ammann’s definition, the size of disjoint mutant set is the same as the size of the corresponding minimal test suite size, which is t if we are using T, but 1 if we are using T'. However, we do know that the actual number of variants is m. Even if we assume that $t = m$ initially, the actual number of variants is not 1.

That is, if one is looking for the true set of unique variants, one has to assume that test cases are small, with no test case killing more than one variant. (If any test case kills more than one variant, the size of the minimal test suite will no longer correspond to the number of unique variants. This is the single variant assumption. The second assumption is that the number of test cases is at least equal to or greater than the number of unique variants — the large test suite assumption.)

Even for large mutation adequate test suites, the size of the minimum test suite may be much smaller than the number of variants, because some test cases may detect more than a single variant. This makes size of corresponding disjoint mutant set a less than ideal measure for the number of variants.

The large test suite assumption manifests itself as two problems. We can only identify $|T_d|$ unique variants, and secondly we can only distinguish between $|T_d|$ such sets of mutants (varying between 1 to $|T_d|$ unique variants).

As a practical example, consider a set of tests for triangle (Box 2) $\{t_1, t_2, t_3\}$, with corresponding mutant kills $\{m_a, m_b\}, \{m_a, m_c\}, \{m_a\}$. Plainly, all the mutants produce different variants, and the three test cases are different from each other in terms of the variants they detect, with none subsumed by others. However, a minimal test suite based on mutation scores discards one of t_1, t_2, t_3, as not all three are required to maintain the mutation score. The

The word comprehensive is not defined by Ammann [6], but the rest of the paper suggests that it means mutation adequate test suite.

Box 1 Terms used

Fault: A fault is an erroneous part of a program, the syntactic source of a semantically wrong behavior [11].

Mutation: A mutation is a fault that was introduced into the program by a mutation tool. We do not distinguish between real faults and mutations in this paper.

Mutant: A mutant is a program with a fault in it. Traditional mutation is typically first-order.

Program behavior: The behavior of a program is the set of runtime properties that can be used to differentiate one variant of a program from another [11]. We measure these using spectra [12], and for the purpose of this research, especially the spectra that can be checked by a test case — the output spectrum — which is the record of the output of the program for a given input.

Variant: A program or a mutant that shows a deviation in runtime behavior from the original program P.

Unique variant: A fault produces a unique variant with respect to a set of faults when the variant it produces is not produced by any (other) fault in the set.

Redundant fault: A fault (or mutant) is redundant with respect to a set of faults when the variant it produces is not unique compared to the variants of the (other) faults in the set.

Box 2 Triangle

$$\text{triangle}(a, b, c) = (a < b + c) \& (b < c + a) \& (c < a + b)$$

Mutants:

- $\text{triangle}_1(a, b, c) = \top \& (b < c + a) \& \top$
- $\text{triangle}_2(a, b, c) = \top \& \top \& (c < a + b)$
- $\text{triangle}_3(a, b, c) = (a < b + c) \& \top \& \top$

Test cases:

- $t_1 : \text{triangle}(3, 2, 1) \rightarrow \text{false}$
- $t_2 : \text{triangle}(1, 3, 2) \rightarrow \text{false}$
- $t_3 : \text{triangle}(2, 1, 3) \rightarrow \text{false}$

The unique set of variants corresponding to a set of mutants is important as it is the real target of mutation reduction strategies relying on static analysis of the program and mutants. Test suite results are only incidental to the accurate determination of unique variants.

Expanding on the second requirement, it may be argued that identifying the actual hardest mutants to detect is important (not just the size of the set), and disjoint mutant set is a set of mutants that are hardest to detect. In other words, not all the unique variants should be considered with the same weight. Some of the variants are trivially detected by multiple test suites, and hence a measure of effectiveness ought to consider the value of trivial and non-trivial mutants too. Does the theoretical minimum set using a disjoint mutant set capture all the hardest mutants to detect? Is the size of the theoretical minimum set using a disjoint mutant set the best measure of effectiveness in this respect? Our aim here is to show that disjoint mutant set does not select all the hardest mutants, and that subsumption can be used to define hardness — and thus provide a more informative measure.
size of the disjoint mutant set is same as the cardinality of the corresponding minimal test suite. This means that the theoretical minimum disjoint mutant set may discard mutants which represent actual unique variants.

There is a simple fix to this problem. Any two mutants can be considered to be representing two different variants if the test cases that kill them are different. We denote a set of mutants such that no pair have similar kills as unique mutants M_d. Such a set has a maximum size limit of 2^T, the maximum resolving power of the test suite, and is not vulnerable to either of the large test suite assumption\(^4\) or the single variant assumption. The size of unique mutant set can be used as a measure to compare two mutant sets of the same size. We may also compare any two tools, using the ratio between unique mutants (M_d) and the total number of killed mutants (M_k), $R_d = \frac{|M_d|}{|M_k|}$. If R_d is close to unity, then the odds are any given mutant by that tool is unique.

The second question is more involved. In Box 2, we know that disjoint mutant set discards at least one of the mutants, even though all of them are similar in terms of the number of tests that detect them. The same is true in the first example too, where adding a super test case results in ignoring most of the useful mutants. Hence the question is, do we have an alternative? What exactly is a trivial mutant? How do we measure effectiveness? Is the size of the non-trivial set the best one can do as a measure of thoroughness?

We develop a theory of hyper-geometric representation of variants such that variants enclosed by similar volumes have similar effectiveness irrespective of the number of variants included. We also show that the variants at the surface of this volume (denoted by M_s) can be computed by a small modification to the computation of disjoint mutant set M_d. We show that the alternative does not result in discarding important mutants in the given example.

