
Understanding Code Smells in Android Applications
 Umme Ayda Mannan

Oregon State University
Corvallis, OR, USA

mannanu@oregonstate.edu

Danny Dig
Oregon State University

Corvallis, OR, USA
digd@eecs.oregonstate.edu

Iftekhar Ahmed
Oregon State University

Corvallis, OR, USA
ahmedi@oregonstate.edu

Carlos Jensen
Oregon State University

Corvallis, OR, USA
cjensen@eecs.oregonstate.edu

Rana Abdullah M Almurshed
Oregon State University

Corvallis, OR, USA
almurshr@oregonstate.edu

ABSTRACT
Code smells are associated with poor coding practices that cause
long-term maintainability problems and mask bugs. Despite mobile
being a fast growing software sector, code smells in mobile
applications have been understudied. We do not know how code
smells in mobile applications compare to those in desktop
applications, and how code smells are affecting the design of
mobile applications. Without such knowledge, application
developers, tool builders, and researchers cannot improve the
practice and state of the art of mobile development.

We first reviewed the literature on code smells in Android
applications and found that there is a significant gap between the
most studied code smells in literature and most frequently
occurring code smells in real world applications. Inspired by this
finding, we conducted a large scale empirical study to compare the
type, density, and distribution of code smells in mobile vs. desktop
applications. We analyze an open-source corpus of 500 Android
applications (total of 6.7M LOC) and 750 desktop Java applications
(total of 16M LOC), and compare 14,553 instances of code smells
in Android applications to 117,557 instances of code smells in
desktop applications. We find that, despite mobile applications
having different structure and workflow than desktop applications,
the variety and density of code smells is similar. However, the
distribution of code smells is different – some code smells occur
more frequently in mobile applications. We also found that
different categories of Android applications have different code
smell distributions. We highlight several implications of our study
for application developers, tool builders, and researchers.

1. INTRODUCTION
Code smells [12] identify bad design or coding practices. Code
smells are not the same as bugs and do not mean that the code
deviates from the expected execution, rather that design rules were

1 http://www.gartner.com/newsroom/id/2153215
2 http://www.gartner.com/newsroom/id/3061917

violated, which may lead to long-term maintainability problems
and technical debt [5, 34]. Researchers have shown that a large
number of code smells correlate with bugs [23, 30] and
maintainability problems [12]. However, according to Yamashita
et al. [42], around 32% of the developers are not aware of code
smells and their pitfalls. Moreover, on the research side, Ahmed et
al. [2] found that there is significant gap between the code smells
that receive a lot of attention in the literature and those that appear
most frequently in real-world applications.

In recent years, mobile applications have grown to become a large
part of the software industry. According to Gartner1, in 2016 more
than 300 billion apps will be downloaded. Another Gartner2 report
shows that in 2015, Android had more than 78% of the world
market share of smartphones. Thus, in this paper we focus on
Android applications.

Researchers [40] have shown that code accrues code smells during
high-intensity, frequent code changes performed under time and
market demand. Android applications often have more frequent
updates and releases than desktop applications [28]. Does this mean
that Android applications exhibit more or different code smells than
desktop applications?

Moreover, there are other important differences between mobile
and desktop applications3. Mobile applications have limited
resources (e.g., memory, CPU, network, battery). The
programming paradigm is also different: mobile applications use
reactive, event-driven programming. Android applications have a
special structure: there is no main function, the entry points are
given by event-handlers4 such as onCreate, onResume, etc. Also,
the libraries are different: Android does not have all J2SE APIs, nor
Swing, nor JavaFX. Many APIs are specific to mobile (Contacts,
Power Management, Graphics, etc.). GUIs on Android are declared
via XML. Do these differences in structure and workflow of
Android applications affect the distribution of code smells?

If code smells are the same, it means that all the tools and research
on code smells of desktop application applies to mobile
applications. But if they are different, then application developers,
tool builders, and researchers can make wrong assumptions about
code smells in mobile applications. Novel tools and approaches
might be needed, and the priority in developing software
engineering tools might need to be revised.

3http://gamedev.stackexchange.com/questions/4288/how-
different-is-java-for-jre-vs-java-for-android

4 http://developer.android.com/guide/components/activities. html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBILESoft’16, May 16–17, 2016, Austin, TX, USA.
Copyright 2016 ACM. ISBN 978-1-4503-4178-3…$15.00.
DOI: http://dx.doi.org/10.1145/2897073.2897094

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

225

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2897073.2897094&domain=pdf&date_stamp=2016-05-14

Researchers [13, 14, 15, 31, 33, 40, 41] have just started to analyze
anti-patterns and code smells in the context of Android
applications. However, we did not find any systematic literature
review on code smells in Android projects. We did a literature
survey of the top Software Engineering conference papers from
2008 to 2015 (Section 3). Surprisingly we found only 5 studies [14,
15, 33, 40, 41] that specifically discussed code smells in Android
applications. Most of these studies analyzed fewer than 50 Android
applications for a set of 3 to 5 kinds of code smells. To the best of
our knowledge, the previous work did not study how code smells
in mobile applications compare to those in desktop applications.

In this paper we shed light on the differences between code smells
in mobile applications and those in desktop applications. To
minimize confounding factors, we keep several criteria constant
across the two domains: the development process and culture
(open-source), the programming language (Java), and the host
infrastructure (GitHub). Our corpus contains 500 Android
applications and 750 desktop Java applications. After downloading
these projects, we ran a state-of-the-art code smell detection tool,
inFusion [19], which can identify 22 different kinds of code smells.

Using our rich corpus, we answer the following research questions:

RQ1: What is the variety, density, and distribution of code
smells in Android applications? How does it compare with
desktop applications? Surprisingly, despite mobile applications
being more frequently changed and released than desktop
applications, the density of code smells is the same. Also, despite
mobile applications having different structure, the variety of code
smells is the same in mobile and desktop applications. However,
we found that the distribution of code smells is different: in mobile
applications the most frequent smells are Data Class [12] and Data
Clumps [12], whereas in desktop applications the most frequent
smells are External Duplication [12] and Internal Duplication [12].

RQ2: What is the distribution of code smells across categories
of mobile apps (e.g., development, home, education, etc.)? We
found that some categories are more prone to code smells. For
example, applications under home and education category are more
prone to the Data Class code smell than communication
applications. However, these results were not statistically
significant.

Our study has several implications for several audiences. Beyond
the general guideline that developers should pay attention to code
smells, our results help developers become aware of code smells
that appear more prevalently in mobile applications.

