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ABSTRACT 
Code smells are associated with poor coding practices that cause 
long-term maintainability problems and mask bugs. Despite mobile 
being a fast growing software sector, code smells in mobile 
applications have been understudied. We do not know how code 
smells in mobile applications compare to those in desktop 
applications, and how code smells are affecting the design of 
mobile applications. Without such knowledge, application 
developers, tool builders, and researchers cannot improve the 
practice and state of the art of mobile development.   

We first reviewed the literature on code smells in Android 
applications and found that there is a significant gap between the 
most studied code smells in literature and most frequently 
occurring code smells in real world applications. Inspired by this 
finding, we conducted a large scale empirical study to compare the 
type, density, and distribution of code smells in mobile vs. desktop 
applications. We analyze an open-source corpus of 500 Android 
applications (total of 6.7M LOC) and 750 desktop Java applications 
(total of 16M LOC), and compare 14,553 instances of code smells 
in Android applications to 117,557 instances of code smells in 
desktop applications. We find that, despite mobile applications 
having different structure and workflow than desktop applications, 
the variety and density of code smells is similar. However, the 
distribution of code smells is different – some code smells occur 
more frequently in mobile applications. We also found that 
different categories of Android applications have different code 
smell distributions. We highlight several implications of our study 
for application developers, tool builders, and researchers.   

1. INTRODUCTION
Code smells [12] identify bad design or coding practices. Code 
smells are not the same as bugs and do not mean that the code 
deviates from the expected execution, rather that design rules were 

1 http://www.gartner.com/newsroom/id/2153215 
2 http://www.gartner.com/newsroom/id/3061917 

violated, which may lead to long-term maintainability problems 
and technical debt [5, 34]. Researchers have shown that a large 
number of code smells correlate with bugs [23, 30] and 
maintainability problems [12]. However, according to Yamashita 
et al. [42], around 32% of the developers are not aware of code 
smells and their pitfalls. Moreover, on the research side, Ahmed et 
al. [2] found that there is significant gap between the code smells 
that receive a lot of attention in the literature and those that appear 
most frequently in real-world applications.

In recent years, mobile applications have grown to become a large 
part of the software industry. According to Gartner1, in 2016 more 
than 300 billion apps will be downloaded. Another Gartner2 report 
shows that in 2015, Android had more than 78% of the world 
market share of smartphones. Thus, in this paper we focus on 
Android applications.  

Researchers [40] have shown that code accrues code smells during 
high-intensity, frequent code changes performed under time and 
market demand. Android applications often have more frequent 
updates and releases than desktop applications [28]. Does this mean 
that Android applications exhibit more or different code smells than 
desktop applications?  

Moreover, there are other important differences between mobile 
and desktop applications3. Mobile applications have limited 
resources (e.g., memory, CPU, network, battery). The 
programming paradigm is also different: mobile applications use 
reactive, event-driven programming. Android applications have a 
special structure: there is no main function, the entry points are 
given by event-handlers4 such as onCreate, onResume, etc. Also, 
the libraries are different: Android does not have all J2SE APIs, nor 
Swing, nor JavaFX. Many APIs are specific to mobile (Contacts, 
Power Management, Graphics, etc.). GUIs on Android are declared 
via XML. Do these differences in structure and workflow of 
Android applications affect the distribution of code smells?  

If code smells are the same, it means that all the tools and research 
on code smells of desktop application applies to mobile 
applications. But if they are different, then application developers, 
tool builders, and researchers can make wrong assumptions about 
code smells in mobile applications. Novel tools and approaches 
might be needed, and the priority in developing software 
engineering tools might need to be revised. 

3http://gamedev.stackexchange.com/questions/4288/how-
different-is-java-for-jre-vs-java-for-android 

4 http://developer.android.com/guide/components/activities. html 
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Researchers [13, 14, 15, 31, 33, 40, 41] have just started to analyze 
anti-patterns and code smells in the context of Android 
applications. However, we did not find any systematic literature 
review on code smells in Android projects. We did a literature 
survey of the top Software Engineering conference papers from 
2008 to 2015 (Section 3). Surprisingly we found only 5 studies [14, 
15, 33, 40, 41] that specifically discussed code smells in Android 
applications. Most of these studies analyzed fewer than 50 Android 
applications for a set of 3 to 5 kinds of code smells. To the best of 
our knowledge, the previous work did not study how code smells 
in mobile applications compare to those in desktop applications.  

