
Measuring Effectiveness of Mutant Sets

Rahul Gopinath∗, Amin Alipour†, Iftekhar Ahmed‡, Carlos Jensen§, and Alex Groce¶
Department of EECS, Oregon State University

Email: ∗gopinath@eecs.orst.edu, †alipour@eecs.orst.edu, ‡ahmed@eecs.orst.edu, §cjensen@eecs.orst.edu, ¶agroce@gmail.com

Abstract—Redundancy in mutants, where multiple mutants
end up producing the same semantic variant of a program,
is a major problem in mutation analysis. Hence, a measure
of effectiveness that accounts for redundancy is an essential
tool for evaluating mutation tools, new operators, and reduction
techniques. Previous research suggests using the size of the
disjoint mutant set as an effectiveness measure.

We start from a simple premise: test suites need to be judged
on both the number of unique variations in specifications they
detect (as a variation measure), and also on how good they are
at detecting hard-to-find faults (as a measure of thoroughness).
Hence, any set of mutants should be judged by how well it
supports these measurements.

We show that the disjoint mutant set has two major inad-
equacies — the single variant assumption and the large test
suite assumption — when used as a measure of effectiveness in
variation. These stem from its reliance on minimal test suites. We
show that when used to emulate hard to find bugs (as a measure
of thoroughness), disjoint mutant set discards useful mutants.

We propose two alternatives: one measures variation and is not
vulnerable to either the single variant assumption or the large test
suite assumption; the other measures thoroughness. We provide
a benchmark of these measures using diverse tools.

I. INTRODUCTION

Software engineering relies on mutation analysis [1], [2] as

a means of measuring the test suite quality, Mutation analysis

involves exhaustive generation of a syntactically defined set

of faults, and evaluation of a test suite’s ability to detect the

resulting variants of the program. Mutation score is taken to

correlate with the ratio of detectable variants to total number

of variants. The terms used are given in Box 1.

A key concern in mutation analysis is whether the generated

mutants are sufficient to generate all possible variants of the

program. Given that not all mutants produce unique variants,

another key concern [3] is to avoid generation of redundant

mutants. That is, using only a single representative mutant for

each variant. Researchers have identified various techniques

for reducing redundancy in generated mutants: these include

selective mutation, static subsumption, mutation clustering to

identify similar mutants, static analysis of generated mutants,

and other approaches. Recently [4] it was found that there

is limited utility in mutation reduction strategies compared to

random sampling, and it was more worthwhile to investigate

additional effective mutation operators, rather than strategies

for removal of mutants, however intelligent.

Whether it is for comparison between two mutation reduc-

tion strategies, or evaluation of effectiveness of a new mutation

operator, a measure of effectiveness of a set of mutation

operators is required. Mutation analysis is a means of assessing

the quality of a test suite, and any measure of effectiveness

should consider how well a given set of mutants achieves this

objective. A test suite should be judged on two main criteria:

detecting and preventing as many unique variants as possible

(measure of variation), and, detecting subtle bugs (measure of

thoroughness). Correspondingly, a given set of mutants may

be judged by the ratio of the unique variants it contains to the

size of the full set of possible variants. It may also be judged

by the ease of detection for the variants induced by it.

Considering the first requirement, given a set of mutants,

and a reduction strategy, one may judge the effectiveness of

the strategy by the fraction of original unique variants that

the reduction strategy was able to preserve in the reduced set.

That is, for an ideal reduction strategy, each mutant in the

reduced set should correspond to a unique variant, and each

variant in the original set of mutants should have a unique

mutant associated with it in the reduced set. Theoretically [5]–

[7] this can be done by running all possible test sets —

TU against each mutant, identifying its unique signature, and

removing those mutants that are subsumed1. This is however,

undecidable as a consequence of Rice’s theorem [9]. Ammann

et al. [6] suggest a compromise: rely on the minimal test

suite (denoted as Td). Td is the smallest test suite such that

Td ⊆ T and kills the complete mutant set M . Then, identify

the minimal subset of mutants (we denote it by Md) that

requires at least Td to completely kill. These are called the

disjoint set by Kintis et al. [10], and minimal mutants by

Ammann et al. [6]. We adopt the name disjoint mutant set
for this paper because this was the original moniker [10], and

also because we propose an alternative minimal set of mutants.

There is, unfortunately, a problem with the minM .

Mutation reduction techniques and newer mutation opera-

tors are not added with a particular test suite in mind. They

typically take into account only static characteristics; the set of

mutants should not depend on the test suite used — especially

if mutants are used to judge test suite quality. Hence, the aim

for a measure of effectiveness of mutants should be to identify

unique variants that are produced from a set of mutants. The

test suites are only incidental to this requirement.

Does the theoretical minimum2 disjoint mutant set satisfy

1 Traditionally [5], [7], [8] subsumption is based on all execution paths.
That is, kill(ma, TU) =⇒ kill(mb, T

U) when ma subsumes mb.
However, Ammann et al. [6] use dynamic subsumption, which relies only
on the available test set. That is, kill(ma, T) =⇒ kill(mb, T) when ma

subsumes mb.
2 Minimum set is the smallest sized set among minimal sets.

2016 IEEE International Conference on Software Testing, Verification and Validation Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSTW.2016.45

132

2016 IEEE Ninth International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-3674-5/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSTW.2016.45

132

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

Box 1 Terms used
Fault: A fault is an erroneous part of a program, the syntactic
source of a semantically wrong behavior [11].
Mutation: A mutation is a fault that was introduced into the
program by a mutation tool. We do not distinguish between real
faults and mutations in this paper.
Mutant: A mutant is a program with a fault in it. Traditional
mutation is typically first-order.
Program behavior: The behavior of a program is the set of runtime
properties that can be used to differentiate one variant of a program
from another [11]. We measure these using spectra [12], and for the
purpose of this research, especially the spectra that can be checked
by a test case — the output spectrum — which is the record of the
output of the program for a given input.
Variant: A program or a mutant that shows a deviation in runtime
behavior from the original program P .
Unique variant: A fault produces a unique variant with respect to
a set of faults when the variant it produces is not produced by any
(other) fault in the set.
Redundant fault: A fault (or mutant) is redundant with respect to
a set of faults when the variant it produces is not unique compared
to the variants of the (other) faults in the set.

Box 2 Triangle

triangle(a, b, c) = (a < b+ c)&(b < c+ a)&(c < a+ b)

Mutants: trianglea(a, b, c) = �&(b < c+ a)&�
triangleb(a, b, c) = �&�&(c < a+ b)

trianglec(a, b, c) = (a < b+ c)&�&�
Test cases: t1 : triangle(3, 2, 1)→ false

t2 : triangle(1, 3, 2)→ false

t3 : triangle(2, 1, 3)→ false

this requirement? Given that test suites are the best available

tools to judge whether a mutant produces a unique variant or

not, is the size of the theoretical minimum using a disjoint
mutant set the best one can do? Our aim here is to show

that a disjoint mutant set calculated is not the actual set of

unique variants, and could underestimate that set. Instead, we

propose a better effectiveness measure than minimal set size:

The unique set of variants corresponding to a set of mutants

is important as it is the real target of mutation reduction

strategies relying on static analysis of the program and

mutants. Test suite results are only incidental to the accurate

determination of unique variants.