The good news for tool builders is that code smell detection tools
for desktop software can also be effectively reused in mobile
applications. Lastly, researchers and tool builders can learn from
our study about code smells that appear frequently in real-world
applications, and be less biased in their selection. Thus, they can
focus on improving tool support for detecting and fixing the code
smells for example through automated refactoring.

This paper makes the following contributions:

1. Problem statement: To the best of our knowledge, we present
the first study that compares code smells in mobile vs. desktop
applications.

2. Literature Survey: We surveyed the papers in the top SE
conferences for the last 8 years. We found a significant gap
between the most studied code smells in literature and those
that appear in real world applications.

3. Corpus: In contrast to previous studies
[13,14,15,31,33,40,41] on code smells in mobile applications,
ours is the largest study so far in terms of the number of
projects analyzed (750 open-source desktop Java projects and
500 Android projects) and the kinds of analyzed code smells
(22).

4. Implications: We present implications of our study for
application developers, tool builders, and researchers.

The remainder of the paper is organized as follows: in Section 2 we
discuss the definition of key code smells. Section 3 presents our
literature survey results. Section 4 describes our methodology,
filtering criteria, the demographics of our corpus, as well as the tool
selection and data collection process. Section 5 describes the results
of our study. Section 6 describes the threats to validity. In Section
7 we describe the implication of our study, and in section 8 reviews
the research on code smells. Section 9 concludes with a summary
of the key findings and future work.

2. A GENTLE INTRODUCTION TO CODE
SMELLS
According to Martin Fowler, a code smell is a “surface indication
that usually corresponds to a deeper problem in the system”. The
term “code smell” was first introduced by Kent Beck and Martin
Fowler in their seminal refactoring book, “Refactoring: Improving
the Design of Existing Code” [12]. In chapter 3, they identified 22
code smells as indicators of possible design flaws that may lead to
maintainability issues.

In this section we present just a few of the more important smells
that we use extensively in this paper. We refer the reader to the
Appendix at the end of paper (page 10, past the Bibliography) for a
full description of the 22 code smells analyzed in this paper.

Data Class: The Data Class refers to a class with an interface that
exposes data elements instead of providing any substantial
functionality. This data is usually manipulated by other classes in
the system. This means that data and behavior are not in the same
scope, which indicates a poor data-functionality proximity. By
allowing other classes to access its internal data, Data Classes
contribute to a design that is fragile and hard to maintain [12].

Data Clumps: Data Clumps are large groups of parameters that
appear together in the signature of many operations. This is a sign
that they form a concept which is not yet explicitly represented,
which hampers understanding of operations [12].

Blob Class: The Blob Class is an excessively large and complex
class, which contains at least one Blob Operation. Such a class is
also less cohesive and too strongly coupled to other classes in the
system. This makes it very hard to understand and maintain [12].

Code Duplication (internal/external): Code Duplication refers to
groups of operations which contain identical or slightly adapted
code fragments. By breaking the essential Don't Repeat Yourself
(DRY) rule, duplicate code increases maintenance effort, including
the management of changes and bug-fixes. Moreover, the code base
gets bloated. Based on different refactoring approaches we
distinguish two cases: (i) internal duplication involving methods
that belong to to the same scope (class or module) and (ii) external
duplication that refers to unrelated operations [12].

Feature Envy: Feature Envy refers to an operation that is
excessively manipulating data external to its definition scope. In
object-oriented code this is a method that uses many data members
from a few other classes instead of using the data members in its
definition class [12].

226

 3

God Class: The God Class is an excessively complex class which
gathers too much and non-cohesive functionality and heavily
manipulates data members from other classes [12].

3. LITERATURE SURVEY ON CODE
SMELLS
To get an overview of the current state of the art research on code
smells in Android application, we conducted a literature survey.
We targeted all full conference papers related to code smells from
2008 (the year Android was launched) to 2015 (inclusive) that
appeared in top conferences in Software Engineering: ICSE, FSE,
OOPSLA/SPLASH, ASE, ICSM/ICSME, MSR, and ESEM.

Starting from the proceedings, we searched for a set of keywords
including code smell, smell, bad smell, design flaw, bad pattern etc.
From the resulting 52 papers on code smells, we analyzed how
many and what kinds of code smells they studied, and which types
of projects (Android / desktop) they used in their study.

Table 1 summarizes our findings from the literature survey of code
smells papers. Notice that most papers (47) target code smells in
desktop applications and only 5 include Android projects in their
corpus (no papers analyzed other mobile frameworks, e.g., iOS or
Windows Phone).

Table 1. Summary of code smells literature (2008 to 2015).
Conference # Papers on

code smells
Android

Papers
Java

Desktop
Papers

ICSE 17 1 16
FSE 1 0 1
OOPSLA/
SPLASH

1 0 1

ASE 6 3 3
ICSM/
ICSME

19 0 19

MSR 3 1 2
ESEM 5 0 5
Total 52 5 47

Moreover, the size of the corpus used in the previous work on
Android code smells varies from 5 to 100 applications per paper,
with an average size of 46 applications.

A second surprising finding was how few kinds of code smells are
investigated in each paper in the literature. For the Android papers
the average number of kinds of code smells investigated in a paper
is 5 and for the desktop papers it is 6.5. However, for several years,
both the research community and the practitioners had access to
extensive catalogs of code smells. The ones included in Martin
Fowler’s book [12] have been around for almost 20 years, and those
in Lanza and Marinescu’s book [23] for 10 years. Moreover, mature
tools that can detect more than 20 kinds of code smells have been
around for more than 10 years [25].

Puzzled by these results, we set out to discover what kinds of code
smells have attracted the attention of the research community.
Table 2 ranks the popularity of Android code smells addressed in
the literature. The first column presents the code smell name, the
second presents the ranking (based on how many papers address
this smell). The third presents a ranking of code smells based on
the frequency of the smell in our corpus of 500 Android
applications.

Surprisingly, Table 2 shows there is a big gap between the studied
code smells in the literature and the code smells in real Android

applications. As the data shows, some code smells, such as Blob
Class, have received lots of attention in the literature, but many
common code smells have received little or no attention. For
example, in our corpus of 500 Android apps, we found that Data
Clumps and Cyclic Dependencies appear as the second and third
most frequent code smells. Despite the wide prevalence of these
code smells in Android applications, the previous work on Android
code smells never investigated them.