In this paper we shed light on the differences between code smells 
in mobile applications and those in desktop applications. To 
minimize confounding factors, we keep several criteria constant 
across the two domains: the development process and culture 
(open-source), the programming language (Java), and the host 
infrastructure (GitHub). Our corpus contains 500 Android 
applications and 750 desktop Java applications. After downloading 
these projects, we ran a state-of-the-art code smell detection tool, 
inFusion [19], which can identify 22 different kinds of code smells.  

Using our rich corpus, we answer the following research questions: 

RQ1: What is the variety, density, and distribution of code 
smells in Android applications? How does it compare with 
desktop applications?  Surprisingly, despite mobile applications 
being more frequently changed and released than desktop 
applications, the density of code smells is the same. Also, despite 
mobile applications having different structure, the variety of code 
smells is the same in mobile and desktop applications. However, 
we found that the distribution of code smells is different: in mobile 
applications the most frequent smells are Data Class [12] and Data 
Clumps [12], whereas in desktop applications the most frequent 
smells are External Duplication [12] and Internal Duplication [12]. 

RQ2: What is the distribution of code smells across categories 
of mobile apps (e.g., development, home, education, etc.)? We 
found that some categories are more prone to code smells. For 
example, applications under home and education category are more 
prone to the Data Class code smell than communication 
applications. However, these results were not statistically 
significant. 

Our study has several implications for several audiences. Beyond 
the general guideline that developers should pay attention to code 
smells, our results help developers become aware of code smells 
that appear more prevalently in mobile applications.  

The good news for tool builders is that code smell detection tools 
for desktop software can also be effectively reused in mobile 
applications. Lastly, researchers and tool builders can learn from 
our study about code smells that appear frequently in real-world 
applications, and be less biased in their selection. Thus, they can 
focus on improving tool support for detecting and fixing the code 
smells for example through automated refactoring.  

This paper makes the following contributions: 

1. Problem statement: To the best of our knowledge, we present 
the first study that compares code smells in mobile vs. desktop 
applications. 

2. Literature Survey: We surveyed the papers in the top SE 
conferences for the last 8 years. We found a significant gap 
between the most studied code smells in literature and those 
that appear in real world applications. 

3. Corpus: In contrast to previous studies 
[13,14,15,31,33,40,41] on code smells in mobile applications, 
ours is the largest study so far in terms of the number of 
projects analyzed (750 open-source desktop Java projects and 
500 Android projects) and the kinds of analyzed code smells 
(22). 

4. Implications: We present implications of our study for 
application developers, tool builders, and researchers. 

The remainder of the paper is organized as follows: in Section 2 we 
discuss the definition of key code smells. Section 3 presents our 
literature survey results. Section 4 describes our methodology, 
filtering criteria, the demographics of our corpus, as well as the tool 
selection and data collection process. Section 5 describes the results 
of our study. Section 6 describes the threats to validity. In Section 
7 we describe the implication of our study, and in section 8 reviews 
the research on code smells. Section 9 concludes with a summary 
of the key findings and future work. 

2. A GENTLE INTRODUCTION TO CODE 
SMELLS 
According to Martin Fowler, a code smell is a “surface indication 
that usually corresponds to a deeper problem in the system”. The 
term “code smell” was first introduced by Kent Beck and Martin 
Fowler in their seminal refactoring book, “Refactoring: Improving 
the Design of Existing Code” [12]. In chapter 3, they identified 22 
code smells as indicators of possible design flaws that may lead to 
maintainability issues.  

In this section we present just a few of the more important smells 
that we use extensively in this paper. We refer the reader to the 
Appendix at the end of paper (page 10, past the Bibliography) for a 
full description of the 22 code smells analyzed in this paper. 

Data Class: The Data Class refers to a class with an interface that 
exposes data elements instead of providing any substantial 
functionality. This data is usually manipulated by other classes in 
the system. This means that data and behavior are not in the same 
scope, which indicates a poor data-functionality proximity. By 
allowing other classes to access its internal data, Data Classes 
contribute to a design that is fragile and hard to maintain [12]. 

Data Clumps: Data Clumps are large groups of parameters that 
appear together in the signature of many operations. This is a sign 
that they form a concept which is not yet explicitly represented, 
which hampers understanding of operations [12].  

Blob Class: The Blob Class is an excessively large and complex 
class, which contains at least one Blob Operation. Such a class is 
also less cohesive and too strongly coupled to other classes in the 
system. This makes it very hard to understand and maintain [12]. 