Expanding on the second requirement, it may be argued that

identifying the actual hardest mutants to detect is important

(not just the size of the set), and disjoint mutant set is a

set of mutants that are hardest to detect. In other words, not

all the unique variants should be considered with the same

weight. Some of the variants are trivially detected by multiple

test suites, and hence a measure of effectiveness ought to

consider the value of trivial and non-trivial mutants too. Does
the theoretical minimum set using a disjoint mutant set

capture all the hardest mutants to detect? Is the size of
the theoretical minimum set using a disjoint mutant set
the best measure of effectiveness in this respect? Our aim

here is to show that disjoint mutant set does not select all the

hardest mutants, and that subsumption can be used to define

hardness — and thus provide a more informative measure.

A. Problems with size of disjoint mutant set as a measure of
effectiveness

The explicit assumptions made [6] in theoretical disjoint

mutant set are: a comprehensive3 test suite and a fixed set of

mutants. However, using the theoretical disjoint mutant set as

the true set of unique variants involves a few more implied

assumptions. Let us imagine that we have a large set M
(|M | = m) of non-redundant mutants (m > t), each producing

a different variant, and a minimum test suite T (|T | = t)
containing a set of test cases (t > 1), which is adequate to

kill every mutant in the set of mutants. Say we create a super
test case t′ by joining together all other test cases, and add it

to T , creating T ′. Plainly, both T and T ′ are adequate for M .

Now, according to Ammann’s definition, the size of disjoint

mutant set is the same as the size of the corresponding minimal

test suite size, which is t if we are using T , but 1 if we are

using T ′. However, we do know that the actual number of

variants is m. Even if we assume that t = m initially, the

actual number of variants is not 1.

That is, if one is looking for the true set of unique variants,

one has to assume that test cases are small, with no test case

killing more than one variant. (If any test case kills more than

one variant, the size of the minimal test suite will no longer

correspond to the number of unique variants. This is the single
variant assumption. The second assumption is that the number

of test cases are at least equal to or greater than the number

of unique variants — the large test suite assumption.

Even for large mutation adequate test suites, the size of the

minimum test suite may be much smaller than the number

of variants, because some test cases may detect more than

a single variant. This makes size of corresponding disjoint

mutant set a less than ideal measure for the number of

variants.

The large test suite assumption manifests itself as two

problems. We can only identify |Td| unique variants, and

secondly we can only distinguish between |Td| such sets of

mutants (varying between 1 to |Td| unique variants).

As a practical example, consider a set of tests for tri-
angle (Box 2) {t1, t2, t3}, with corresponding mutant kills

{ma,mb}, {mb,mc}, {mc,ma}. Plainly, all the mutants pro-

duce different variants, and the three test cases are different

from each other in terms of the variants they detect, with

none subsumed by others. However, a minimal test suite

based on mutation scores discards one of t1, t2, t3, as not

all three are required to maintain the mutation score. The

3 The word comprehensive is not defined by Ammann [6], but the rest of
the paper suggests that it means mutation adequate test suite.

133133

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

size of the disjoint mutant set is same as the cardinality of

the corresponding minimal test suite. This means that the

theoretical minimum disjoint mutant set may discard mutants

which represent actual unique variants.

There is a simple fix to this problem. Any two mutants

can be considered to be representing two different variants if

the test cases that kill them are different. We denote a set of

mutants such that no pair have similar kills as unique mutants

Mδ . Such a set has a maximum size limit of 2T , the maximum

resolving power of the test suite, and is not vulnerable to

either of the large test suite assumption4 or the single variant
assumption. The size of unique mutant set can be used as a

measure to compare two mutant sets of the same size. We may

also compare any two tools, using the ratio between unique

mutants (Mδ) and the total number of killed mutants (Mk),

Rδ =
|Mδ|
|Mk| . If Rδ is close to unity, then the odds are any given

mutant by that tool is unique.

The second question is more involved. In Box 2, we know

that disjoint mutant set discards at least one of the mutants,

even though all of them are similar in terms of the number of

tests that detect them. The same is true in the first example

too, where adding a super test case results in ignoring most

of the useful mutants. Hence the question is, do we have an

alternative? What exactly is a trivial mutant? How do we

measure effectiveness? Is the size of the non-trivial set the

best one can do as a measure of thoroughness?

We develop a theory of hyper-geometric representation of

variants such that variants enclosed by similar volumes have

similar effectiveness irrespective of the number of variants

included. We also show that the variants at the surface of

this volume (denoted by Ms) can be computed by a small

modification to the computation of disjoint mutant set Md.

We show that the alternative does not result in discarding

important mutants in the given example.

This suggests a simple measure of effectiveness (with con-

sideration for triviality). We compute the effectiveness as the

ratio of volume of the sphere enclosed to the maximal volume.

Ms is an alternative to Md, and like Md, selects the possible

non-trivial variants in a set of mutants. However, unlike Md,

we do not advocate its size as the effectiveness measure.

For empirical analysis, we use large well tested real-

world projects from Github, and diverse tools. As in previous

work [6], we compare measurements across multiple tools, and

identify the fraction of unique mutant set expected from the

mutants produced by each tool. For mutation reduction, we

investigated the reduction in effectiveness due to sampling.

We find that even though the size of unique mutant set

decreases along with decrease in sample size, the volume

ratio remains similar. This suggests that the random samples

produce mutants that are as hard to detect as the full set of

4 It is still vulnerable to a limit of 2|T |, where |T | is the size of all tests,
is usually larger than the number of mutants. Given that 2|T | grows much
faster than |T |, with about 10 test cases sufficient for uniquely identifying
1, 024 variants, we do not consider this a practical problem.

mutants. Our data as well as the subject programs are available

for replication [13].

Contributions:
• We identify the need for two different kinds of effec-

tiveness measures for mutant sets. The first to mea-

sure the fraction of unique variants present (variation

effectiveness), and the second to measure how good the

given mutants are in emulating subtle bugs (measure for

thoroughness).

• We show that the size of a disjoint mutant set can not

be used as a variation effectiveness measure due to two

unstated assumptions — the single variant assumption,

and the large test suite assumption.

• We provide an alternative for the size of a disjoint mutant
set (|Md|) — the size of a unique mutant set (|Mδ|),
which is not vulnerable to the single variant assumption
or the large test suite assumption.

• We also show that the disjoint mutant set is not the best

set of most hard to detect variants, as it may miss variants

that are equally hard.