A similar gap between literature and practice was also confirmed
by Ahmed et al. [2], in an analysis of the popularity of code smells
in desktop applications (See Table 3).

Table 2. Comparison of rankings based on the number of

research papers dealing with Android code smells, and our
analysis of code smells in 500 Android apps.

Code Smell Literature
Ranking

Our Android
Application

Ranking
Blob Class 1 16
Feature Envy 2 4
Long Method 3 21
Shotgun Surgery 4 17
Parallel Inheritance 4 22
Divergent Change 4 23
Internal Duplication 5 19
Data Class 6 1
God Class 6 8

Table 3. Comparison of rankings based on the number of

research papers dealing with Java desktop code smells, and
those in our large corpus [1] of real-world applications.

Smell
From

Literature From Projects
Duplication 1 5

Feature Envy 2 6
Refused Parent

Bequest 3 15
Data Class 4 2

Blob Operation 5 4
Blob Class 5 11

Shotgun Surgery 6 17
Data Clumps 7 1
SAP Breakers 8 7

Intensive Coupling 8 9
Schizophrenic Class 8 10

Unstable
Dependencies 8 12

Tradition Breaker 8 13
Message Chains 8 16

Distorted Hierarchy 8 18
Unnecessary

Coupling 8 19
God Class 9 8

Cyclic Dependencies 10 3

227

 4

A possible explanation for the big discrepancy between Android
code smells in literature and those in real-world Android
applications (refer to Table 2) is because the researchers selected
those code smells (second column Table 2) that were previously
well investigated in the desktop literature (see second column of
Table 3).

4. METHODOLOGY
Subsection 4.1 presents our corpus and selection criteria.
Subsection 4.2 presents the criteria used for selecting a code smell
detection tool to apply to our corpus. Subsection 4.3 presents our
Data collection process and 4.4 represents our analysis procedure.

4.1 Project Selection Criteria
This section describes the corpus that we used for our study on code
smells.

We first collected a corpus of Android projects. We chose Android
over other mobile platforms due to Android being, at the writing of
this paper, the most popular operating system for smartphones5 . As
of July 2015, Google Play Store has more than 1.6 million
applications6. Another reason is the availability of a large variety
of Android projects with source code hosted in open source
repositories. Given these reasons, we think our corpus is
representative for the domain of mobile applications.

For comparison, we also gathered a corpus of desktop Java projects.
We settled on Java because (i) it is the most popular programming
language7, (ii) using Java allows for a valid comparison with
Android projects that are mostly written in Java, and (iii) there are
more code smell detectors for Java than other languages.

To eliminate potential sampling bias [27] and to ensure a diverse
sample, we populated our corpus with random projects from
GitHub. For the Android corpus, we searched GitHub using
“android” as a keyword and manually verified that the project was
an Android project.

We started with a corpus of 750 Android projects and 1,000 desktop
projects. We then filtered out small projects (those that have fewer
than 15 files, or fewer than 500 LOC). This filtering was essential
to ensure that the projects we analyzed are representative for real-
world projects, and are not throw-away code. After filtering, our
final data set contained 500 Android projects with 6.7M LOC, and
750 desktop projects comprising 16M LOC.

We manually grouped our Android projects into 6 categories,
identified by other researchers [2, 6], reflecting the categories used
by the Google Play Store. The categories are: Development, Audio
& Video, Communication, Home & Education, Security &
Utilities, and Other. The Development category includes projects
such as APIs, libraries, or widgets used in developing applications.
The Other category includes all the remaining applications that do
not fall into the previous categories and includes games, system
administration and business/enterprise apps. We combined the
previously mentioned application sub-categories into the Other
category because the number of projects in each sub-category in
our corpus is much smaller than the top categories (Security &
Utilities, Development, etc.). Figure 1 shows the distribution of the
Android applications in our corpus.

5 http://www.gartner.com/newsroom/id/3061917
6http://www.statista.com/statistics/276623/number-of-apps-

available-in-leading-app-stores/

We were expecting that Games will make up a top-level category.
However, the presence of few games in our randomly selected
sample of 500 Android apps could indicate that open-source games
are as not prevalent in GitHub when compared to the Google Play
Store. Since games are one of the most profitable category of
mobile apps, they are featured widely in the closed-source
ecosystem.

4.2 Tool selection
To perform our code smell analysis across Android and desktop
applications, we had to select which code smell detectors to apply.
We decided to use inFusion [19], a commercial tool. We favor
inFusion for several reasons. First, inFusion detects 22 different
code smells (see Table 3 in Appendix). Second, a previous study
by Ahmed et al. [2] showed that inFusion has a very high precision
and recall (84% and 100% respectively). Third, inFusion scales to
analyzing large projects. Moreover, there are many studies [10,11,
17] that use inFusion as their code smell detection tool. We
considered using other code smell detection tools, but we chose
inFusion for the reasons cited above. We ran inFusion on our
Android and desktop corpora.

Figure 1. Distribution of Android application categories in our
corpus.

4.3 Data collection
To analyze code smells in Android applications, we could either
run code smell detectors on the source code or on the decompiled
.apk files. However, it is possible that the compiler optimizes away
some of the code smells (for example, due to dead code
elimination). To verify our assumption, we collected 10 Android
projects from GitHub and built .apk files. Then we decompile them
and run inFusion on both versions: the original source code and the
decompiled code. The results confirmed our assumption.

We found important differences between the code smells reported
by inFusion in the two setups. First, the number of code smells
reported is different, as can be seen in Table 4. While in most cases,
the number of code smells in decompiled apk files was smaller than
in the original source code, in one case the situation was reversed.
Furthermore, we noticed that the kinds of code smells reported by
inFusion in the two setups were different. Table 4 shows an
example of one application (Cube app) where the number and the
kinds of code smells were different. After running inFusion on the
original source code of Cube app, it detected 2 occurrences of SAP

7http://www.tiobe.com/index.php/content/paperinfo/tpci/index.ht
ml

228

 5

Breakers (see definition in Appendix) and 2 occurrences of Cyclic
Dependencies. However, when running InFusion on the
decompiled code, it found surprisingly different code smells: 3
occurrences of Data Clumps. One explanation could be that the
compiler may optimize away some code smells. Thus, we decided
to only run the code smell detector on the original Android
application source code. This allows a fair, more direct comparison
with the desktop applications.