Code Duplication (internal/external): Code Duplication refers to 
groups of operations which contain identical or slightly adapted 
code fragments. By breaking the essential Don't Repeat Yourself 
(DRY) rule, duplicate code increases maintenance effort, including 
the management of changes and bug-fixes. Moreover, the code base 
gets bloated. Based on different refactoring approaches we 
distinguish two cases: (i) internal duplication involving methods 
that belong to to the same scope (class or module) and (ii) external 
duplication that refers to unrelated operations [12].  

Feature Envy: Feature Envy refers to an operation that is 
excessively manipulating data external to its definition scope. In 
object-oriented code this is a method that uses many data members 
from a few other classes instead of using the data members in its 
definition class [12]. 
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God Class: The God Class is an excessively complex class which 
gathers too much and non-cohesive functionality and heavily 
manipulates data members from other classes [12]. 

3. LITERATURE SURVEY ON CODE 
SMELLS 
To get an overview of the current state of the art research on code 
smells in Android application, we conducted a literature survey. 
We targeted all full conference papers related to code smells from 
2008 (the year Android was launched) to 2015 (inclusive) that 
appeared in top conferences in Software Engineering: ICSE, FSE, 
OOPSLA/SPLASH, ASE, ICSM/ICSME, MSR, and ESEM. 

Starting from the proceedings, we searched for a set of keywords 
including code smell, smell, bad smell, design flaw, bad pattern etc. 
From the resulting 52 papers on code smells, we analyzed how 
many and what kinds of code smells they studied, and which types 
of projects (Android / desktop) they used in their study. 

Table 1 summarizes our findings from the literature survey of code 
smells papers. Notice that most papers (47) target code smells in 
desktop applications and only 5 include Android projects in their 
corpus (no papers analyzed other mobile frameworks, e.g., iOS or 
Windows Phone).  

Table 1. Summary of code smells literature (2008 to 2015). 
Conference # Papers on 

code smells  
# Android 

Papers 
# Java 

Desktop 
Papers 

ICSE 17 1 16 
FSE 1 0 1 
OOPSLA/ 
SPLASH 

1 0 1 

ASE 6 3 3 
ICSM/ 
ICSME 

19 0 19 

MSR 3 1 2 
ESEM 5 0 5 
Total 52 5 47 

 
Moreover, the size of the corpus used in the previous work on 
Android code smells varies from 5 to 100 applications per paper, 
with an average size of 46 applications.  

A second surprising finding was how few kinds of code smells are 
investigated in each paper in the literature. For the Android papers 
the average number of kinds of code smells investigated in a paper 
is 5 and for the desktop papers it is 6.5.  However, for several years, 
both the research community and the practitioners had access to 
extensive catalogs of code smells. The ones included in Martin 
Fowler’s book [12] have been around for almost 20 years, and those 
in Lanza and Marinescu’s book [23] for 10 years. Moreover, mature 
tools that can detect more than 20 kinds of code smells have been 
around for more than 10 years [25].  

Puzzled by these results, we set out to discover what kinds of code 
smells have attracted the attention of the research community. 
Table 2 ranks the popularity of Android code smells addressed in 
the literature. The first column presents the code smell name, the 
second presents the ranking (based on how many papers address 
this smell). The third presents a ranking of code smells based on 
the frequency of the smell in our corpus of 500 Android 
applications.  

Surprisingly, Table 2 shows there is a big gap between the studied 
code smells in the literature and the code smells in real Android 

applications. As the data shows, some code smells, such as Blob 
Class, have received lots of attention in the literature, but many 
common code smells have received little or no attention. For 
example, in our corpus of 500 Android apps, we found that Data 
Clumps and Cyclic Dependencies appear as the second and third 
most frequent code smells. Despite the wide prevalence of these 
code smells in Android applications, the previous work on Android 
code smells never investigated them. 

A similar gap between literature and practice was also confirmed 
by Ahmed et al. [2], in an analysis of the popularity of code smells 
in desktop applications (See Table 3).  

 
Table 2. Comparison of rankings based on the number of 

research papers dealing with Android code smells, and our 
analysis of code smells in 500 Android apps. 