• We develop a theory of geometric representation of

variants and use it to provide an alternative to the disjoint
mutant set— the surface mutant set, and provide the

semantic interpretation through volume ratio ψ.

• We provide an empirical benchmark for the different

measures using three different mutation tools, and a

diverse set of real world projects.

II. GEOMETRIC MODEL

Our approach builds on the disjoint mutant set [10] for-

malized by Ammann et al. [6] but extends it to provide

fine-grained criteria for evaluating performance of different

mutation techniques. We note that our formulation is very

similar to the recently proposed theoretical model for mutation

testing methods [14].

A. Terminology

Given a program P , and its test suite T , a mutation tool may

generate a set of mutants M by injecting a set of mutations.

The mutations are a subset of all faults that are possible for a

given program, which is generated by a mutation tool. We

use lowercase for elements, while sets are represented by

uppercase — m ∈ M is a single mutant, and t ∈ T is a

single test case. The set TU represents all possible test cases

for P . That is, T ⊆ TU . The powerset of T is represented by

2T , and contains 2|T | elements. The mutants in M killed by

a test suite T are given by kill(T,M). Similarly, the tests in

T that kill M are given by cover(T,M).

kill : T ×M →M and cover : T ×M → T

T is mutation adequate for M if kill(T,M) = M . Two tests

t1 and t2 are distinguishable or unique if kill({t1},M) �=
kill({t2},M).

Two mutants m1 and m2 are distinguished or unique if

cover(T, {m1}) �= cover(T, {m2}). A set of mutants is

134134

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

ma

mb

mc

md

va

vb

vc

Fig. 1: Relationship between Mutants and Variants M � V

called a unique mutant set if no pairs within the set are

indistinguishable.

A mutant m1 dynamically subsumes another m2 if the tests

that kill m1 are guaranteed to kill m2 (and m1 can be killed).

That is, cover(T, {m1}) ⊆ cover(T, {m2})
A set of tests are said to be minimal if removal of any test

case causes the mutation score to drop, and a disjoint mutant

set corresponds to a minimal test set such that no mutant in

the set dynamically subsumes another.

A runtime variant (or simply variant) is a program or a

mutant that shows a deviation in runtime behavior from the

original program P . Not all mutants express a detectable

deviation and not all deviations are unique — equivalent

and redundant mutants exist. A variant may be detected by

multiple test cases. We call a variant va that is detected only

by a subset of test cases that detect another variant vb a

harder variant to detect than vb (which is conversely easier).

In terms of subsumption, the variant va can be said to subsume
variant vb. That is, va ≥

subsume
vb. We consider only dynamic

subsumption by available test cases here. A variant va is

included in the volume of a set of variants V if and only

if at least one variant vb ∈ V subsumes va.

B. Approach

Imagine that we have an exhaustive set of variants V U

for any program P . Some variants may be easier to detect,

and hence detected by multiple test cases. We know that

mutants and variants have a surjective relationship. As shown

in Figure 1, while multiple mutants can produce the same

variant, multiple variants can not be associated with a single

mutant, and there is at least one unique mutant for each variant

generated (and at least one fault for any possible variant).

Consider an n dimensional volume with the number of

dimensions given by |T |. A unit distance along any dimension

represents the variant escaping the corresponding test case,

while 0 in each dimension represents a detection of the variant

by the test case corresponding to that dimension. With this for-

mulation, the origin point is the variant that is detected by all

test cases, and a volume of 2n is the maximal volume possible.

The inclusion of a variant now has a geometric representation.

It is within the volume bounded by the variants that are already

present. Effectively, this means that the inclusion needs to be

checked only with the surface variants of the enclosed volume.

This suggests a way to evaluate the effectiveness of a set

of mutants given a test suite, which is given by the ratio

t1

t2

t3

t4

t5

m1

m2

m3

Fig. 2: Inclusion relationship between mutants. The outer

points represents mutants not killed by respective test cases.

The mutant m2 (killed by test cases t1, t3, t5) is subsumed

by the mutant m3 (killed by test case t5 alone). However, the

mutant m1 (killed by test cases t1, t2, t3, t4) is different from

both. The ψ score of m3 (and the included m2) is 24

25 = 0.5.

Note that this is different from disjoint mutant set from Md.

With disjoint mutant set, mutants m3 and m1 is sufficient to

cover the entire set of test suite. With our formulation, the

above grouping will not cover a mutant killed by t1, t2, t3

between the possible variants that could be included by the

detected variant surface corresponding to the mutant set and

the maximal volume of variants 2|T |. Let us denote the volume

ratio by ψ, and the mutants in the variant surface by Ms
5.

Volume ratio ψ is a measure of thoroughness of a group of

mutants. The more harder to detect, the larger the ψ of the

mutant set. ψ is independent of the size of the project, or the

size of test suite — all a volume ratio of 0.5 means is that of

the possible variants, only 50% of the variants were included

by the mutant set.

For example, consider Figure 2 where mutant m1 is detected

by test cases {t1, t2, t3, t4}, m2 by {t1, t3, t5}, and m3 by

{t5}. This is a two dimensional representation of the five

dimensional matrix. The central polygon represents the origin

point (0, 0, 0, 0, 0), representing any mutant that can be killed

by all test cases. We say that m3 subsumes m2 (harder) but

not m1 (different), and the ratio of detected variants to total

is 1
2 . The number of surface mutants here is Ms = {m1,m3}.

Unfortunately, measuring the ψ score becomes difficult as

the number of test cases and mutants increases. That is, for

computing ψ, the numerator is given by

∣∣∣∣
|M |⋃

i=1

Ai

∣∣∣∣ =
∑

J⊆{1,2,..|M |}\∅
(−1)|J|−1

∣∣∣∣
⋂

j∈J
Aj

∣∣∣∣

where the number of terms is 2|M | − 1 — increasing expo-

nentially. Computation of such a value is infeasible.

For example, if we have a set of test cases {a, b, c}, and

a set of distinguishable mutants {A,B,C} each killed by

5 Note that not all points in the volume may have corresponding mutants,
such as due to test cases that check an exact subset of specification from
another test case. We ignore these in favor of a simpler model.

135135

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

some combination of given tests, the total volume of mutants

covered by our set of mutants {A,B,C} would be

ψ =
2|A| + 2|B| + 2|C| − 2|A∩B| − 2|A∩C| − 2|B∩C| + 2|A∩B∩C|

2|{a,b,c}|

That is, we can expect 2|{A,B,C}|−1 terms on the numerator.

We can avoid this problem by using statistical approximation

of the ratio. That is, randomly generate N possible com-

binations of |T | test kills. Let N ′ be the number of these

combinations that were included in the mutant surface Ms.

The value N ′
N provides a reasonable approximation to ψ,

refined to the requisite accuracy.

Note that the mutants corresponding to variants in the

enclosing surface Ms are the same as the disjoint mutant set

corresponding to the entire test suite T as per the definition

given by Ammann et al. [6].