Table 4. Code smells detected in Android Cube app
Original source code Decompiled code from .apk

file
SAP Breakers: 2

occurrences
- one involving 10 files
- one involving 7 files

Cyclic Dependencies: 2
occurrences

Data Clumps: 3 occurrences

For each application in our corpora, we ran inFusion and recorded
the number and type of code smells. Moreover, to shed light on any
potential differences, we collect these additional metrics:

- Application size in LOC,
- Number of files,
- Number of developers,
- Number of commits,
- Number of bug fix commits,
- Number of new feature commits,
- Number of merges,
- Number of core committers,
- The age of the projects.

We tracked these metrics, as Ahmed et al. [1] showed that file
count, number of core developers, number of commits, project age,
and number of lines deleted correlate with the number of code
smells in Java applications. Tufano et al. [40] also found that most
code smells are introduced during bug fixes or new feature addition.

In order to distinguish between commits that were bug fixes and
those that are new features, we classified 457,510 Android commits
and 355,500 desktop commits using a multinomial Naïve Bayes

classifier [29] with Laplace smoothing. We used tf-idf as the feature
set of the classifier. This classifier is representative of the best-in-
class for this problem domain, and several other researchers used it
[3, 16]. We used 1500 commits as training data (750 BF and 750
NF) both from Android and desktop projects and used 10 fold cross
validation. Precision and recall of our classifier was 0.70 and 0.71
respectively.

4.4 Data Analysis
To answer our first research question we collected the total number
of code smells after each commit. We normalized the smell count
using feature scaling (1), which gives us a score between 0 and 1.

min(x)max(x)

min(x)xvalueRescaled
−

−
= (1)

Where: x = each data point
min(x) = The minima among all the data points in one column.
max(x) = The maxima among all the data points in one column.

Previous studies have shown that normalizing the smell count using
the project size reduces the bias of larger projects on the overall
smell count [39]. For our study this was not necessary. Our aim was
to identify general trends across projects, not to look at differences
between them. There was therefore no need to normalize based on
project size.

5. RESULTS
In this section, we present the results for each research question.

5.1 RQ1: What is the variety, density, and
distribution of code smell in Android
application? How does it compare with desktop
applications in terms of code smells?
Variety. We found that both the Android and the desktop corpus
contain instances of all 20 code smells (out of 22 kinds of code
smells detected by inFusion). That was a surprising finding given
that Android applications have different structure and workflow
(event-driven). Possible explanations for this similarity include (i)
that both populations are written in Java and make use of the same

Figure 2. Distribution of code smells across Android and desktop applications.

229

 6

OO features, (ii) many Android programmers have a background
of developing desktop Java applications, so they are prone to
making the same mistakes and tradeoffs.

Density. Next we analyzed the density of code smells in mobile and
desktop applications. We compare the numbers of code smells per
thousand lines code (KLOC) in mobile and desktop applications.
The average number of code smell per KLOC in mobile
applications is 173.39 and in desktop application 190.41. However,
this difference was not statistically significant (Welch Two Sample
t-test, t = -0.2201, df = 32.593, p-value = 0.8272). We used Welch
two sample t-test, because the number of projects in Android and
Desktop applications are not equal.

Distribution. We found important differences in the distribution of
code smells between Android and desktop application. We show
these differences in Figure 2, where Android code smells are shown
with solid orange bars and desktop code smells blue patterned bars.
We performed a statistical significance test (using a Welch two-
sample t-test – since the size of our Android and desktop corpus is
different). We found that the difference in the distribution of code
smells is statistically significant (Welch Two Sample t-test,p< 0.05)
for all but two code smells (Distorted Hierarchy and Message
Chains).

As Figure 2 shows, the most common code smells in Android are
Data Class and Data Clumps. In desktop applications, the main
culprits are External Duplication and Internal Duplication. One
explanation could be that most of the desktop applications have
been around for a longer period than mobile applications. Indeed,
when studying the age of the projects in our corpus, we found that
the average age of desktop applications is 3.5 years, whereas the
average age of mobile applications is 2 years. Therefore, according
to the well-known laws of software evolution, the quality might
decay as projects get older and as contributors copy code. A
possible explanation for the excessive number of Data Classes and
Data Clumps in Android is that developers declare several variables
that they think will be useful later, in future releases, but they end
up not using them. In Android there is significantly less duplication
than in desktop applications. A possible explanation is that
developers aim to make their applications more lightweight to
reduce the memory and the code footprint, since mobile devices
have much fewer resources than desktop computers.

To shed further light into why the distribution of code smells is
different between Android and desktop applications, we looked for
correlations with other metrics (those introduced in Section 3.4),
such as code/team size, number of commits that contain bug fixes
or new features.

We performed a linear regression analysis to find out which factors
have an effect on the total number of code smells for both android
and non-android. We did linear regression analysis with the
intercept β0 set to zero (absence of files or other variables results
in zero code violations). For android, according to the final model
we got from the analysis, total number of smells in a project is
related to number of line, number of files, total bug fix commits,
total new feature commits, merge counts and number of core
developers. Our model discarded number of developers, total
commits and duration of the project as significant factor. Table 5
contains the details of linear regression analysis of android. The
linear regression model that we found have R‐squared value of
0.5342 meaning that a handful of project factors can account for
more than 50% of the variance in the sample.

On the other hand, according to the final model for non-android
total number of smell per project is related to total number of lines,
total number of developers, merge counts, total number of core
developers and duration. For non-android our model discarded
number of files, total commits, total bug fix commit and total new
feature commits of the project as significant factor. Table 6 contains
the details of linear regression analysis of non-android. The linear
regression model that we found have R‐squared value of 0.1033
meaning that a handful of project factors can account for more than
10% of the variance in the sample.

Table 5. Linear regression model for Android

Title Estimate Std.Error t-value
of Lines 0.65098 0.05883 11.066

Bug fix commits 0.51968 0.22833 2.276
New feature

commits -0.52182 0.24658 -2.116
of Files 0.18626 0.06569 2.836

Number of Merges -0.23315 0.11426 -2.041
Number of Core

Devs 0.10615 0.02677 3.965

Table 6. Linear regression model for desktop applications
Title Estimate Std.Erro

r
t value

Number of Lines 0.1068 0.0574 1.861
Number of developers -0.18849 0.0943 -1.999

Merge counts -0.11817 0.07589 -1.557
Total core developers 0.39871 0.07736 5.154

Duration 0.08624 0.04944 1.744

5.2 RQ2: What is the distribution of code
smells across categories of mobile apps?
To answer this question, we categorized all our Android
applications into one of six categories: Audio & Video,
Communication, Development, Home & Education, Security and
Utilities, and Other.