This suggests a simple measure of effectiveness (with consideration for triviality). We compute the effectiveness as the ratio of volume of the sphere enclosed to the maximal volume.

\[M_s \text{ is an alternative to } M_d, \text{ and like } M_d, \text{ selects the possible non-trivial variants in a set of mutants. However, unlike } M_d, \text{ we do not advocate its size as the effectiveness measure.} \]

For empirical analysis, we use large well tested real-world projects from Github, and diverse tools. As in previous work [6], we compare measurements across multiple tools, and identify the fraction of unique mutant set expected from the mutants produced by each tool. For mutation reduction, we investigated the reduction in effectiveness due to sampling. We find that even though the size of unique mutant set decreases along with decrease in sample size, the volume ratio remains similar. This suggests that the random samples produce mutants that are as hard to detect as the full set of mutants. Our data as well as the subject programs are available for replication [13].

Contributions:

- We identify the need for two different kinds of effectiveness measures for mutant sets. The first to measure the fraction of unique variants present (variation effectiveness), and the second to measure how good the given mutants are in emulating subtle bugs (measure for thoroughness).
- We show that the size of a disjoint mutant set can not be used as a variation effectiveness measure due to two unstated assumptions — the single variant assumption, and the large test suite assumption.
- We provide an alternative for the size of a disjoint mutant set $(|M_d|)$ — the size of a unique mutant set $(|M_s|)$, which is not vulnerable to the single variant assumption or the large test suite assumption.
- We also show that the disjoint mutant set is not the best set of most hard to detect variants, as it may miss variants that are equally hard.
- We develop a theory of geometric representation of variants and use it to provide an alternative to the disjoint mutant set — the surface mutant set, and provide the semantic interpretation through volume ratio ψ.
- We provide an empirical benchmark for the different measures using three different mutation tools, and a diverse set of real world projects.

II. GEOMETRIC MODEL

Our approach builds on the disjoint mutant set [10] formalized by Ammann et al. [6] but extends it to provide fine-grained criteria for evaluating performance of different mutation techniques. We note that our formulation is very similar to the recently proposed theoretical model for mutation testing methods [14].

A. Terminology

Given a program P, and its test suite T, a mutation tool may generate a set of mutants M by injecting a set of mutations. The mutations are a subset of all faults that are possible for a given program, which is generated by a mutation tool. We use lowercase for elements, while sets are represented by uppercase — $m \in M$ is a single mutant, and $t \in T$ is a single test case. The set T^U represents all possible test cases for P. That is, $T \subseteq T^U$. The powerset of T is represented by 2^T, and contains $2^{|T|}$ elements. The mutants in M killed by a test suite T are given by $\text{kill}(T, M)$. Similarly, the tests in T that kill M are given by $\text{cover}(T, M)$.

$\text{kill} : T \times M \rightarrow M$ and $\text{cover} : T \times M \rightarrow T$

T is mutation adequate for M if $\text{kill}(T, M) = M$. Two tests t_1 and t_2 are distinguishable or unique if $\text{kill}(|\{t_1\}, M) \neq \text{kill}(|\{t_2\}, M)$.

Two mutants m_1 and m_2 are distinguished or unique if $\text{cover}(T, \{m_1\}) \neq \text{cover}(T, \{m_2\})$. A set of mutants is

\[4 \text{ It is still vulnerable to a limit of } 2^{|T|}, \text{ where } |T| \text{ is the size of all tests, is usually larger than the number of mutants. Given that } 2^{|T|} \text{ grows much faster than } |T|, \text{ with about 10 test cases sufficient for uniquely identifying 1,024 variants, we do not consider this a practical problem.} \]
called a unique mutant set if no pairs within the set are indistinguishable.

A mutant m_1 dynamically subsumes another m_2 if the tests that kill m_1 are guaranteed to kill m_2 (and m_1 can be killed). That is, $\text{cover}(T, \{m_1\}) \subseteq \text{cover}(T, \{m_2\})$.

A set of tests are said to be minimal if removal of any test case causes the mutation score to drop, and a disjoint mutant set corresponds to a minimal test set such that no mutant in the set dynamically subsumes another.

A runtime variant (or simply variant) is a program or a mutant that shows a deviation in runtime behavior from the original program P. Not all mutants express a detectable deviation and not all deviations are unique — equivalent and redundant mutants exist. A variant may be detected by multiple test cases. We call a variant v_a that is detected only by a subset of test cases that detect another variant v_b a harder variant to detect than v_b (which is conversely easier).

In terms of subsumption, the variant v_a can be said to subsume variant v_b. That is, $v_a \geq v_b$. We consider only dynamic subsumption by available test cases here. A variant v_a is included in the volume of a set of variants V if and only if at least one variant $v_b \in V$ subsumes v_a.

B. Approach

Imagine that we have an exhaustive set of variants V^U for any program P. Some variants may be easier to detect, and hence detected by multiple test cases. We know that mutants and variants have a surjective relationship. As shown in Figure 1, while multiple mutants can produce the same variant, multiple variants can not be associated with a single mutant, and there is at least one unique mutant for each variant generated (and at least one fault for any possible variant).

Consider an n dimensional volume with the number of dimensions given by $|T|$. A unit distance along any dimension represents the variant escaping the corresponding test case, while 0 in each dimension represents a detection of the variant by the test case corresponding to that dimension. With this formulation, the origin point is the variant that is detected by all test cases, and a volume of 2^n is the maximal volume possible. The inclusion of a variant now has a geometric representation. It is within the volume bounded by the variants that are already present. Effectively, this means that the inclusion needs to be checked only with the surface variants of the enclosed volume.

This suggests a way to evaluate the effectiveness of a set of mutants given a test suite, which is given by the ratio between the possible variants that could be included by the detected variant surface corresponding to the mutant set and the maximal volume of variants $2^{|T|}$. Let us denote the volume ratio by ψ, and the mutants in the variant surface by M_ψ.