While the volume ratio can provide information about the

ratio of included variants, due to the massive redundancy

of mutations generated, the ratio may be very close to 1.

Hence, another useful measure is the surface correction (s).

Geometrically, it represents how close the given surface is to

an n-sphere. A perfect spherical surface will have s = 1.

For our purposes, it represents the mean number of test cases

killing each surface mutant. The smaller the s, the more test

cases that kill the surface mutants. A small s is an indication

that the surface mutants are easy to detect. Hence, they may

be improved further to fail in a smaller number of test cases,

perhaps by engineering them using higher order mutants. The

s can vary between
|M |
|M |×1 = 1 (each mutant fails only for a

single test case) and
|M |

|M |×(|T |−1) = 1
|T |−1 (each mutant fails

for almost all test cases, but none are subsumed by others).

Note that we can distinguish (|T | − 1)× |M | cases with s.

Each measure we have listed evaluates a different aspect

of a given mutation set. The surface mutant set provides an

alternative to the disjoint mutant set— the set of mutants that

are shown to be hardest to detect out of the given set of

mutants, and its effectiveness is given by volume ratio. The

surface correction indiciates whether the selected mutants are

trivial to detect.

C. Analysis

In this section, we compare the runtime complexity of three

measures: disjoint mutant set Md, surface mutant set Ms and

unique mutant set Mδ .

Finding the true minimum test suite for a set of mutants is

NP-complete6. The best possible approximation algorithm is

Chvatal’s [16], using a greedy algorithm where each iteration

tries to choose a set that covers the largest number of mutants.

This is given in Algorithm 1, and achieves an approximation

ratio of H(|M |)7 The complexity of greedy set-cover approx-

6This is the Set Covering Problem [6] which is NP-Complete [15].
7H(n) is the n-th harmonic number. It is given by

H(n) =
n∑

k=1

1

k
≤ lnn+ 1

imation is O(
∑

m∈Mt
|m|) [17] where Mt is the family of

subsets of T . That is, Mt is the set of tests killing each mutant

m ∈M . The bound can be simplified to O(|T |× |M |), where

|T | is the number of test cases and |M | is the number of

mutants.

Algorithm 1 Finding the minimal test suite

function MINTEST(Mutants, Tests)
T ← Tests
M ← kill(T,Mutants)
Tmin ← ∅
while M �= ∅ do

t← random(max
t
|kill({t},M)|)

M ←M \ kill({t},M)
Tmin ← Tmin ∪ {t}

end while
return Tmin

end function

Adding a new mutant to an existing set of non-subsumed

mutants is to simply iterate through the existing set of non-

subsumed mutants to see if the new mutant is dynamically

subsumed, and if not add it to the set. The algorithm to remove

subsumed mutants is given in Algorithm 2.

Algorithm 2 Removing subsumed mutants

function RMSUBSUMED(Tests,Mutants)
M ← kill(T,Mutants)
T ← Tests
Mmin ←M
while M �= ∅ do

m← random(M)
M ←M \ {m}
N ←Mmin \ {m}
while N �= ∅ do

n← random(N)
N ← N \ {n}
if cover({m}, T) ⊆ cover({n}, T) then

Mmin ←Mmin \ n
M ←M \ n

end if
end while

end while
return Mmin

end function

The only difference between computing the disjoint mutant
set and the surface mutant set is which test suite gets passed to

this algorithm. If the test suite that gets passed is the minimal
test set (an approximation of the minimum test set), computed

in Algorithm 1, then the minimal mutant set returned is the

disjoint mutant set Md. On the other hand, if what gets passed

is the full test suite, then the surface mutant set Ms are

computed.
The complexity of Algorithm 2, ignoring the growth of tests,

is O(m2) where m = |M |. If we assume that the size of

minimal test set is proportional to the size of the test set.

Computing Md (ignoring the computation of minimal test

suite) has at least O(m2) complexity (consider also that in

the worst case, a minimal (or minimum) test set is same as

the full set). This is the same as computing Ms because it

136136

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

uses the same algorithm and has the same worst case test

suite. Finally, the algorithm to compute the unique mutant set
is given in Algorithm 3

Algorithm 3 Finding the unique mutant set

function UNIQUEMUTANTS(Tests,Mutants)
M ← SORT(Mutants) � Compare by

∣
∣cover(T,{m})∣∣

T ← Tests
Mν ← ∅
while M �= ∅ do

m← pop(M)
Mν ←Mν ∪ {m}

end while
return Mν

end function

Of the three reduced mutation sets, the unique mutant

set Mδ is the easiest to compute because the maximum

computational complexity is for sorting — O(m× log(m))8.

III. METHODOLOGY

Our assertion that the unique mutant set is a better effective-

ness measure than the disjoint mutant set can only be shown

through reasoning. Hence we do not attempt to validate it here.

In previous work [6], Ammann et al. compared the mu-

tation score for various selective mutation score strategies

using the disjoint mutant set. However, we know [4] that

mutation reduction strategies are severely limited in how much

effectiveness they can gain, in theory and practice. In order to

judge the quality of a reduction strategy one should compare

the effectiveness of the strategy to the effectiveness expected

from random sampling. Our previous research showed that

popular mutation reduction strategies do not fare well in such

a comparison [18].

Hence, for our empirical analysis, we have two main con-

cerns. The first one is to benchmark how the different measures

perform for mutants from different tools. The second is to

evaluate the effectiveness of random sampling. Computing

how many of the mutants in the original set that belongs to

any of Md, Ms, Mδ , end up in the reduced random sample is

not very useful. Because we are using random sampling, we

are assured that the average ratio of sizes of these different

sets to the size of full set Mk will remain the same due to the

central limit theorem.

What we investigate instead is the second measure. That is,

provided Md is a measure of the effectiveness accounting for

the ease of detection of mutants, our proposed replacement is

Ms, and its actual impact is computed by the volume ratio ψ.

Hence our question is how the effectiveness will change when

we sample. Is the surface mutant set from the sample easier

or harder to detect than the surface mutant set from the full

set?

To benchmark the new measures, it is important to capture

the variations present in the real world use of these mea-

sures. The major avenues of variation are: Variation due to

8The complexity could even be reduced to linear because we are not sorting
arbitrary integers. There is a fixed limit to the size of each element — the
total number of test cases in the test suite.