Code Smell Literature 
Ranking 

Our Android 
Application 

Ranking 
Blob Class 1 16 
Feature Envy 2 4 
Long Method 3 21 
Shotgun Surgery 4 17 
Parallel Inheritance 4 22 
Divergent Change 4 23 
Internal Duplication 5 19 
Data Class 6 1 
God Class 6 8 

 
Table 3. Comparison of rankings based on the number of 

research papers dealing with Java desktop code smells, and 
those in our large corpus [1] of real-world applications. 

Smell 
From 

Literature  From Projects 
Duplication 1 5 

Feature Envy 2 6 
Refused Parent 

Bequest 3 15 
Data Class 4 2 

Blob Operation 5 4 
Blob Class 5 11 

Shotgun Surgery 6 17 
Data Clumps 7 1 
SAP Breakers 8 7 

Intensive Coupling 8 9 
Schizophrenic Class 8 10 

Unstable 
Dependencies 8 12 

Tradition Breaker 8 13 
Message Chains 8 16 

Distorted Hierarchy 8 18 
Unnecessary 

Coupling 8 19 
God Class 9 8 

Cyclic Dependencies 10 3 
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A possible explanation for the big discrepancy between Android 
code smells in literature and those in real-world Android 
applications (refer to Table 2) is because the researchers selected 
those code smells (second column Table 2) that were previously 
well investigated in the desktop literature (see second column of 
Table 3).  

4. METHODOLOGY 
Subsection 4.1 presents our corpus and selection criteria. 
Subsection 4.2 presents the criteria used for selecting a code smell 
detection tool to apply to our corpus. Subsection 4.3 presents our 
Data collection process and 4.4 represents our analysis procedure.  

4.1 Project Selection Criteria 
This section describes the corpus that we used for our study on code 
smells. 

We first collected a corpus of Android projects. We chose Android 
over other mobile platforms due to Android being, at the writing of 
this paper, the most popular operating system for smartphones5 . As 
of July 2015, Google Play Store has more than 1.6 million 
applications6. Another reason is the availability of a large variety 
of Android projects with source code hosted in open source 
repositories. Given these reasons, we think our corpus is 
representative for the domain of mobile applications.  

For comparison, we also gathered a corpus of desktop Java projects. 
We settled on Java because (i) it is the most popular programming 
language7, (ii) using Java allows for a valid comparison with 
Android projects that are mostly written in Java, and (iii) there are 
more code smell detectors for Java than other languages. 

To eliminate potential sampling bias [27] and to ensure a diverse 
sample, we populated our corpus with random projects from 
GitHub. For the Android corpus, we searched GitHub using 
“android” as a keyword and manually verified that the project was 
an Android project.  

We started with a corpus of 750 Android projects and 1,000 desktop 
projects. We then filtered out small projects (those that have fewer 
than 15 files, or fewer than 500 LOC). This filtering was essential 
to ensure that the projects we analyzed are representative for real-
world projects, and are not throw-away code. After filtering, our 
final data set contained 500 Android projects with 6.7M LOC, and 
750 desktop projects comprising 16M LOC.  

We manually grouped our Android projects into 6 categories, 
identified by other researchers [2, 6], reflecting the categories used 
by the Google Play Store. The categories are: Development, Audio 
& Video, Communication, Home & Education, Security & 
Utilities, and Other. The Development category includes projects 
such as APIs, libraries, or widgets used in developing applications. 
The Other category includes all the remaining applications that do 
not fall into the previous categories and includes games, system 
administration and business/enterprise apps. We combined the 
previously mentioned application sub-categories into the Other 
category because the number of projects in each sub-category in 
our corpus is much smaller than the top categories (Security & 
Utilities, Development, etc.). Figure 1 shows the distribution of the 
Android applications in our corpus.  

                                                                 
5 http://www.gartner.com/newsroom/id/3061917 
6http://www.statista.com/statistics/276623/number-of-apps-

available-in-leading-app-stores/  

We were expecting that Games will make up a top-level category. 
However, the presence of few games in our randomly selected 
sample of 500 Android apps could indicate that open-source games 
are as not prevalent in GitHub when compared to the Google Play 
Store. Since games are one of the most profitable category of 
mobile apps, they are featured widely in the closed-source 
ecosystem. 