Unfortunately, measuring the ψ score becomes difficult as the number of test cases and mutants increases. That is, for computing ψ, the numerator is given by

$$\left| \bigcup_{i=1}^{\lfloor M \rfloor} A_i \right| = \sum_{J \subseteq \{1,2,\ldots,|M|\} \setminus \emptyset} (-1)^{|J|-1} \left| \bigcap_{j \in J} A_j \right|$$

where the number of terms is $2^{|M|} - 1$ — increasing exponentially. Computation of such a value is infeasible.

For example, consider Figure 2 where mutant m_1 is detected by test cases $\{t_1, t_2, t_3, t_4\}$, m_2 by $\{t_1, t_3, t_5\}$, and m_3 by $\{t_5\}$. This is a two dimensional representation of the five dimensional matrix. The central polygon represents the origin point $(0, 0, 0, 0, 0)$, representing any mutant that can be killed by all test cases. We say that m_3 subsumes m_2 (harder) but not m_1 (different), and the ratio of detected variants to total is $\frac{3}{5}$. The number of surface mutants here is $M_\psi = \{m_1, m_3\}$.

Note that not all points in the volume may have corresponding mutants, such as due to test cases that check an exact subset of specification from another test case. We ignore these in favor of a simpler model.

Fig. 1: Relationship between Mutants and Variants $M \rightarrow V$

Fig. 2: Inclusion relationship between mutants. The outer points represents mutants not killed by respective test cases. The mutant m_2 (killed by test cases t_1, t_3, t_5) is subsumed by the mutant m_3 (killed by test case t_5 alone). However, the mutant m_1 (killed by test cases t_1, t_2, t_3, t_4) is different from both. The ψ score of m_3 (and the included m_2) is $\frac{3}{5} = 0.5$. Note that this is different from disjoint mutant set from M_ψ. With disjoint mutant set, mutants m_3 and m_1 is sufficient to cover the entire set of test suite. With our formulation, the above grouping will not cover a mutant killed by t_1, t_2, t_3.
some combination of given tests, the total volume of mutants covered by our set of mutants \(\{A, B, C\} \) would be

\[
\psi = \frac{2^{|A|} + 2^{|B|} + 2^{|C|} - 2^{|A \cap B|} - 2^{|A \cap C|} - 2^{|B \cap C|} + 2^{|A \cap B \cap C|}}{2^{|\{a,b,c\}|}}
\]

That is, we can expect \(2^{|(A, B, C)|} - 1 \) terms on the numerator. We can avoid this problem by using statistical approximation of the ratio. That is, randomly generate \(N \) possible combinations of \(|T|\) test kills. Let \(N' \) be the number of these combinations that were included in the mutant surface \(M_s \). The value \(N' \) provides a reasonable approximation to \(\psi \), refined to the requisite accuracy.

Note that the mutants corresponding to variants in the enclosing surface \(M_s \) are the same as the disjoint mutant set corresponding to the entire test suite \(T \) as per the definition given by Ammann et al. [6].

While the volume ratio can provide information about the ratio of included variants, due to the massive redundancy of mutations generated, the ratio may be very close to 1. Hence, another useful measure is the surface correction \(s \). Geometrically, it represents how close the given surface is to an \(n \)-sphere. A perfect spherical surface will have \(s = 1 \).

For our purposes, it represents the mean number of test cases killing each surface mutant. The smaller the \(s \), the more test cases that kill the surface mutants. A small \(s \) is an indication that the surface mutants are easy to detect. Hence, they may be improved further to fail in a smaller number of test cases, perhaps by engineering them using higher order mutants. The value \(s \) can vary between \(s = 1 \) (each mutant fails only for a single test case) and \(s = \frac{1}{|T|} \) (each mutant fails for almost all test cases, but none are subsumed by others). Note that we can distinguish \((|T| - 1) \times |M| \) cases with \(s \).

Each measure we have listed evaluates a different aspect of a given mutation set. The surface mutant set provides an alternative to the disjoint mutant set—the set of mutants that are shown to be hardest to detect out of the given set of mutants, and its effectiveness is given by volume ratio. The surface correction indicates whether the selected mutants are trivial to detect.

C. Analysis

In this section, we compare the runtime complexity of three measures: disjoint mutant set \(M_d \), surface mutant set \(M_s \) and unique mutant set \(M_u \).

Finding the true minimum test suite for a set of mutants is NP-complete\(^6\). The best possible approximation algorithm is Chvatal’s [16], using a greedy algorithm where each iteration tries to choose a set that covers the largest number of mutants. This is given in Algorithm 1, and achieves an approximation ratio of \(H(|M|) \)^7

\[^6\]This is the Set Covering Problem [6] which is NP-Complete [15].

\[^7\]\(H(n) \) is the \(n \)-th harmonic number. It is given by

\[
H(n) = \sum_{k=1}^{n} \frac{1}{k} \leq \ln n + 1
\]

The complexity of greedy set-cover approximation is \(O(\sum_{m \in M} |m|) \) [17] where \(M_t \) is the family of subsets of \(T \). That is, \(M_t \) is the set of tests killing each mutant \(m \in M \). The bound can be simplified to \(O(|T| \times |M|) \), where \(|T|\) is the number of test cases and \(|M|\) is the number of mutants.

Algorithm 1 Finding the minimal test suite

```plaintext
function MINTEST(Mutants, Tests)
    T ← Tests
    M ← kill(T, Mutants)
    Tmin ← ∅
    while M ≠ ∅ do
        t ← random(max(kill({t}, M)))
        M ← M \ kill({t}, M)
        Tmin ← Tmin ∪ {t}
    end while
    return Tmin
end function
```

Adding a new mutant to an existing set of non-subsumed mutants is to simply iterate through the existing set of non-subsumed mutants to see if the new mutant is dynamically subsumed, and if not add it to the set. The algorithm to remove subsumed mutants is given in Algorithm 2.