TABLE I: Subject Programs, the size of test suite (TS),

mutation scores (μ %), number of mutants produced (M)

Project TS Judμ Majμ PITμ LOC JudM MajM PITM

annotation-cli 126 42.42 43.27 59.38 870 777 512 981
asterisk-java 214 13.54 21.54 20.64 29,477 12,658 5,812 15,476

beanutils 1,185 50.71 42.69 56.78 11,640 6,529 4,382 9,665
beanutils2 680 59.47 52.49 61.85 2,251 990 615 2,069

clazz 205 24.46 39.45 30.20 5,681 2,784 2,022 5,165
cli 373 71.17 76.61 86.14 2,667 2,308 1,411 2,677

collections 4,407 76.99 58.63 34.69 25,400 1,006 10,301 24,141
codec 605 92.72 73.52 82.66 6,603 44 7,362 9,953

commons-io 964 88.38 70.65 77.34 9,472 164 6,486 9,799
config-magic 111 55.19 29.80 60.69 1,251 527 650 1,181

csv 173 53.01 68.08 79.68 1,384 1,154 991 1,798
dbutils 239 44.23 65.20 47.34 2,596 1,159 677 1,922
events 206 77.14 70.03 59.95 1,256 2,353 615 1,155
faunus 172 2.55 58.65 49.07 9,000 3,723 3,771 9,668

java-api 125 14.95 84.91 76.03 1,760 929 611 1,711
classmate 219 66.17 77.23 90.26 2,402 1,423 952 2,543

jopt-simple 566 84.50 79.32 94.50 1,617 497 695 1,790
mgwt 103 40.72 6.61 8.85 16,250 1,394 6,654 12,030

mirror 303 58.73 74.73 75.47 2,590 1,316 449 1,876
mp3agic 206 72.46 51.70 54.51 4,842 1,272 4,822 7,182

ognl 113 13.96 6.46 56.32 13,139 8,243 5,616 21,227
pipes 138 65.99 62.64 67.66 3,513 590 1,171 3,001

primitives 2,276 93.35 71.33 35.71 11,965 14 4,916 11,312
validator 382 50.27 59.06 68.21 5,807 3,320 3,655 5,846

webbit 146 73.95 67.17 52.41 5,018 144 1,327 3,707

mutant distribution in individual projects, variation due to the

language used, and variation due to the mutation generation

tools used (especially the phase during which the mutants were

produced).

Unfortunately, the language choice is not orthogonal to other

sources of variation. That is, language choice determines the

projects, and the tool being used, which makes it difficult to

compare different tools, and reflect variation introduced due

to projects. Hence, we avoided variation due to language, and

standardized on Java projects. Keeping the goal of real world

projects that best represent real world software, we chose 25

large Java projects from Github [19] and the Apache Software

Foundation [20], that had large test suites. These projects, the

size of their test suite (number of tests), and mutation scores

are given in Table I. Note that we use the original test suites

written by the developers.

We performed our evaluation with three tools: PIT 1.0, Judy

2.1.x, and Major 1.1.5. For each tool, we used the settings for

the maximum number of operators to mutate.

Unlike other structural coverage measures such as state-

ment, branch or path coverage, there is very little agreement

on what constitutes an acceptable set of mutants in mutation

analysis. This means that we can expect a wide variation in the

number of mutants produced. The mutants produced by each

tool on each program is given in Table I. Unfortunately, this

also means that the mutation scores do not necessarily agree

as we see in Table I. One culprit is the presence of equivalent

mutants — mutants that do not produce a measurable semantic

variation to the original program. To avoid skewing the results

due to the presence of equivalent mutants, we removed the

mutants that were not killed by any of the test cases we had. It

is possible that many of the live mutants were simply stubborn,

137137

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

and not equivalent. However, our measures do not depend on

having the complete set of killable mutants. Note that some of

the projects produced very small number of mutants, ignoring

classes that could not be mutated due to various reasons. For

the sake of completeness, and to show that these does not

impact our conclusion, all the projects tool combinations that

produced any number of mutants are included in our study.

First, we computed the different minimal sets Md, Ms, Mδ

along with the measures ψ and s for each project and tool

combination. Next, we took 100 samples from each project,

and computed the same measures for each sample.

IV. EMPIRICAL COMPARISON

We have two goals in our empirical comparison. The first

one is to tabulate the different measures Md, Ms, Mδ for each

set of mutants M , along with the secondary measures ψ and

s. The second goal is to compare the effectiveness of random

sampling of a limited number of mutants to that of the full set

of mutants.

A. Measures for the full set of mutants

The different measures for the full set of mutants are given

in Table II. As can be seen, except in a few cases, the volume

being covered is indeed close to the full volume. However,

we see that the surface correction s given in Table II suggests

that there is still quite a bit of improvement possible. The

number of mutants necessary by variant surfaces Ms, along

with disjoint mutant set Md the size of unique mutant set Mδ ,

and the total number of mutants detected Mk are also given

in Table II. As expected, the surface mutant set Ms is larger

than the disjoint mutant set Md, and the unique mutant set

Mδ is the largest out of the total detected Mk.

B. Measures for 100 mutants sampled

The mean measures for 100 mutants sampled randomly 100
times from each tool, for each project is given in Table III. The

columns with labels ψ and s are measures from the full set,

and are given for comparison. ψμ, sμ, and Mμ
δ are measures

computed from the sample.

C. Comparing complete and sampled mutants

As we indicated previously, we know the behavior of Mδ

under random sampling. Once we label some of mutants in Mk

as belonging to Mδ , taking random samples from Mk can be

expected to preserve the ratio Mδ

Mk
on average. Hence, if we

are using the size of unique mutant set as an effectiveness

measure, the effectiveness will decrease in inverse proportion

to the size of the sample. That is, a sample with 1
10 mutants

will have only 1
10 of the original unique variants.

One measure that is actually of interest is the volume ratio

ψ We evaluate the change in volume ratio using the linear

regression:

ψoriginal = βψ × ψsample

Similarly, we evaluate the change in surface correction using

the linear regression:

soriginal = βs × ssample

annotation−cli

asterisk−java

beanutils

beanutils2

clazz

cli

collections

commons−codec

commons−io

config−magic

csv

dbutils

events

faunus

java−api−wrapper

java−classmate

jopt−simple

mgwt

mirror

mp3agic

ognl

pipes

primitives

validator

webbit

0.00 0.25 0.50 0.75 1.00
unique

p
ro
je
c
t

tool
judy8

major115

pitx

Fig. 3: Ratio of size of unique mutant set to full set of detected

mutants (larger is better).

V. DISCUSSION

Comparing the size of Mδ produced by each tool (Fig-

ure 3), we find that PIT produced on average 0.224 unique

variants per mutant produced (standard deviation = 0.0844).

In comparison, Major produced on average 0.334 unique

variants per mutant produced (standard deviation = 0.0722)

and Judy produced 0.306 unique variants per mutant produced

(standard deviation = 0.195). We note that comparing the

size of disjoint mutant set, PIT produced on average 0.0647

disjoint mutants per mutant produced (standard deviation =

0.0298). In comparison, Major produced on average 0.129

disjoint mutants per mutant produced (standard deviation =

0.0327) and Judy produced 0.116 disjoint mutants per mutant

produced (standard deviation = 0.121).

These results suggest an advantage for mutants produced

from Major, closely followed by Judy as suggested in Figure 3.