4.2 Tool selection 
To perform our code smell analysis across Android and desktop 
applications, we had to select which code smell detectors to apply. 
We decided to use inFusion [19], a commercial tool. We favor 
inFusion for several reasons. First, inFusion detects 22 different 
code smells (see Table 3 in Appendix). Second, a previous study 
by Ahmed et al. [2] showed that inFusion has a very high precision 
and recall (84% and 100% respectively). Third, inFusion scales to 
analyzing large projects.  Moreover, there are many studies [10,11, 
17] that use inFusion as their code smell detection tool. We 
considered using other code smell detection tools, but we chose 
inFusion for the reasons cited above. We ran inFusion on our 
Android and desktop corpora. 

 
Figure 1. Distribution of Android application categories in our 
corpus.  

4.3 Data collection 
To analyze code smells in Android applications, we could either 
run code smell detectors on the source code or on the decompiled 
.apk files. However, it is possible that the compiler optimizes away 
some of the code smells (for example, due to dead code 
elimination). To verify our assumption, we collected 10 Android 
projects from GitHub and built .apk files. Then we decompile them 
and run inFusion on both versions: the original source code and the 
decompiled code. The results confirmed our assumption.  

We found important differences between the code smells reported 
by inFusion in the two setups. First, the number of code smells 
reported is different, as can be seen in Table 4. While in most cases, 
the number of code smells in decompiled apk files was smaller than 
in the original source code, in one case the situation was reversed. 
Furthermore, we noticed that the kinds of code smells reported by 
inFusion in the two setups were different. Table 4 shows an 
example of one application (Cube app) where the number and the 
kinds of code smells were different. After running inFusion on the 
original source code of Cube app, it detected 2 occurrences of SAP 

7http://www.tiobe.com/index.php/content/paperinfo/tpci/index.ht
ml 
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Breakers (see definition in Appendix) and 2 occurrences of Cyclic 
Dependencies. However, when running InFusion on the 
decompiled code, it found surprisingly different code smells: 3 
occurrences of Data Clumps. One explanation could be that the 
compiler may optimize away some code smells. Thus, we decided 
to only run the code smell detector on the original Android 
application source code. This allows a fair, more direct comparison 
with the desktop applications.  

Table 4. Code smells detected in Android Cube app 
Original source code Decompiled code from .apk 

file 
SAP Breakers: 2 

occurrences 
- one involving 10 files 
- one involving 7 files 

Cyclic Dependencies: 2 
occurrences 

Data Clumps: 3 occurrences 
  

For each application in our corpora, we ran inFusion and recorded 
the number and type of code smells. Moreover, to shed light on any 
potential differences, we collect these additional metrics:  

- Application size in LOC,  
- Number of files,  
- Number of developers,  
- Number of commits,  
- Number of bug fix commits,  
- Number of new feature commits,  
- Number of merges,  
- Number of core committers, 
- The age of the projects.  

We tracked these metrics, as Ahmed et al. [1] showed that file 
count, number of core developers, number of commits, project age, 
and number of lines deleted correlate with the number of code 
smells in Java applications. Tufano et al. [40] also found that most 
code smells are introduced during bug fixes or new feature addition. 

In order to distinguish between commits that were bug fixes and 
those that are new features, we classified 457,510 Android commits 
and 355,500 desktop commits using a multinomial Naïve Bayes 

classifier [29] with Laplace smoothing. We used tf-idf as the feature 
set of the classifier. This classifier is representative of the best-in-
class for this problem domain, and several other researchers used it 
[3, 16]. We used 1500 commits as training data (750 BF and 750 
NF) both from Android and desktop projects and used 10 fold cross 
validation. Precision and recall of our classifier was 0.70 and 0.71 
respectively. 

4.4 Data Analysis 
To answer our first research question we collected the total number 
of code smells after each commit. We normalized the smell count 
using feature scaling (1), which gives us a score between 0 and 1.  

 
min(x)max(x)

min(x)xvalueRescaled
−

−
=                       (1) 

Where: x = each data point  
min(x) = The minima among all the data points in one column. 
max(x) = The maxima among all the data points in one column. 

Previous studies have shown that normalizing the smell count using 
the project size reduces the bias of larger projects on the overall 
smell count [39]. For our study this was not necessary. Our aim was 
to identify general trends across projects, not to look at differences 
between them. There was therefore no need to normalize based on 
project size. 

5. RESULTS 
In this section, we present the results for each research question. 

5.1 RQ1: What is the variety, density, and 
distribution of code smell in Android 
application? How does it compare with desktop 
applications in terms of code smells?  
Variety. We found that both the Android and the desktop corpus 
contain instances of all 20 code smells (out of 22 kinds of code 
smells detected by inFusion). That was a surprising finding given 
that Android applications have different structure and workflow 
(event-driven). Possible explanations for this similarity include (i) 
that both populations are written in Java and make use of the same  

Figure 2. Distribution of code smells across Android and desktop applications. 
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OO features, (ii) many Android programmers have a background 
of developing desktop Java applications, so they are prone to 
making the same mistakes and tradeoffs. 