Algorithm 2 Removing subsumed mutants

```plaintext
function RMSUBSUMED(Tests, Mutants)
    M ← kill(T, Mutants)
    T ← Tests
    Mmin ← M
    while M ≠ ∅ do
        M ← random(M)
        Mmin ← M \ {m}
        while N ≠ ∅ do
            n ← random(N)
            N ← N \ {n}
            if cover({m}, T) ⊆ cover({n}, T) then
                Mmin ← Mmin \ n
                M ← M \ n
            end if
        end while
    end while
    return Mmin
end function
```

The only difference between computing the disjoint mutant set and the surface mutant set is which test suite gets passed to this algorithm. If the test suite that gets passed is the minimal test set (an approximation of the minimum test set), computed in Algorithm 1, then the minimal mutant set returned is the disjoint mutant set \(M_d \). On the other hand, if what gets passed is the full test suite, then the surface mutant set \(M_s \) is computed.

The complexity of Algorithm 2, ignoring the growth of tests, is \(O(m^2) \) where \(m = |M| \). If we assume that the size of minimal test set is proportional to the size of the test set. Computing \(M_u \) (ignoring the computation of minimal test suite) has at least \(O(m^2) \) complexity (consider also that in the worst case, a minimal (or minimum) test set is same as the full set). This is the same as computing \(M_u \) because it
uses the same algorithm and has the same worst case test suite. Finally, the algorithm to compute the unique mutant set is given in Algorithm 3.

Algorithm 3 Finding the unique mutant set

\begin{verbatim}
function UNIQUE_MUTANTS(Tests, Mutants)
 M ← sort(Mutants) // Compare by \(|\text{cover}(T, \{m}\})|
 T ← Tests
 \(M_\nu ← \emptyset\)
 while \(M \neq \emptyset\) do
 \(m ← \text{pop}(M)\)
 \(M_\nu ← M_\nu \cup \{m\}\)
 end while
 return \(M_\nu\)
end function
\end{verbatim}

Of the three reduced mutation sets, the unique mutant set \(M_\nu\) is the easiest to compute because the maximum computational complexity is for sorting \(O(m \times \log(m))\).3

III. METHODOLOGY

Our assertion that the unique mutant set is a better effectiveness measure than the disjoint mutant set can only be shown through reasoning. Hence we do not attempt to validate it here.

In previous work [6], Ammann et al. compared the mutation score for various selective mutation score strategies using the disjoint mutant set. However, we know [4] that mutation reduction strategies are severely limited in how much effectiveness they can gain, in theory and practice. In order to judge the quality of a reduction strategy one should compare the effectiveness of the strategy to the effectiveness expected from random sampling. Our previous research showed that popular mutation reduction strategies do not fare well in such a comparison [18].

Hence, for our empirical analysis, we have two main concerns. The first one is to benchmark how the different measures perform for mutants from different tools. The second is to evaluate the effectiveness of random sampling. Computing how many of the mutants in the original set that belongs to any of \(M_d, M_s, M_u\), end up in the reduced random sample is not very useful. Because we are using random sampling, we are assured that the average ratio of sizes of these different sets to the size of full set \(M_k\) will remain the same due to the central limit theorem.

What we investigate instead is the second measure. That is, provided \(M_d\) is a measure of the effectiveness accounting for the ease of detection of mutants, our proposed replacement is \(M_u\), and its actual impact is computed by the volume ratio \(\psi\). Hence our question is how the effectiveness will change when we sample. Is the surface mutant set from the sample easier or harder to detect than the surface mutant set from the full set?

To benchmark the new measures, it is important to capture the variations present in the real world use of these measures. The major avenues of variation are: Variation due to the number of tests that were not killed by any of the test cases we had. It is possible that many of the live mutants were simply stubborn, mutant distribution in individual projects, variation due to the language used, and variation due to the mutation generation tools used (especially the phase during which the mutants were produced).

Unfortunately, the language choice is not orthogonal to other sources of variation. That is, language choice determines the projects, and the tool being used, which makes it difficult to compare different tools, and reflect variation introduced due to projects. Hence, we avoided variation due to language, and standardized on Java projects. Keeping the goal of real world projects that best represent real world software, we chose 25 large Java projects from Github [19] and the Apache Software Foundation [20], that had large test suites. These projects, the size of their test suite (number of tests), and mutation scores are given in Table I. Note that we use the original test suites written by the developers.

We performed our evaluation with three tools: PIT 1.0, Judy 2.1.x, and Major 1.1.5. For each tool, we used the settings for the maximum number of operators to mutate.

Unlike other structural coverage measures such as statement, branch or path coverage, there is very little agreement on what constitutes an acceptable set of mutants in mutation analysis. This means that we can expect a wide variation in the number of mutants produced. The mutants produced by each tool on each program is given in Table I. Unfortunately, this also means that the mutation scores do not necessarily agree as we see in Table I. One culprit is the presence of equivalent mutants — mutants that do not produce a measurable semantic variation to the original program. To avoid skewing the results due to the presence of equivalent mutants, we removed the mutants that were not killed by any of the test cases we had. It is possible that many of the live mutants were simply stubborn.