Given that |Mδ| is the size of variants in any given set of

mutants, and Rδ is an effectiveness measure, it is worthwhile

to estimate this effectiveness quickly for any set of mutants

corresponding to a program generated by any tool. However,

computing |Mδ| requires the full test run for the entire set of

mutants. Is there a way to reliably estimate the size of |Mδ|?
Our results suggest that the ratio Rδ is highly correlated to

the ratio of unique mutant set from sampling. That is,

Rδ = β1 ×Rsample
δ + β2 × Tool

138138

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Measures of all tools for full set of mutants

Project ψ s Ms Md Mδ Mk

annotation-cli 1.00 0.46 31 26 109 583
asterisk-java 1.00 0.77 211 171 449 3,195
beanutils 1.00 0.53 548 398 1,568 5,488
beanutils2 1.00 0.65 149 145 464 1,280
clazz 1.00 0.59 64 49 150 1,560
cli 1.00 0.52 207 136 787 2,306
collections 1.00 0.68 898 797 2,080 8,374
commons-codec 1.00 0.63 488 351 1,392 8,228
commons-io 1.00 0.71 692 570 1,598 7,579
config-magic 1.00 0.58 60 49 203 717
csv 1.00 0.66 139 99 399 1,433
dbutils 1.00 0.62 124 104 206 910
events 1.00 0.47 25 30 58 693
faunus 1.00 0.71 179 122 550 4,744
java-api-wrapper 1.00 0.64 137 90 307 1,301
java-classmate 1.00 0.80 217 184 550 2,296
jopt-simple 1.00 0.45 177 131 579 1,692
mgwt 1.00 0.82 85 74 168 1,065
mirror 1.00 0.70 205 173 531 1,416
mp3agic 1.00 0.71 160 116 733 3,915
ognl 1.00 0.42 379 81 1,998 11,956
pipes 1.00 0.66 130 95 337 2,031
primitives 1.00 0.64 685 445 1,372 4,039
validator 1.00 0.62 273 204 757 3,988
webbit 1.00 0.64 114 90 315 1,943

PIT

ψ s Ms Md Mδ Mk

1.00 0.49 20 20 64 222
1.00 0.75 170 142 295 1,252
1.00 0.56 428 344 892 1,871
1.00 0.59 105 105 191 323
1.00 0.55 73 59 196 798
1.00 0.56 174 130 471 1,081
1.00 0.59 995 910 2,098 6,040
1.00 0.60 364 267 1,047 5,413
1.00 0.69 552 477 1,138 4,583
1.00 0.55 50 45 93 194
1.00 0.74 104 91 245 675
1.00 0.53 69 60 155 442
0.91 0.37 22 10 28 431
1.00 0.75 126 103 378 2,212
1.00 0.55 72 42 270 519
1.00 0.72 136 108 281 736
1.00 0.44 118 95 266 552
1.00 0.84 77 70 119 440
1.00 0.72 124 112 198 336
1.00 0.70 149 108 614 2,493
1.00 0.74 39 27 71 363
1.00 0.63 110 81 207 734
1.00 0.58 723 662 1,565 3,507
1.00 0.60 218 168 478 2,159
1.00 0.64 69 59 191 892

Major

ψ s Ms Md Mδ Mk

1.00 0.39 29 20 74 330
1.00 0.79 148 121 324 1,714
1.00 0.56 478 348 1,364 3,311
1.00 0.46 80 67 218 589
1.00 0.67 24 18 105 681
1.00 0.56 157 106 553 1,643
1.00 0.61 148 130 246 775
0.50 0.29 6 4 11 41
1.00 0.55 30 33 53 145
1.00 0.48 42 33 107 291
1.00 0.78 67 64 161 612
1.00 0.58 78 73 129 513
0.98 0.34 25 21 35 1,815
0.98 0.88 8 7 10 95
1.00 0.85 12 10 21 139
1.00 0.80 116 98 276 942
1.00 0.41 90 67 248 420
1.00 0.81 58 55 120 568
1.00 0.72 148 127 359 773
1.00 0.51 88 54 333 922
1.00 0.72 20 14 67 1,151
1.00 0.59 41 29 98 390
0.24 0.12 10 9 14 14
1.00 0.68 140 102 341 1,669
0.86 0.32 15 9 46 107

Judy

TABLE III: Mean measures of all tools for 100-sample set of mutants

Projects ψ ψμ ψσ s sμ sσ Mμ
s

annotation-cli 1.00 0.99 0.01 0.46 0.44 0.01 20.54
asterisk-java 1.00 1.00 0.00 0.77 0.66 0.00 55.71
beanutils 1.00 1.00 0.00 0.53 0.43 0.00 71.94
beanutils2 1.00 1.00 0.00 0.65 0.42 0.00 50.10
clazz 1.00 1.00 0.00 0.59 0.59 0.00 28.99
cli 1.00 1.00 0.00 0.52 0.45 0.00 52.69
collections 1.00 1.00 0.00 0.68 0.57 0.00 81.85
commons-codec 1.00 1.00 0.00 0.63 0.48 0.00 56.25
commons-io 1.00 1.00 0.00 0.71 0.57 0.00 78.39
config-magic 1.00 1.00 0.00 0.58 0.50 0.00 32.87
csv 1.00 1.00 0.00 0.66 0.57 0.00 43.65
dbutils 1.00 1.00 0.00 0.62 0.60 0.00 44.47
events 1.00 0.93 0.06 0.47 0.40 0.06 14.51
faunus 1.00 1.00 0.00 0.71 0.68 0.00 52.00
java-api-wrapper 1.00 1.00 0.00 0.64 0.64 0.00 44.09
java-classmate 1.00 1.00 0.00 0.80 0.68 0.00 55.21
jopt-simple 1.00 1.00 0.00 0.45 0.31 0.00 49.07
mgwt 1.00 1.00 0.00 0.82 0.71 0.00 35.84
mirror 1.00 1.00 0.00 0.70 0.55 0.00 55.77
mp3agic 1.00 1.00 0.00 0.71 0.56 0.00 40.62
ognl 1.00 1.00 0.00 0.42 0.57 0.00 34.58
pipes 1.00 1.00 0.00 0.66 0.68 0.00 49.61
primitives 1.00 1.00 0.00 0.64 0.62 0.00 76.64
validator 1.00 1.00 0.00 0.62 0.58 0.00 56.51
webbit 1.00 1.00 0.00 0.64 0.48 0.00 35.66