Figure 3 shows the code smells are distribution among different
Android application categories. Similar to Figure 2, we found that
the Data Class is the most common code smell across all 6
categories. We can also see that Data Class is the highest in Home
& Education category, and Data Clump is the highest in
Development category. Moreover, we conducted a fine-grained
analysis between the distributions of code smells across the 6
categories. Table 7 shows that we found statistically significant
differences between certain categories.

Table 7. Difference in code smell distribution among Android
categories.

Categories P-value

Audio & video AND Others 0.02128
Communication AND Home & education 0.009854
Communication AND Others 0.002738
Development AND Home & education 0.0489
Development AND Other 0.01006
Home & education AND Security & utilities 0.0111
Security & utilities AND Other 0.003959

230

 7

Figure 3. Distribution of code smells across different categories of Android applications

6. THREATS TO VALIDITY
Construct: Are we asking the right questions? Our goal was to
determine whether the development styles of mobile application
and desktop application developers would result in differences in
code smells. Since our questions compare the two populations in
regard to variety, density, and distribution of code smells, these
measures help us achieve our goal.
Internal: Is there something inherent to how we collect and
analyze code smells that could skew the accuracy of our results?
Since we are relying on inFusion to detect smells, the accuracy of
our results depends on the accuracy of this tool. InFusion uses
threshold-based detection strategies, the efficacy of which has been
evaluated in a previous study [2]. However, the tool has not been
evaluated in all contexts. InFusion uses static program analysis to
identify smells, and research [31] shows that code smells that are
“intrinsically historical” such as Divergent Change, Shotgun
Surgery, and Parallel Inheritance are difficult to detect solely
through static analysis. The number of instances such smells might
be different when historical information is taken into account.
Nevertheless, inFusion is a commercial-quality tool, and to date
detects the highest variety of code smells.

Moreover, there are large differences in the number and size of the
projects that we used in our Android and desktop corpora. These
differences might make it harder to compare the two populations.
To account for such differences, we normalized the number of code
smells using the standard feature scaling [2] used in the literature,
and also by the size of projects.

External: Are the results generalizable to proprietary software
development, to other programming languages, or to other mobile
platforms? We use GitHub to assemble a corpus of 500 Android
and 750 desktop applications. These span a wide range of domains,
from tools, games, image and audio processing, web systems,
social media etc., to third party libraries. They are developed by

8 http://web.engr.oregonstate.edu/~mannanu/AndroidProjects.txt

different teams with 7,621 contributors from a large and varied
community. We believe that (i) the relatively large and varied
corpus and (ii) the fact that we did not target the best or the worst
applications might make the results applicable to proprietary
development as well. However commercial applications that are
maintained by professional teams and subject to organizations
guidelines might display a different distribution of code smells.
All our subject programs are written in Java, but code smells are
not specific to Java. Any programs written in programming
language that provide objects as first class citizens will be prone to
the same code smells (though some code smells are specific to
object oriented languages).

With respect to other mobile platforms, we analyzed applications
from Android, which has the largest market share. The iOS
ecosystem contains mobile applications written in Objective C,
whereas the Windows Phone applications are written in C#. Given
that these languages are all object-oriented, we expect they would
exhibit the same code smells.

Reliability: Are our results replicable? We collected our data from
applications available on GitHub. The list of the applications that
we used, and the specific version is available on our website8
Furthermore, inFusion is a commercially available tool. We
presented our experimental setup in the methodology (Section 3),
making replication of our study possible.

7. IMPLICATIONS
We present practical implications of our study for researchers, tool
builders, and application developers.

7.1 Researchers
As Figure 2 shows, the desktop applications are dominated by just
a couple of code smells (External Duplication and Internal
Duplication). In desktop applications, more than 75% of instances

231

 8

of code smells will be related to duplication. In contrast, Android
applications exhibit a large variety of code smells: despite Data
Class and Data Clumps being the pack leaders, the other code
smells are very well represented. Thus, a researcher studying code
smells has a better chance of finding instances of many other kinds
of code smells in Android applications.

The large variety of code smells in Android applications is also
good news for educators. In Software Engineering education, the
most effective illustrations of SE concepts and abstractions are
those that incorporate real-world examples and artifacts. Students
learn and educators teach SE design principles through both
positive and negative examples. Robillard and DeLine [38] study
what makes large APIs hard to learn and conclude that one of the
important factors is the lack of usage examples.

Educators can illustrate many design principles by showing both
well-designed programs and those that exhibit many code smells.
Using Android applications as subject case studies is guaranteed to
provide a variety of code smells. Moreover, students might also
prefer examples from the mobile domain given, which rise and
allure of mobile programming.

Many Android applications do not publish their source code, only
the binary apk files. However, many tools can decompile apk files
into source code. Thus, it is tempting for researchers of code smells
to use Android apks as input to their analysis. In our formative
study we found that the compilation/decompilation process can
dramatically affect the number and the kind of code smells
displayed. We encourage researchers to only use the source code as
input when analyzing code smells.

Our literature survey (Section 3.1) and the data that we found in a
large corpus of Android and desktop applications (Section 4) shows
a large discrepancy between the code smells that received attention
in the literature and those that dominate in real-world applications.
Given the wide variety of code smells in Android applications, we
encourage researchers to study many more kinds of code smells. If
resources are limited and researchers need to prioritize which code
smells to study, we recommend that they narrow the selection based
on prevalence of code smells in real-world applications, or their
impact on said applications.

7.2 Tool builders
The good news for code smell tool builders is that code smell
detectors designed for desktop software can be used for mobile
applications. However, given the wider variety of code smells in
Android applications, we encourage tool builders to allocate
support for robust implementation of several detection strategies.

Tool builders as well as researchers in the refactoring community
can use our findings to target Android-specific tools. To date, very
few refactorings are data-related, but we have seen that Data Class
and Data Clumps appear frequently in Android applications.

Moreover, there is a gap between tools that detect code smells, and
tools that eliminate code smells (e.g., refactoring tools). We think
the high presence of code smells points to the fact that developers
might not act upon the warnings given by code smell detection
tools, unless they have either (i) a high return on investment (e.g.,
eliminating the smell has an immediate value), or (ii) tools make it
easier to eliminate the smell. While developers might not see the
immediate benefits of eliminating code smells (as smells usually
have long-term effects upon code maintenance), we encourage tool
builders to close the gap between detection and correction of code
smells.