<table>
<thead>
<tr>
<th>Project</th>
<th>TS</th>
<th>Jud(d)</th>
<th>Maj(d)</th>
<th>PIT(d)</th>
<th>LOC</th>
<th>Jud(m)</th>
<th>Maj(m)</th>
<th>PIT(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation-cli</td>
<td>126</td>
<td>42.42</td>
<td>43.27</td>
<td>59.38</td>
<td>870</td>
<td>777</td>
<td>512</td>
<td>981</td>
</tr>
<tr>
<td>asterisk-java</td>
<td>214</td>
<td>13.54</td>
<td>21.54</td>
<td>20.64</td>
<td>29.47</td>
<td>12.65</td>
<td>5.92</td>
<td>15.476</td>
</tr>
<tr>
<td>beanutils</td>
<td>1,185</td>
<td>50.71</td>
<td>42.69</td>
<td>56.78</td>
<td>11.64</td>
<td>6.29</td>
<td>4.382</td>
<td>9.665</td>
</tr>
<tr>
<td>beansutils2</td>
<td>680</td>
<td>59.47</td>
<td>52.49</td>
<td>61.85</td>
<td>2.25</td>
<td>990</td>
<td>615</td>
<td>2.06</td>
</tr>
<tr>
<td>clazz</td>
<td>205</td>
<td>24.64</td>
<td>39.45</td>
<td>30.20</td>
<td>5.681</td>
<td>2.784</td>
<td>2.022</td>
<td>15.615</td>
</tr>
<tr>
<td>cli</td>
<td>373</td>
<td>71.17</td>
<td>76.61</td>
<td>86.14</td>
<td>2.667</td>
<td>2.308</td>
<td>1.411</td>
<td>2.677</td>
</tr>
<tr>
<td>collections</td>
<td>4,407</td>
<td>76.99</td>
<td>58.63</td>
<td>34.69</td>
<td>25.40</td>
<td>1.006</td>
<td>10.301</td>
<td>24.141</td>
</tr>
<tr>
<td>codec</td>
<td>605</td>
<td>92.72</td>
<td>73.52</td>
<td>82.66</td>
<td>6.603</td>
<td>4.4</td>
<td>7.362</td>
<td>9.953</td>
</tr>
<tr>
<td>commons-fo</td>
<td>964</td>
<td>88.38</td>
<td>70.65</td>
<td>77.34</td>
<td>9.472</td>
<td>164</td>
<td>6.486</td>
<td>9.799</td>
</tr>
<tr>
<td>config-magic</td>
<td>111</td>
<td>55.19</td>
<td>29.80</td>
<td>60.69</td>
<td>1.251</td>
<td>527</td>
<td>650</td>
<td>1.181</td>
</tr>
<tr>
<td>cvs</td>
<td>173</td>
<td>53.01</td>
<td>68.08</td>
<td>79.68</td>
<td>1.384</td>
<td>1.154</td>
<td>991</td>
<td>1.178</td>
</tr>
<tr>
<td>dbutils</td>
<td>239</td>
<td>44.23</td>
<td>65.20</td>
<td>47.34</td>
<td>2.596</td>
<td>1.159</td>
<td>677</td>
<td>1.922</td>
</tr>
<tr>
<td>events</td>
<td>206</td>
<td>77.14</td>
<td>70.03</td>
<td>59.95</td>
<td>1.256</td>
<td>2.353</td>
<td>615</td>
<td>1.155</td>
</tr>
<tr>
<td>faunus</td>
<td>172</td>
<td>2.55</td>
<td>58.65</td>
<td>49.07</td>
<td>9.000</td>
<td>3.723</td>
<td>3.771</td>
<td>9.668</td>
</tr>
<tr>
<td>java-api</td>
<td>125</td>
<td>14.95</td>
<td>84.91</td>
<td>76.03</td>
<td>1.760</td>
<td>929</td>
<td>611</td>
<td>1.771</td>
</tr>
<tr>
<td>classmate</td>
<td>219</td>
<td>66.17</td>
<td>77.23</td>
<td>90.26</td>
<td>2.402</td>
<td>1.423</td>
<td>952</td>
<td>2.543</td>
</tr>
<tr>
<td>jopt-simple</td>
<td>566</td>
<td>84.50</td>
<td>79.32</td>
<td>94.50</td>
<td>1.617</td>
<td>497</td>
<td>695</td>
<td>1.790</td>
</tr>
<tr>
<td>mgw</td>
<td>103</td>
<td>40.72</td>
<td>6.61</td>
<td>8.85</td>
<td>16.250</td>
<td>1.394</td>
<td>6.654</td>
<td>12.030</td>
</tr>
<tr>
<td>mirror</td>
<td>303</td>
<td>58.73</td>
<td>74.73</td>
<td>75.47</td>
<td>2.590</td>
<td>1.316</td>
<td>449</td>
<td>1.876</td>
</tr>
<tr>
<td>mp3ag</td>
<td>206</td>
<td>72.46</td>
<td>51.70</td>
<td>54.51</td>
<td>4.842</td>
<td>1.272</td>
<td>4.822</td>
<td>7.182</td>
</tr>
<tr>
<td>pipes</td>
<td>138</td>
<td>65.99</td>
<td>62.64</td>
<td>67.66</td>
<td>3.513</td>
<td>590</td>
<td>1.171</td>
<td>3.001</td>
</tr>
<tr>
<td>primitives</td>
<td>2,276</td>
<td>93.35</td>
<td>71.33</td>
<td>35.71</td>
<td>11.965</td>
<td>11</td>
<td>4,916</td>
<td>11.312</td>
</tr>
<tr>
<td>validator</td>
<td>382</td>
<td>50.27</td>
<td>59.06</td>
<td>68.21</td>
<td>5.807</td>
<td>3.320</td>
<td>3.655</td>
<td>5.846</td>
</tr>
<tr>
<td>webbit</td>
<td>146</td>
<td>73.95</td>
<td>67.17</td>
<td>52.41</td>
<td>5.018</td>
<td>144</td>
<td>1.327</td>
<td>3.707</td>
</tr>
</tbody>
</table>

3 The complexity could even be reduced to linear because we are not sorting arbitrary integers. There is a fixed limit to the size of each element — the total number of test cases in the test suite.
and not equivalent. However, our measures do not depend on having the complete set of killable mutants. Note that some of the projects produced very small number of mutants, ignoring classes that could not be mutated due to various reasons. For the sake of completeness, and to show that these does not impact our conclusion, all the projects tool combinations that produced any number of mutants are included in our study.

First, we computed the different minimal sets M_d, M_s, M_k along with the measures ψ and s for each project and tool combination. Next, we took 100 samples from each project, and computed the same measures for each sample.