PIT

ψ ψμ ψσ s sμ sσ Mμ
s

1.00 0.99 0.01 0.49 0.44 0.01 19.09
1.00 1.00 0.00 0.75 0.67 0.00 49.69
1.00 1.00 0.00 0.56 0.46 0.00 71.40
1.00 1.00 0.00 0.59 0.52 0.00 49.28
1.00 1.00 0.00 0.55 0.42 0.00 32.56
1.00 1.00 0.00 0.56 0.47 0.00 55.17
1.00 1.00 0.00 0.59 0.47 0.00 77.10
1.00 1.00 0.00 0.60 0.41 0.00 50.44
1.00 1.00 0.00 0.69 0.55 0.00 68.67
1.00 1.00 0.00 0.55 0.56 0.00 33.43
1.00 1.00 0.00 0.74 0.60 0.00 42.15
1.00 1.00 0.00 0.53 0.48 0.00 37.01
0.91 0.82 0.09 0.37 0.55 0.09 8.77
1.00 1.00 0.00 0.75 0.62 0.00 47.35
1.00 1.00 0.00 0.55 0.50 0.00 32.98
1.00 1.00 0.00 0.72 0.70 0.00 52.05
1.00 1.00 0.00 0.44 0.35 0.00 47.89
1.00 1.00 0.00 0.84 0.76 0.00 37.38
1.00 1.00 0.00 0.72 0.65 0.00 61.07
1.00 1.00 0.00 0.70 0.55 0.00 39.96
1.00 1.00 0.00 0.74 0.73 0.00 25.29
1.00 1.00 0.00 0.63 0.68 0.00 46.80
1.00 1.00 0.00 0.58 0.43 0.00 81.71
1.00 1.00 0.00 0.60 0.58 0.00 54.32
1.00 1.00 0.00 0.64 0.44 0.00 30.40

Major

ψ s ψμ sμ ψσ sσ Mμ
s

1.00 0.39 0.99 0.43 0.01 0.01 19.38
1.00 0.79 1.00 0.75 0.00 0.00 50.84
1.00 0.56 1.00 0.42 0.00 0.00 67.48
1.00 0.46 1.00 0.36 0.00 0.00 39.94
1.00 0.67 0.97 0.50 0.02 0.02 16.13
1.00 0.56 1.00 0.44 0.00 0.00 47.54
1.00 0.61 1.00 0.61 0.00 0.00 62.19
0.50 0.29 0.50 0.34 0.00 0.00 4.53
1.00 0.55 1.00 0.52 0.00 0.00 29.46
1.00 0.48 1.00 0.43 0.00 0.00 30.09
1.00 0.78 1.00 0.65 0.00 0.00 31.25
1.00 0.58 1.00 0.57 0.00 0.00 40.87
0.98 0.34 0.82 0.62 0.07 0.07 6.03
0.98 0.88 0.98 0.84 0.00 0.00 8.40
1.00 0.85 1.00 0.79 0.00 0.00 12.37
1.00 0.80 1.00 0.69 0.00 0.00 47.90
1.00 0.41 1.00 0.31 0.00 0.00 47.64
1.00 0.81 1.00 0.66 0.00 0.00 29.65
1.00 0.72 1.00 0.56 0.00 0.00 50.50
1.00 0.51 1.00 0.42 0.01 0.01 32.19
1.00 0.72 0.99 0.66 0.01 0.01 15.14
1.00 0.59 1.00 0.59 0.00 0.00 27.50
0.24 0.12 0.24 0.11 0.00 0.00 11.44
1.00 0.68 1.00 0.60 0.00 0.00 45.86
0.86 0.32 0.85 0.38 0.04 0.04 11.15

Judy

139139

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

The regression R2 = 0.832, and p < 0.001. Since the tool

is significant, considering each tool separately:

Rδ = β1 ×Rsample
δ

PIT R2 = 0.924, and β1 = 0.307, Major R2 = 0.901, and

β1 = 0.483, Judy R2 = 0.666, and β1 = 0.513 (p < 0.0001).

That is, we have moderate to strong correlation between Rδ

and Rsample
δ , which may be used to predict Rδ from Rsample

δ .

However, further research is needed in this area to determine

the effects of sample size, project characteristics, and mutation

tool used.

Table II suggests that for most of our projects ψ is very

close to 1. That is, the volume enclosed by mutants is very

close to the limit possible. This may be because most test

cases are very targeted unit test cases that kill mutants within

a given function. That is, for most mutants which are judged

by a test suite, there is a small number of tests that detect each

mutant. We also find that when we sample just 100 mutants

(Table III), the volume ratio remains close to the original

volume ratio. That is, the coefficient βψ for PIT is 0.997,

for Major is 0.996, and for Judy is 0.99, with R2 > 0.99 and

p < 0.0001. Further, the standard deviation of ψ suggests that

there is very little deviation in any of the samples. A similar

observation can be made for the surface correction s. The

coefficient βs for ssample for PIT is 0.872, for Major is 0.875,

and for Judy is 0.9, with R2 > 0.97 and p < 0.0001. That

is, the surface correction for samples is close to the surface

correction detected for the full set.

Previous research [6] showed that using size of disjoint

mutant set as a measure for effectiveness accounting for ease

of detection, mutation reduction strategies fare poorly when it

comes to maintaining effectiveness. Our results here show that

even though the size of surface mutant set varies, the volume

ratio ψ of samples remains close to the original volume ratio

ψ of the full set of mutants, and the same case is true for

the finer surface correction s. This result suggests that even if

the size of surface mutant set or disjoint mutant set varies, the

effectiveness accounting for ease of detection of the mutant set

does not vary as much for random sampling. Does this effect

extend to more intelligent mutation reduction strategies? Our

previous research [4], [18] suggests that intelligent mutation

strategies often fare poorly when compared against random

sampling, and there is a need for further research in this area.

VI. RELATED WORK

The idea of mutation analysis was first proposed by Lip-

ton [1], and its main concepts were formalized by DeMillo

et al. in the “Hints” [21] paper. The first implementation of

mutation analysis was provided in the PhD thesis of Budd [22]

in 1980.

The validity of mutation analysis rests upon two fundamen-

tal assumptions: the competent programmer hypothesis and the

coupling effect [21]. Evidence of the coupling effect comes

from theoretical analysis by Wah [23], empirical studies by

Offutt [24] and Langdon et al. [25]. The competent program-

mer hypothesis was quantified in our previous work [26].

One difficulty in mutation analysis is identifying equiva-

lent mutants, and research in this is generally divided into

categories of prevention and detection [27], with prevention

focusing on reducing the incidence of equivalent mutants [28]

and detection focusing on identifying the equivalent mutants

by examining their static and dynamic properties.

A similar problem is that of redundant mutants [3], re-

sulting in a misleading mutation score. A number of studies

measured the redundancy among mutants. Ammann et al. [6]

compared the behavior of each mutant under all tests and

found numerous redundant mutants. More recently, Papadakis

et al. [27] used the compiled representation of programs to

identify equivalent mutants. They found that on average 7%
of mutants are equivalent while 20% are redundant.

Researchers have evaluated different mutation tools in the

past [29], based on fault model (operators used), order (syn-

tactic complexity of mutations), and selectivity (eliminating

most frequent operators), mutation strength (weak, firm, and

strong), and the sophistication of the tool in evaluating mu-

tants. Our evaluation differs from their research in focusing on

the semantic impact of mutants produced by different tools.