Density. Next we analyzed the density of code smells in mobile and 
desktop applications. We compare the numbers of code smells per 
thousand lines code (KLOC) in mobile and desktop applications. 
The average number of code smell per KLOC in mobile 
applications is 173.39 and in desktop application 190.41. However, 
this difference was not statistically significant (Welch Two Sample 
t-test, t = -0.2201, df = 32.593, p-value = 0.8272). We used Welch 
two sample t-test, because the number of projects in Android and 
Desktop applications are not equal.   

Distribution. We found important differences in the distribution of 
code smells between Android and desktop application. We show 
these differences in Figure 2, where Android code smells are shown 
with solid orange bars and desktop code smells blue patterned bars. 
We performed a statistical significance test (using a Welch two-
sample t-test – since the size of our Android and desktop corpus is 
different). We found that the difference in the distribution of code 
smells is statistically significant (Welch Two Sample t-test,p< 0.05) 
for all but two code smells (Distorted Hierarchy and Message 
Chains). 

As Figure 2 shows, the most common code smells in Android are 
Data Class and Data Clumps. In desktop applications, the main 
culprits are External Duplication and Internal Duplication. One 
explanation could be that most of the desktop applications have 
been around for a longer period than mobile applications. Indeed, 
when studying the age of the projects in our corpus, we found that 
the average age of desktop applications is 3.5 years, whereas the 
average age of mobile applications is 2 years. Therefore, according 
to the well-known laws of software evolution, the quality might 
decay as projects get older and as contributors copy code. A 
possible explanation for the excessive number of Data Classes and 
Data Clumps in Android is that developers declare several variables 
that they think will be useful later, in future releases, but they end 
up not using them. In Android there is significantly less duplication 
than in desktop applications. A possible explanation is that 
developers aim to make their applications more lightweight to 
reduce the memory and the code footprint, since mobile devices 
have much fewer resources than desktop computers. 

To shed further light into why the distribution of code smells is 
different between Android and desktop applications, we looked for 
correlations with other metrics (those introduced in Section 3.4), 
such as code/team size, number of commits that contain bug fixes 
or new features.  

We performed a linear regression analysis to find out which factors 
have an effect on the total number of code smells for both android 
and non-android. We did linear regression analysis with the 
intercept β0 set to zero (absence of files or other variables results 
in zero code violations). For android, according to the final model 
we got from the analysis, total number of smells in a project is 
related to number of line, number of files, total bug fix commits, 
total new feature commits, merge counts and number of  core 
developers. Our model discarded number of developers, total 
commits and duration of the project as significant factor. Table 5 
contains the details of linear regression analysis of android. The 
linear regression model that we found have R‐squared value of 
0.5342 meaning that a handful of project factors can account for 
more than 50% of the variance in the sample. 

On the other hand, according to the final model for non-android 
total number of smell per project is related to total number of lines, 
total number of developers, merge counts, total number of core 
developers and duration. For non-android our model discarded 
number of files, total commits, total bug fix commit and total new 
feature commits of the project as significant factor. Table 6 contains 
the details of linear regression analysis of non-android. The linear 
regression model that we found have R‐squared value of 0.1033 
meaning that a handful of project factors can account for more than 
10% of the variance in the sample. 

 
Table 5. Linear regression model for Android 

Title Estimate Std.Error t-value 
# of Lines 0.65098 0.05883 11.066 

# Bug fix commits 0.51968 0.22833 2.276 
# New feature 

commits -0.52182 0.24658 -2.116 
# of Files 0.18626 0.06569 2.836 

Number of Merges -0.23315 0.11426 -2.041 
Number of Core 

Devs 0.10615 0.02677 3.965 
 

Table 6. Linear regression model for desktop applications 
Title Estimate Std.Erro

r 
t value 

Number of Lines 0.1068 0.0574 1.861 
Number of developers -0.18849 0.0943 -1.999 

Merge counts -0.11817 0.07589 -1.557 
Total core developers 0.39871 0.07736 5.154 

Duration 0.08624 0.04944 1.744 
 

5.2 RQ2: What is the distribution of code 
smells across categories of mobile apps? 
To answer this question, we categorized all our Android 
applications into one of six categories: Audio & Video, 
Communication, Development, Home & Education, Security and 
Utilities, and Other.  