IV. EMPIRICAL COMPARISON

We have two goals in our empirical comparison. The first one is to tabulate the different measures M_d, M_s, M_k for each set of mutants M, along with the secondary measures ψ and s. The second goal is to compare the effectiveness of random sampling of a limited number of mutants to that of the full set of mutants.

A. Measures for the full set of mutants

The different measures for the full set of mutants are given in Table II. As can be seen, except in a few cases, the volume being covered is indeed close to the full volume. However, we see that the surface correction s given in Table II suggests that there is still quite a bit of improvement possible. The number of mutants necessary by variant surfaces M_s, along with disjoint mutant set M_d the size of unique mutant set M_k, and the total number of mutants detected M_k are also given in Table II. As expected, the surface mutant set M_s is larger than the disjoint mutant set M_d, and the unique mutant set M_k is the largest out of the total detected M_k.

B. Measures for 100 mutants sampled

The mean measures for 100 mutants sampled randomly 100 times from each tool, for each project is given in Table III. The columns with labels ψ and s are measures from the full set, and are given for comparison. ψ^s, s^s, and M_k^s are measures computed from the sample.

C. Comparing complete and sampled mutants

As we indicated previously, we know the behavior of M_k under random sampling. Once we label some of mutants in M_k as belonging to M_k, taking random samples from M_k can be expected to preserve the ratio $\frac{M_d}{M_k}$ on average. Hence, if we are using the size of unique mutant set as an effectiveness measure, the effectiveness will decrease in inverse proportion to the size of the sample. That is, a sample with $\frac{1}{10}$ mutants will have only $\frac{1}{10}$ of the original unique variants.

One measure that is actually of interest is the volume ratio ψ. We evaluate the change in volume ratio using the linear regression:

$$\psi_{\text{original}} = \beta_{\psi} \times \psi_{\text{sample}}$$

Similarly, we evaluate the change in surface correction using the linear regression:

$$s_{\text{original}} = \beta_s \times s_{\text{sample}}$$

Fig. 3: Ratio of size of unique mutant set to full set of detected mutants (larger is better).

V. DISCUSSION

Comparing the size of M_k produced by each tool (Figure 3), we find that PIT produced on average 0.224 unique variants per mutant produced (standard deviation = 0.0844). In comparison, Major produced on average 0.334 unique variants per mutant produced (standard deviation = 0.0722) and Judy produced 0.306 unique variants per mutant produced (standard deviation = 0.195). We note that comparing the size of disjoint mutant set, PIT produced on average 0.0647 disjoint mutants per mutant produced (standard deviation = 0.0298). In comparison, Major produced on average 0.129 disjoint mutants per mutant produced (standard deviation = 0.0327) and Judy produced 0.116 disjoint mutants per mutant produced (standard deviation = 0.121).

These results suggest an advantage for mutants produced from Major, closely followed by Judy as suggested in Figure 3. Given that $|M_k|$ is the size of variants in any given set of mutants, and R_d is an effectiveness measure, it is worthwhile to estimate this effectiveness quickly for any set of mutants corresponding to a program generated by any tool. However, computing $|M_k|$ requires the full test run for the entire set of mutants. Is there a way to reliably estimate the size of $|M_k|$? Our results suggest that the ratio R_d is highly correlated to the ratio of unique mutant set from sampling. That is,

$$R_d = \beta_1 \times R_d^{\text{sample}} + \beta_2 \times \text{Tool}$$

138
TABLE II: Measures of all tools for full set of mutants

| Project | ψ | s | Mₐ | Mₛ | Mₐₛ | Mₛₛ | Mₛₚ | ψ | s | Mₐ | Mₛ | Mₐₛ | Mₛₛ | Mₛₚ |
|------------------|-----|---|----|----|-----|-----|-----|-----|---|----|----|-----|-----|-----|-----|
| anotation-cli | 1.00 | 0.46 | 0.31 | 26 | 109 | 583 |
| asterisk-java | 1.00 | 0.77 | 0.211 | 171 | 449 | 3,195 |
| beanutils | 1.00 | 0.53 | 0.548 | 398 | 1,568 | 5,488 |
| beanutils2 | 1.00 | 0.65 | 0.149 | 145 | 464 | 1,280 |
| clazz | 1.00 | 0.59 | 0.64 | 49 | 150 | 150 | 1,560 |
| cli | 1.00 | 0.52 | 0.207 | 136 | 787 | 2,306 |
| collections | 1.00 | 0.68 | 0.898 | 797 | 2,080 | 8,374 |
| commons-codec | 1.00 | 0.63 | 0.488 | 351 | 1,392 | 8,228 |
| commons-io | 1.00 | 0.71 | 0.692 | 530 | 1,598 | 7,579 |
| config-magic | 1.00 | 0.58 | 0.60 | 49 | 203 | 717 |
| csv | 1.00 | 0.66 | 0.139 | 99 | 399 | 1,433 |
| dbutils | 1.00 | 0.62 | 0.124 | 104 | 206 | 910 |
| events | 1.00 | 0.47 | 0.25 | 25 | 30 | 58 | 693 |
| faunus | 1.00 | 0.71 | 0.179 | 122 | 550 | 4,744 |
| java-api-wrapper | 1.00 | 0.64 | 0.137 | 90 | 307 | 1,301 |
| java-classmate | 1.00 | 0.80 | 0.217 | 184 | 550 | 2,296 |
| jopt-simple | 1.00 | 0.45 | 0.177 | 131 | 579 | 1,692 |
| mngwt | 1.00 | 0.82 | 0.85 | 74 | 168 | 1,065 |
| mirror | 1.00 | 0.70 | 0.205 | 173 | 531 | 1,416 |
| mp3agic | 1.00 | 0.71 | 0.160 | 116 | 733 | 3,915 |
| ognl | 1.00 | 0.42 | 0.379 | 81 | 1,698 | 11,956 |
| pipes | 1.00 | 0.66 | 0.130 | 95 | 337 | 2,031 |
| primitives | 1.00 | 0.64 | 0.685 | 445 | 1,372 | 4,039 |
| validator | 1.00 | 0.62 | 0.273 | 204 | 757 | 3,988 |
| webbit | 1.00 | 0.64 | 0.114 | 90 | 315 | 1,943 |