Another closely related publication is MuRanker [30]. where

the authors use various distance functions to rank different

mutants. We note that our formulation of variants as situated

in a hypergeometric volume parallels the recent theoretical

approach of Shin et al. [14]. Finally, our study extends the

previous research by Ammann et al. [6], in providing a related

but more fine-grained measure.

VII. CONCLUSION

Research on newer mutation operators, and on eliminating

redundant mutants requires some measure of effectiveness

for a given set of mutants. As the primary aim of mutation

analysis is to evaluate the quality of test suites, the measure

of effectiveness should be based on how best to achieve this.

For a given test suite, there are two main concerns. Does

it detect a reasonable fraction of the deviations in the progam

specification? Secondly, does it detect and prevent subtle bugs?

To enable these measurements, a set of mutants should be

able to provide as large a set of unique variants as possible,

and also provide variants that are hard to detect. The size of

the disjoint mutant set has been proposed [6] as a measure

of effectiveness of mutation reduction techniques. However, a

problem with this measure is that it is too tightly coupled with

the test suite.

Most reduction strategies and mutation operators use static

properties of the program in question to generate mutants. The

aim of these strategies is to identify variants that are actually

unique, not just to maintain the quality of a particular test

suite. The test suite is only incidental to the measurement.

We showed that if we are to use the disjoint mutant set as

the set of all unique variants in a set of mutants, we need two

more assumptions: the single variant assumption (that each

test case kills exactly one variant), and the large test suite
assumption (that the number of test cases is larger than the

number of unique variants) beyond the stated assumptions of

140140

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

a comprehensive test suite, and a fixed set of mutants. Given

that test cases routinely have more than a single assertion [31],

and the number of mutants is usually much larger than the test

suite size, these two assumptions may not be justified for real

world test suites. On the other hand, if we were to use the

disjoint mutant set as the set of hardest to find mutants, we

show that the disjoint mutant set can discard some of important

mutants that are as hard to detect as any other mutants. Hence

the disjoint mutant set is not an adequate solution as a measure

of effectiveness of a mutant set.

Our contribution in this paper is to recognize the two

different effectiveness critieria required. The first is the number

of unique variants identified from a given set of mutants, and

the second is a measure of ease of detection of a given set of

mutants. We proposed the unique mutant set as an alternative

that does not depend on either the single variant assumption
or the large test suite assumption. For the second critieria, we

proposed the surface mutant set which preserves useful hard

to detect mutants, and a semantics using volume ratio and

surface correction that provides a more concrete explanation

of what ease of detection entails.

It may be asked, why try to mitigate problems with mutant

analysis by relying again on mutation detection by test suites?

Why not use other criteria such as coverage information or

program metrics instead?

Detection of mutants by test suites is still the closest, most

effective, and most direct approach we have for evaluating

the effectiveness of test suites. Other measures (such as most

kinds of coverage) are subsumed by mutation analysis, and

measures such as static information from program metrics are

not suitable as a theoretical bound on the effectiveness of

mutants, because they are dependent on particular languages.

Furthermore, we are unsure about the information they provide

about the variants, primarily because such information is

highly indirect compared to mutant kills.

We provide a benchmark of the different measures |Md|,
|Ms|, and |Mδ| using three different tools (PIT, Judy, and

Major) on 25 real world projects. Our empirical analysis shows

that random sampling works reasonably well for maintaining

the effectiveness (accounting for ease of detection) of a given

set of mutants.

REFERENCES

[1] R. J. Lipton, “Fault diagnosis of computer programs,” Carnegie Mellon
Univ., Tech. Rep., 1971.

[2] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, Mutation
analysis. Yale University, Department of Computer Science, 1979.

[3] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant mutants
affect the effectiveness and efficiency of mutation analysis?” in Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2012, pp. 720–725.

[4] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce, “On the
limits of mutation reduction strategies,” in International Conference on
Software Engineering. ACM, 2016.

[5] Y. Jia and M. Harman, “Constructing subtle faults using higher order
mutation testing,” in IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2008, pp. 249–258.

[6] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in International Conference on Software
Testing, Verification and Validation, 2014, pp. 21–30.

[7] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” in International Conference on Software Testing,
Verification and Validation Workshops. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 176–185.

[8] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Transactions on Software Engineering
and Methodology, vol. 14, no. 3, pp. 247–276, Jul. 2005.

[9] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 1953.

[10] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing
alternatives: A collateral experiment,” in Asia Pacific Software Engineer-
ing Conference. IEEE, 2010, pp. 300–309.

[11] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. I, no. 9036264, p. 844âĂŞ857, 1990.

[12] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” in Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, ser. PASTE ’98. New York, NY, USA: ACM, 1998,
pp. 83–90.

[13] R. Gopinath, “Replication data for unique minimal sets of mutatnts with
variant surfaces,” http://eecs.osusol.org/rahul/icst16/.

[14] D. Shin and D.-H. Bae, “A theoretical framework for understanding
mutation-based testing methods,” in International Conference on Soft-
ware Testing, Verification and Validation, 2016.

[15] R. M. Karp, Reducibility among combinatorial problems. Springer,
1972.

[16] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms third edition. The MIT Press, 2009.

[18] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce, “Do
mutation reduction strategies matter?” Oregon State University, Tech.
Rep., Aug 2015. [Online]. Available: http://hdl.handle.net/1957/56917

[19] GitHub Inc., “Software repository,” http://www.github.com.

[20] Apache Software Foundation, “Apache commons,” http://commons.
apache.org/.

[21] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[22] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs,” in ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1980, pp. 220–233.

[23] K. S. H. T. Wah, “An analysis of the coupling effect i: single test data,”
Science of Computer Programming, vol. 48, no. 2, pp. 119–161, 2003.

[24] A. J. Offutt, “Investigations of the software testing coupling effect,”
ACM Transactions on Software Engineering and Methodology, vol. 1,
no. 1, pp. 5–20, 1992.

[25] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher
order mutation testing with genetic programming,” Journal of systems
and Software, vol. 83, no. 12, pp. 2416–2430, 2010.

[26] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are
they to real faults?” in International Symposium on Software Reliability
Engineering, Nov 2014, pp. 189–200.

[27] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in International Conference on
Software Engineering, 2015.

[28] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” International
Conference on Software Engineering, pp. 919–930, 2014.

[29] M. Delahaye and L. Du Bousquet, “A comparison of mutation analysis
tools for java,” in International Conference on Quality Software. IEEE,
2013, pp. 187–195.

[30] A. S. Namin, X. Xue, O. Rosas, and P. Sharma, “Muranker: a mutant
ranking tool,” Software Testing, Verification and Reliability, 2014.

[31] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with test
suite effectiveness,” in ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:

ACM, 2015, pp. 214–224.

141141

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:28:14 UTC from IEEE Xplore. Restrictions apply.