7.3 Application developers
The data in Figure 2 shows that Android applications display a
larger variety of code smells than desktop applications. Developers
should educate themselves about the kinds of code smells that occur
in mobile applications, and how to mitigate them. Or even better,
being conscious about code smells when editing code might help
avoid them altogether.

Given that the code smell detectors used in desktop Java
applications are effective for Android applications, developers
don’t need to learn new tools.

From our findings, we can see that mobile app developers are more
prone to introduce Data Classes and Data Clumps into their code.
We warn developers that they need not prematurely introduce
variables they think they might use in later versions, but instead
embrace a more Agile approach of adding a class variable when it
is needed.

8. RELATED WORK
We group the related work into the following areas: (i) studies that
analyze code smells in desktop applications, (ii) code smells that
are specifically defined for Android applications, (iii) studies that
use Android applications in their corpus.

8.1 Code smells in desktop applications
Researchers have identified a variety of techniques for identifying
design degradation using static analysis. Some researchers [8, 9,
30] assess degradation by analyzing a single, static version of the
software. Other researchers [21, 22, 31] designed techniques that
rely on the evaluation of successive versions of a software systems.

Ahmed et al. [2] looked at 220 open source projects and analyzed
the presence and evolution of code smells. Their results confirmed
that ignoring code smells leads to “software decay”. Moreover, this
study pointed out that some code smells that appear frequently in
their examined applications received less attention by the research
community.

8.2 Android-specific code smells
Hecht et al. [13,14] designed a code smell detection tool named
PAPRIKA to detect 8 code smells by analyzing the bytecode of
Android applications. 4 of these 8 code smells were Android-
specific: Internal Getter/Setter, Member Ignoring Method, No Low
Memory Resolver, and Leaking Inner Class. They found that the
Android-specific code smells occur more often than the others.
However, their validation of PAPRIKA was based on only 15
applications. In follow-up work, Hecht et al. [15] updated the tool
to detect smells from different versions of the App and calculate an
evolutionary “quality score” based on the presence of code smells.
The updated PAPRIKA detects 7 code smells instead of 8. One
Object Oriented (OO) code smell, Swiss Army Knife, was
removed, probably due to infrequent detection in applications
[13,14]. Their results show different trends for “quality evolution”
but none can be generalized. Although Hecht et al. [13,14,15]
compared the existence of OO vs. Android code smells, only 4 code
smells of each category were investigated. In regards to our project,
we don’t include the detection of Android specific smells, we do
include all 22 OO code smells.

Reimann et al. [35] presented a catalog listing 30 Android specific
code smells, along with a refactoring tool called Refactory. The
catalog was assembled to form a formal definition for Android code
smells. The authors categorized these smells based on what
qualities smells affect and the context they occur in. The tool

232

 9

Refactory, as described by the authors, employs a role-based
approach to support context-specific refactoring. Refactory was
implemented to the code smells covered in their catalog, and then
generate “fixes,” suggestion to the developer on how to get rid of
the code smells detected.

8.3 Studies that use Android applications
Verloop et al. [41] validated four OO code smells detection tools
on Android applications; these were JDeodorant, Checkstyle, PMD
and UCDetector. The results show interesting code smell ratios for
Android application code (i.e. code that inherits from the android
framework), when compared to smells found in non-Android
application code. Nonetheless, the author only considered 14
applications in his study and 6 OO code smells.

Tufano et al. [40] looked at when code smells appear in the code
and the circumstances associated with their appearance. They
tracked the evolution of 200 open source project (70 of which were
Android apps). Results showed that if a file was smelly, the smell
was most likely introduced when the file was first created. As to
the circumstances, Tufano et al. found that when approaching a
deadline, developers are more likely to add a smell when adding a
new feature or enhancing an existing one.

Delchev and Harun [7] were interested in how frequently code
smells are encountered and the severity of their effect. They
conducted a survey where they asked 73 developers about 10 code
smells. They asked how frequently the developer encountered a
smell and how likely they were to refactor such smells? The ten
smells were: Data Class, Long Parameter List, Switch Statements,
Message Chains, Primitive Obsession, Data Clumps, Refused
Bequest, Feature Envy Shotgun Surgery and Long Method.
Authors grouped the results based on project domain, project
language and developer experience. With regards to Android
projects, the survey found that developers faced Long Methods
smells more than other smells, but Shotgun Surgery was more
likely to be refactored. Also, frequency and severity varied relative
to programming language. As for developer experience, they found
that the more experienced the developer, the less likely they were
to face smells. However, when these more experienced developers
did, they had a higher tendency to refactor that smell.

9. CONCLUSIONS
This empirical study compares code smells in Android vs. desktop
applications in terms of their variety, density, and distribution. We
used an open-source corpus consisting of 500 Android and 750
desktop applications. Although we expect to find important
differences in the kinds and density of code smells, our results show
that Android and desktop applications are very similar in terms of
the code smells that are detected by InFusion.

However, we found that the distribution of code smells varies
significantly. Whereas in desktop applications the code smells are
dominated by two smells (External Duplication and Internal
Duplication), Android applications display a more diverse set of
code smells.

Our study has practical value. For researchers we present several
pitfalls they can avoid when studying code smells. For tool builders
we present new areas of development. For application developers,
we make them aware of the large variety of code smells that can
easily creep into Android applications.

Our literature survey also shed light on the gap between the code
smells studied in the literature and the code smells that appear in
practice. Researchers can easily become biased or develop blind

spots. We hope that our study will also help others to concentrate
on the right code smells.

We hope that this research encourages the community to further
investigate the important domain of mobile applications and how
they are different from traditional desktop software.

10. REFERENCES
[1] Ahmed, I., Ghorashi, S., & Jensen, C. (2014). An Exploration

of Code Quality in FOSS Projects. In Open Source Software:
Mobile Open Source Technologies (pp. 181-190). Springer
Berlin Heidelberg.

[2] Ahmed, I., Mannan, U. A., Gopinath, R., & Jensen, C. “An
Empirical Study of Design Degradation: How Software
Projects Get Worse Over Time.” Empirical Software
Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 2015.

[3] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., &
Guéhéneuc, Y. G. (2008, October). Is it a bug or an
enhancement?: a text-based approach to classify change
requests. In Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting of
minds (p. 23). ACM.

[4] Brown, W. H., Malveau, R. C., & Mowbray, T. J. (1998).
AntiPatterns: refactoring software, architectures, and projects
in crisis.