TABLE III: Mean measures of all tools for 100-sample set of mutants

<table>
<thead>
<tr>
<th>Projects</th>
<th>ψ getWidth="300" getHeight="300"</th>
<th>s</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation-cli</td>
<td>0.99</td>
<td>0.01</td>
<td>0.46</td>
<td>0.44</td>
<td>0.01</td>
<td>20.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asterisk-java</td>
<td>1.00</td>
<td>0.00</td>
<td>0.77</td>
<td>0.66</td>
<td>0.00</td>
<td>35.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beanutils</td>
<td>1.00</td>
<td>0.00</td>
<td>0.53</td>
<td>0.43</td>
<td>0.00</td>
<td>71.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beanutils2</td>
<td>1.00</td>
<td>0.00</td>
<td>0.65</td>
<td>0.42</td>
<td>0.00</td>
<td>50.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clazz</td>
<td>1.00</td>
<td>0.00</td>
<td>0.59</td>
<td>0.59</td>
<td>0.00</td>
<td>28.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cli</td>
<td>1.00</td>
<td>0.00</td>
<td>0.52</td>
<td>0.45</td>
<td>0.00</td>
<td>32.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collections</td>
<td>1.00</td>
<td>0.00</td>
<td>0.68</td>
<td>0.57</td>
<td>0.00</td>
<td>81.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>commons-codec</td>
<td>1.00</td>
<td>0.00</td>
<td>0.63</td>
<td>0.48</td>
<td>0.00</td>
<td>56.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>commons-io</td>
<td>1.00</td>
<td>0.00</td>
<td>0.71</td>
<td>0.57</td>
<td>0.00</td>
<td>78.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>config-magic</td>
<td>1.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.50</td>
<td>0.00</td>
<td>32.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>csv</td>
<td>1.00</td>
<td>0.00</td>
<td>0.66</td>
<td>0.57</td>
<td>0.00</td>
<td>43.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dbutils</td>
<td>1.00</td>
<td>0.00</td>
<td>0.62</td>
<td>0.60</td>
<td>0.00</td>
<td>44.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>events</td>
<td>1.00</td>
<td>0.00</td>
<td>0.82</td>
<td>0.47</td>
<td>0.00</td>
<td>14.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>faunus</td>
<td>1.00</td>
<td>0.00</td>
<td>0.71</td>
<td>0.68</td>
<td>0.00</td>
<td>52.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java-api-wrapper</td>
<td>1.00</td>
<td>0.00</td>
<td>0.64</td>
<td>0.64</td>
<td>0.00</td>
<td>44.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java-classmate</td>
<td>1.00</td>
<td>0.00</td>
<td>0.80</td>
<td>0.68</td>
<td>0.00</td>
<td>55.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jopt-simple</td>
<td>1.00</td>
<td>0.00</td>
<td>0.45</td>
<td>0.31</td>
<td>0.00</td>
<td>49.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mngwt</td>
<td>1.00</td>
<td>0.00</td>
<td>0.82</td>
<td>0.71</td>
<td>0.00</td>
<td>35.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mirror</td>
<td>1.00</td>
<td>0.00</td>
<td>0.70</td>
<td>0.55</td>
<td>0.00</td>
<td>55.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mp3agic</td>
<td>1.00</td>
<td>0.00</td>
<td>0.71</td>
<td>0.56</td>
<td>0.00</td>
<td>40.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ognl</td>
<td>1.00</td>
<td>0.00</td>
<td>0.42</td>
<td>0.57</td>
<td>0.00</td>
<td>34.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pipes</td>
<td>1.00</td>
<td>0.00</td>
<td>0.66</td>
<td>0.68</td>
<td>0.00</td>
<td>49.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primitives</td>
<td>1.00</td>
<td>0.00</td>
<td>0.64</td>
<td>0.62</td>
<td>0.00</td>
<td>76.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validator</td>
<td>1.00</td>
<td>0.00</td>
<td>0.62</td>
<td>0.58</td>
<td>0.00</td>
<td>56.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>webbit</td>
<td>1.00</td>
<td>0.00</td>
<td>0.64</td>
<td>0.48</td>
<td>0.00</td>
<td>35.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26, 2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.
The regression $R^2 = 0.832$, and $p < 0.001$. Since the tool is significant, considering each tool separately:

$$R_\delta = \beta_1 \times R_{\delta}^{\text{sample}}$$

PIT $R^2 = 0.924$, and $\beta_1 = 0.307$, Major $R^2 = 0.901$, and $\beta_1 = 0.483$, Judy $R^2 = 0.666$, and $\beta_1 = 0.513$ ($p < 0.0001$).

That is, we have moderate to strong correlation between R_δ and $R_{\delta}^{\text{sample}}$, which may be used to predict R_δ from $R_{\delta}^{\text{sample}}$. However, further research is needed in this area to determine the effects of sample size, project characteristics, and mutation tool used.

Table II suggests that for most of our projects ψ is very close to 1. That is, the volume enclosed by mutants is very close to the limit possible. This may be because most test cases are very targeted unit test cases that kill mutants within a given function. That is, for most mutants which are judged by a test suite, there is a small number of tests that detect each mutant. We also find that when we sample just 100 mutants (Table III), the volume ratio remains close to the original volume ratio. That is, the coefficient β_ψ for PIT is 0.997, for Major is 0.996, and for Judy is 0.99, with $R^2 > 0.99$ and $p < 0.0001$. Further, the standard deviation of ψ suggests that there is very little deviation in any of the samples. A similar observation can be made for the surface correction s. The coefficient β_s for s_{sample} for PIT is 0.872, for Major is 0.875, and for Judy is 0.9, with $R^2 > 0.97$ and $p < 0.0001$. That is, the surface correction for samples is close to the surface correction detected for the full set.