Figure 3 shows the code smells are distribution among different 
Android application categories. Similar to Figure 2, we found that 
the Data Class is the most common code smell across all 6 
categories. We can also see that Data Class is the highest in Home 
& Education category, and Data Clump is the highest in 
Development category. Moreover, we conducted a fine-grained 
analysis between the distributions of code smells across the 6 
categories. Table 7 shows that we found statistically significant 
differences between certain categories.  

Table 7. Difference in code smell distribution among Android 
categories. 

Categories P-value 

Audio & video AND Others 0.02128 
Communication AND Home & education 0.009854 
Communication AND Others 0.002738 
Development AND Home & education 0.0489 
Development AND  Other 0.01006 
Home & education AND Security & utilities 0.0111 
Security & utilities AND Other 0.003959 

230



 7

  
Figure 3. Distribution of code smells across different categories of Android applications 

6. THREATS TO VALIDITY 
Construct: Are we asking the right questions?  Our goal was to 
determine whether the development styles of mobile application 
and desktop application developers would result in differences in 
code smells. Since our questions compare the two populations in 
regard to variety, density, and distribution of code smells, these 
measures help us achieve our goal.   
Internal: Is there something inherent to how we collect and 
analyze code smells that could skew the accuracy of our results? 
Since we are relying on inFusion to detect smells, the accuracy of 
our results depends on the accuracy of this tool. InFusion uses 
threshold-based detection strategies, the efficacy of which has been 
evaluated in a previous study [2]. However, the tool has not been 
evaluated in all contexts. InFusion uses static program analysis to 
identify smells, and research [31] shows that code smells that are 
“intrinsically historical” such as Divergent Change, Shotgun 
Surgery, and Parallel Inheritance are difficult to detect solely 
through static analysis. The number of instances such smells might 
be different when historical information is taken into account. 
Nevertheless, inFusion is a commercial-quality tool, and to date 
detects the highest variety of code smells.  

Moreover, there are large differences in the number and size of the 
projects that we used in our Android and desktop corpora. These 
differences might make it harder to compare the two populations. 
To account for such differences, we normalized the number of code 
smells using the standard feature scaling [2] used in the literature, 
and also by the size of projects. 

External: Are the results generalizable to proprietary software 
development, to other programming languages, or to other mobile 
platforms? We use GitHub to assemble a corpus of 500 Android 
and 750 desktop applications. These span a wide range of domains, 
from tools, games, image and audio processing, web systems, 
social media etc., to third party libraries. They are developed by 
                                                                 
8 http://web.engr.oregonstate.edu/~mannanu/AndroidProjects.txt 

different teams with 7,621 contributors from a large and varied 
community. We believe that (i) the relatively large and varied 
corpus and (ii) the fact that we did not target the best or the worst 
applications might make the results applicable to proprietary 
development as well. However commercial applications that are 
maintained by professional teams and subject to organizations 
guidelines might display a different distribution of code smells. 
All our subject programs are written in Java, but code smells are 
not specific to Java. Any programs written in programming 
language that provide objects as first class citizens will be prone to 
the same code smells (though some code smells are specific to 
object oriented languages). 

With respect to other mobile platforms, we analyzed applications 
from Android, which has the largest market share. The iOS 
ecosystem contains mobile applications written in Objective C, 
whereas the Windows Phone applications are written in C#. Given 
that these languages are all object-oriented, we expect they would 
exhibit the same code smells. 

Reliability: Are our results replicable? We collected our data from 
applications available on GitHub. The list of the applications that 
we used, and the specific version is available on our website8 
Furthermore, inFusion is a commercially available tool.  We 
presented our experimental setup in the methodology (Section 3), 
making replication of our study possible. 

7. IMPLICATIONS 
We present practical implications of our study for researchers, tool 
builders, and application developers. 

7.1 Researchers 
As Figure 2 shows, the desktop applications are dominated by just 
a couple of code smells (External Duplication and Internal 
Duplication). In desktop applications, more than 75% of instances 
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of code smells will be related to duplication. In contrast, Android 
applications exhibit a large variety of code smells: despite Data 
Class and Data Clumps being the pack leaders, the other code 
smells are very well represented. Thus, a researcher studying code 
smells has a better chance of finding instances of many other kinds 
of code smells in Android applications.  