[5] Cunningham, W. (1992, December). The WyCash portfolio
management system. In ACM SIGPLAN OOPS Messenger,
Vol. 4, No. 2, (pp. 29-30).

[6] De Souza, L. B. L., & Maia, M. D. A. (2013, May). Do
software categories impact coupling metrics?. In Proceedings
of the 10th Working Conference on Mining Software
Repositories (pp. 217-220). IEEE Press.

[7] Delchev, M., Harun, M. F. (2015). Investigation of Code
Smells in Different Software Domains. Full-scale Software
Engineering, 31.

[8] Deligiannis, I.; Shepperd, M.; Roumeliotis, M.; Stamelos, I.
(2004). “An empirical investigation of an object-oriented
design heuristic for maintainability”. In The Journal of
Systems and Software 72 (2), (pp.129-143).

[9] Deligiannis, I.; Stamelos, I.; Angelis, L.; Roumeliotis, M.;
Shepperd, M. (2003, February). “A controlled experiment
investigation of an object oriented design heuristic for
maintainability” In Journal of Systems and Software, Vol.65,
No .2, (pp.127-139).

[10] Ferme, V., Marino, A., & Fontana, F. A. (2013). Is it a Real
Code Smell to be Removed or not?. In International
Workshop on Refactoring & Testing (RefTest), co-located
event with XP 2013 Conference. (RefTest), co-located event
with XP 2013 Conference. 2013.

[11] Fontana, F. A., & Zanoni, M. (2011, March). On
investigating code smells correlations. In Software Testing,
Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on (pp. 474-475).
IEEE.

[12] Fowler, M. (1999). Refactoring: improving the design of
existing code. Pearson Education India.

[13] Hecht, G. An Approach to Detect Android Antipatterns. In
ICSE 2015-ACM SRC.

233

 10

[14] Hecht, G., Duchien, L., Naouel, M., & Rouvoy, R. Detection
of Anti-patterns in Mobile Applications. In COMPARCH
2014.

[15] Hecht, G., Omar, B., Rouvoy, R., Moha, N., & Duchien, L.
(2015, November). Tracking the Software Quality of Android
Applications along their Evolution. In 30th IEEE/ACM
International Conference on Automated Software Engineering
(p. 12). IEEE.

[16] Herzig, K., Just, S., & Zeller, A. (2013, May). It's not a bug,
it's a feature: how misclassification impacts bug prediction. In
Proceedings of the 2013 International Conference on
Software Engineering (pp. 392-401). IEEE Press.

[17] Hozano, M., Ferreira, H., Silva, I., Fonseca, B., & Costa, E.
(2015, April). Using developers' feedback to improve code
smell detection. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing (pp. 1661-1663). ACM.

[18] Hunt, A., & Thomas, D. (2000). The pragmatic programmer:
from journeyman to master. Addison-Wesley Professional.

[19] InFusion. Retrieved from URL:
http://www.intooitus.com/inFusion.html.

[20] Izurieta, C., & Bieman, J. M. (2008, April). Testing
consequences of grime buildup in object oriented design
patterns. In Software Testing,Verification, and Validation,
2008 1st International Conference on (pp. 171-179). IEEE.

[21] Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). “A survey
and taxonomy of approaches for mining software repositories
in the context of software evolution”. In Journal of Software
Maintenance and Evolution: Research and Practice, Vol.19,
No. 2, (pp. 77-131).

[22] Kagdi, H., Gethers, M., Poshyvanyk, D., & Collard, M. L.
(2010, October). “Blending conceptual and evolutionary
couplings to support change impact analysis in source code”.
In 17th Working Conference on Reverse Engineering, (pp.
119-128).

[23] Lanza, M., & Marinescu, R. (2007). “Object-oriented metrics
in practice: using software metrics to characterize, evaluate,
and improve the design of object-oriented systems”. Springer
Science & Business Media.

[24] Li, W., & Shatnawi, R. (2007)." An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution". In Journal of Systems and
Software, Vol.80, No.7, (pp.1120-1128).

[25] Marinescu, C., Marinescu, R., Mihancea, P. F., & Wettel, R.
(2005). iPlasma: An integrated platform for quality
assessment of object-oriented design. In ICSM (Industrial and
Tool Volume).

[26] Martin, R. C. (2003). Agile software development: principles,
patterns, and practices. Prentice Hall PTR.

[27] Martin, W., Harman, M., Jia, Y., Sarro, F., & Zhang, Y. (2015,
May). The app sampling problem for app store mining. In
Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on (pp. 123-133). IEEE.

[28] McIlroy, S., Ali, N., & Hassan, A. E. (2015). Fresh apps: an
empirical study of frequently-updated mobile apps in the
Google play store. Empirical Software Engineering, 1-25.

[29] Murphy, K. P. Naive bayes classifiers. University of British
Columbia (2006).

[30] Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009,
October). The evolution and impact of code smells: A case
study of two open source systems. In Proceedings of the 2009
3rd international symposium on empirical software
engineering and measurement (pp. 390-400)

[31] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia,
A., & Poshyvanyk, D. (2013, November). Detecting bad
smells in source code using change history information. In
Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on (pp. 268-278). IEEE.

[32] Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto,
R., Poshyvanyk, D., & De Lucia, A. Landfill: an Open Dataset
of Code Smells with Public Evaluation.

[33] Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.;
Poshyvanyk, D.; De Lucia, A., Mining Version Histories for
Detecting Code Smells. In IEEE Transactions on Software
Engineering, vol.41, no.5, pp.462-489, May 1 2015.

[34] Reimann, J., & Aβmann, U. (2013, December). Quality-
Aware Refactoring For Early Detection And Resolution Of
Energy Deficiencies. In Proceedings of the 2013 IEEE/ACM
6th International Conference on Utility and Cloud Computing
(pp. 321-326). IEEE Computer Society.

[35] Reimann, J., Brylski, M., & Aßmann, U. (2014). A Tool-
Supported Quality Smell Catalogue For Android Developers.
In Proc. of the conference Modellierung 2014 in the Workshop
Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM (Vol. 2014).

[36] Reimann, J., Seifert, M., & Aßmann, U. (2013). On the reuse
and recommendation of model refactoring specifications.
Software & Systems Modeling, 12(3), 579-596.

[37] Riel, A. J. (1996). Object-oriented design heuristics (Vol.
338). Reading: Addison-Wesley.

[38] Robillard, Martin P., and Robert Deline. A field study of API
learning obstacles. Empirical Software Engineering 16.6
(2011): 703-732.