Previous research [6] showed that using size of disjoint mutant set as a measure for effectiveness accounting for ease of detection, mutation reduction strategies fare poorly when it comes to maintaining effectiveness. Our results here show that even though the size of surface mutant set varies, the volume ratio ψ of samples remains close to the original volume ratio ψ of the full set of mutants, and the same case is true for the finer surface correction s. This result suggests that even if the size of surface mutant set or disjoint mutant set varies, the effectiveness accounting for ease of detection of the mutant set does not vary as much for random sampling. Does this effect extend to more intelligent mutation reduction strategies? Our previous research [4], [18] suggests that intelligent mutation strategies often fare poorly when compared against random sampling, and there is a need for further research in this area.

VI. RELATED WORK

The idea of mutation analysis was first proposed by Lipton [1], and its main concepts were formalized by DeMillo et al. in the “Hints” [21] paper. The first implementation of mutation analysis was provided in the PhD thesis of Budd [22] in 1980.

The validity of mutation analysis rests upon two fundamental assumptions: the competent programmer hypothesis and the coupling effect [21]. Evidence of the coupling effect comes from theoretical analysis by Wah [23], empirical studies by Offutt [24] and Langdon et al. [25]. The competent programmer hypothesis was quantified in our previous work [26].

One difficulty in mutation analysis is identifying equivalent mutants, and research in this is generally divided into categories of prevention and detection [27], with prevention focusing on reducing the incidence of equivalent mutants [28] and detection focusing on identifying the equivalent mutants by examining their static and dynamic properties.

A similar problem is that of redundant mutants [3], resulting in a misleading mutation score. A number of studies measured the redundancy among mutants. Ammann et al. [6] compared the behavior of each mutant under all tests and found numerous redundant mutants. More recently, Papadakis et al. [27] used the compiled representation of programs to identify equivalent mutants. They found that on average 7% of mutants are equivalent while 20% are redundant.

Researchers have evaluated different mutation tools in the past [29], based on fault model (operators used), order (syntactic complexity of mutations), and selectivity (eliminating most frequent operators), mutation strength (weak, firm, and strong), and the sophistication of the tool in evaluating mutants. Our evaluation differs from their research in focusing on the semantic impact of mutants produced by different tools. Another closely related publication is MuRanker [30], where the authors use various distance functions to rank different mutants. We note that our formulation of variants as situated in a hypergeometric volume parallels the recent theoretical approach of Shin et al. [14]. Finally, our study extends the previous research by Ammann et al. [6], in providing a related but more fine-grained measure.

VII. CONCLUSION

Research on newer mutation operators, and on eliminating redundant mutants requires some measure of effectiveness for a given set of mutants. As the primary aim of mutation analysis is to evaluate the quality of test suites, the measure of effectiveness should be based on how best to achieve this.

For a given test suite, there are two main concerns. Does it detect a reasonable fraction of the deviations in the program specification? Secondly, does it detect and prevent subtle bugs? To enable these measurements, a set of mutants should be able to provide as large a set of unique variants as possible, and also provide variants that are hard to detect. The size of the disjoint mutant set has been proposed [6] as a measure of effectiveness of mutation reduction techniques. However, a problem with this measure is that it is too tightly coupled with the test suite.

Most reduction strategies and mutation operators use static properties of the program in question to generate mutants. The aim of these strategies is to identify variants that are actually unique, not just to maintain the quality of a particular test suite. The test suite is only incidental to the measurement.

We showed that if we are to use the disjoint mutant set as the set of all unique variants in a set of mutants, we need two more assumptions: the single variant assumption (that each test case kills exactly one variant), and the large test suite assumption (that the number of test cases is larger than the number of unique variants) beyond the stated assumptions of...
a comprehensive test suite, and a fixed set of mutants. Given that test cases routinely have more than a single assertion [31], and the number of mutants is usually much larger than the test suite size, these two assumptions may not be justified for real world test suites. On the other hand, if we were to use the disjoint mutant set as the set of hardest to find mutants, we show that the disjoint mutant set can discard some of important mutants that are as hard to detect as any other mutants. Hence the disjoint mutant set is not an adequate solution as a measure of effectiveness of a mutant set.

Our contribution in this paper is to recognize the two different effectiveness criteria required. The first is the number of unique variants identified from a given set of mutants, and the second is a measure of ease of detection of a given set of mutants. We proposed the unique mutant set as an alternative that does not depend on either the single variant assumption or the large test suite assumption. For the second criteria, we proposed the surface mutant set which preserves useful hard to detect mutants, and a semantics using volume ratio and surface correction that provides a more concrete explanation of what ease of detection entails.

It may be asked, why try to mitigate problems with mutant analysis by relying again on mutation detection by test suites? Why not use other criteria such as coverage information or program metrics instead?

Detection of mutants by test suites is still the closest, most effective, and most direct approach we have for evaluating the effectiveness of test suites. Other measures (such as most kinds of coverage) are subsumed by mutation analysis, and measures such as static information from program metrics are not suitable as a theoretical bound on the effectiveness of mutants, because they are dependent on particular languages. Furthermore, we are unsure about the information they provide about the variants, primarily because such information is highly indistinct compared to mutant kills.

We provide a benchmark of the different measures \(|M_d|, |M_s|, |M_δ|\) using three different tools (PIT, Judy, and Major) on 25 real world projects. Our empirical analysis shows that random sampling works reasonably well for maintaining the effectiveness (accounting for ease of detection) of a given set of mutants.

REFERENCES