[39] Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw,
M. (2010, September). Building empirical support for
automated code smell detection. In Proceedings of the
International Symposium on Empirical Software Engineering
and Measurement (p. 8). ACM.

[40] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta,
M., De Lucia, A., & Poshyvanyk, D. (2015). When and Why
Your Code Starts to Smell Bad. ICSE 2015.

[41] Verloop, D. (2013). Code Smells in the Mobile Applications
Domain (Doctoral dissertation, TU Delft, Delft University of
Technology).

[42] Yamashita, A., & Moonen, L. (2013, October). “Do
developers care about code smells? An exploratory survey”.
In Proceedings of the 20th Working Conference on Reverse
Engineering (WCRE), (pp. 242‐251.

234

 11

Appendix

Table 3. List of code smells identified by inFusion.
Smells Definition
Cyclic Dependencies Cyclic Dependencies are violations of the Acyclic Dependencies Principle formulated by Robert

Martin [26] as "The dependency structure between packages must be a Directed Acyclic Graph
(DAG). That is, there must be no cycles in the dependency structure". The design flaw applies to
dependencies between subsystems of a system. If two or more subsystems are involved in a cycle,
maintaining or reusing any one of those subsystems in isolation will be harder or impossible
[19,24].

Brain Method Brain Methods tend to centralize the functionality of a class, in the same way as a God Class
centralizes the functionality of an entire subsystem, or sometimes even a whole system.

Data Class Data Classes are "dumb" data holders, without complex functionality, but which are usually
heavily relied upon by other classes in the system. Data classes are the manifestation of a lacking
encapsulation of data, and of a poor data-functionality proximity. By allowing other modules or
classes to access their internal data, data classes contribute to a brittle, and harder to maintain
design [12,19,24,37].

Feature Envy The Feature Envy design flaw refers to functions or methods that seem more interested in the data
of other Classes and modules than the data of those in which they reside. These "envious
operations" access either directly or via accessor methods. This situation is a strong indication
that the affected method was probably misplaced and that it should be moved to the capsule that
defines the "envied data" [12,19,24,37].

God Class The "God class" tends to concentrate functionality from several unrelated classes, while at the
same time increasing coupling in the system. The god class itself is probably not very cohesive
and because of its size and inherent complexity it will have a clear negative impact on the
maintainability of the system [12,19,24,37].

Intensive Coupling Intensive Coupling is the flaw of an method when a method is tied to many other operations in
the system, whereby these provider operations are dispersed only into one or a few classes
[12,19,24,37].

Missing Template Method Two different components have significant similarities, but do not use an interface or a common
implementation (the Template Method). [12]

Refused Parent Bequest Refused Parent Bequest occurs when a derived class uses very few or none of the inheritance-
specific members defined by its base class. [12]

Sibling Duplication Sibling Duplication means duplication between siblings in an inheritance hierarchy. Two or more
siblings that define a similar functionality make it much harder to locate errors [4,12,18,19].

Shotgun Surgery This smell is evident when you must change lots of pieces of code in different places simply to
add a new or extended piece of behavior. Whenever a method is called by too many other
methods, any change to such a method ripples through the design. Such changes are likely to fail
when the number of to-be-changed locations exceeds the capacity of human’s short term
memory.[24]

SAPBreakers Stable Abstraction Breaker is a subsystem (component) for which its stability level is not
proportional with its abstractness. This design flaw is inspired by Robert Martin's stable
abstractions principle, which states that for well-designed software there should be a specific
relationship between two subsystem measures: the abstractness of a subsystem, which shall
express the portion of contained abstract types, and its stability, which indicates whether the
subsystem is mainly used by other client subsystems (stable) or if it mainly depends on other
subsystems (unstable). For short, "a subsystem should be as abstract as it is stable". The problem
with subsystems that are heavily used by other subsystems and at the same time are not abstract
is that if they change (and they are likely to), potentially all clients must also change. This in turn
leads to systems that are hard to maintain. [26 and 19]

Internal Duplication Internal Duplication means duplication between portions of the same class or module. Thus, the
presence of code duplication bloats the class or module and all the clones do not evolve the same
way [4,12,18,19].

External Duplication External Duplication means duplication between unrelated capsules of the system [4,12,18,19].

235

 12

Smells Definition
Blob Class Blob Classes are very large and complex classes, which makes them harder to maintain. Because

of their size, they are also more likely to be strongly coupled to other classes in the system and to
be non-cohesive [4,12,24,19].

Blob Operation A Blob Operation is a very large and complex operation, which tends to centralize too much of
the functionality of a class or module. Such an operation usually starts normal and grows over
time until it gets out of control, becoming hard to read and maintain [4,12,24,19].

Data Clumps Data Clumps is a design flaw where groups of data that appear together over and over again, as
parameters that are passed to operations throughout the system. This represents bad/lacking of
encapsulation. Data Clumps are good candidates to become objects. [12]

Message Chains This smell occur when a long sequence of method calls or temporary variables are required to get
some data. Navigating this way means the client is coupled to the structure of the navigation.
[4,12,24]

Distorted Hierarchy A Distorted Hierarchy is an inheritance hierarchy that is unusually narrow and deep. This design
flaw is inspired by one of Arthur Riel's [37] heuristics, which says that "in practice, inheritance
hierarchies should be no deeper than an average person can keep in his or her short-term memory.
A popular value for this depth is six". Having an inheritance hierarchy that is too deep may cause
maintainers "to get lost" in the hierarchy making the system in general harder to maintain.[37]

Schizophrenic Class A "schizophrenic class" is a class that captures two or more key abstractions. It negatively affects
the ability to understand and change in isolation the individual abstractions that it captures.
[12,37]

Tradition Breaker This strategy takes its name from the principle that the interface of a class (i.e., the services that
it provides to the rest of the system) should increase in an evolutionary fashion. This means that
a derived class should not break the inherited "tradition" and provide a large set of services which
are unrelated to those provided by its base class. [37,24]

Unstable Dependencies Unstable Dependencies are violations of Robert Martin's Stable Dependencies Principle
(SDP)[26]. The SDP affirms that "the dependencies between subsystems in a design should be in
the direction of the stability of the subsystems. A subsystem should only depend upon subsystems
that are more or at least as stable as it is". Stability is defined in terms of number of reasons to
change and number of reasons not to change for a given subsystem. A subsystem that does not
depend on many other subsystems but is depended upon by other subsystems, has few reasons to
change and respectively many reasons not to change. [26]

236