The large variety of code smells in Android applications is also 
good news for educators. In Software Engineering education, the 
most effective illustrations of SE concepts and abstractions are 
those that incorporate real-world examples and artifacts. Students 
learn and educators teach SE design principles through both 
positive and negative examples. Robillard and DeLine [38] study 
what makes large APIs hard to learn and conclude that one of the 
important factors is the lack of usage examples.  

Educators can illustrate many design principles by showing both 
well-designed programs and those that exhibit many code smells. 
Using Android applications as subject case studies is guaranteed to 
provide a variety of code smells. Moreover, students might also 
prefer examples from the mobile domain given, which rise and 
allure of mobile programming. 

Many Android applications do not publish their source code, only 
the binary apk files. However, many tools can decompile apk files 
into source code. Thus, it is tempting for researchers of code smells 
to use Android apks as input to their analysis. In our formative 
study we found that the compilation/decompilation process can 
dramatically affect the number and the kind of code smells 
displayed. We encourage researchers to only use the source code as 
input when analyzing code smells. 

Our literature survey (Section 3.1) and the data that we found in a 
large corpus of Android and desktop applications (Section 4) shows 
a large discrepancy between the code smells that received attention 
in the literature and those that dominate in real-world applications. 
Given the wide variety of code smells in Android applications, we 
encourage researchers to study many more kinds of code smells. If 
resources are limited and researchers need to prioritize which code 
smells to study, we recommend that they narrow the selection based 
on prevalence of code smells in real-world applications, or their 
impact on said applications.  

7.2 Tool builders 
The good news for code smell tool builders is that code smell 
detectors designed for desktop software can be used for mobile 
applications. However, given the wider variety of code smells in 
Android applications, we encourage tool builders to allocate 
support for robust implementation of several detection strategies. 

Tool builders as well as researchers in the refactoring community 
can use our findings to target Android-specific tools. To date, very 
few refactorings are data-related, but we have seen that Data Class 
and Data Clumps appear frequently in Android applications.  

Moreover, there is a gap between tools that detect code smells, and 
tools that eliminate code smells (e.g., refactoring tools). We think 
the high presence of code smells points to the fact that developers 
might not act upon the warnings given by code smell detection 
tools, unless they have either (i) a high return on investment (e.g., 
eliminating the smell has an immediate value), or (ii) tools make it 
easier to eliminate the smell. While developers might not see the 
immediate benefits of eliminating code smells (as smells usually 
have long-term effects upon code maintenance), we encourage tool 
builders to close the gap between detection and correction of code 
smells.  

7.3 Application developers 
The data in Figure 2 shows that Android applications display a 
larger variety of code smells than desktop applications. Developers 
should educate themselves about the kinds of code smells that occur 
in mobile applications, and how to mitigate them. Or even better, 
being conscious about code smells when editing code might help 
avoid them altogether. 

Given that the code smell detectors used in desktop Java 
applications are effective for Android applications, developers 
don’t need to learn new tools. 

From our findings, we can see that mobile app developers are more 
prone to introduce Data Classes and Data Clumps into their code. 
We warn developers that they need not prematurely introduce 
variables they think they might use in later versions, but instead 
embrace a more Agile approach of adding a class variable when it 
is needed.  

8. RELATED WORK 
We group the related work into the following areas: (i) studies that 
analyze code smells in desktop applications, (ii) code smells that 
are specifically defined for Android applications, (iii) studies that 
use Android applications in their corpus. 

8.1 Code smells in desktop applications 
Researchers have identified a variety of techniques for identifying 
design degradation using static analysis. Some researchers [8, 9, 
30] assess degradation by analyzing a single, static version of the 
software. Other researchers [21, 22, 31] designed techniques that 
rely on the evaluation of successive versions of a software systems.  

Ahmed et al. [2] looked at 220 open source projects and analyzed 
the presence and evolution of code smells. Their results confirmed 
that ignoring code smells leads to “software decay”. Moreover, this 
study pointed out that some code smells that appear frequently in 
their examined applications received less attention by the research 
community. 

8.2 Android-specific code smells 
Hecht et al. [13,14] designed a code smell detection tool named 
PAPRIKA to detect 8 code smells by analyzing the bytecode of 
Android applications. 4 of these 8 code smells were Android-
specific: Internal Getter/Setter, Member Ignoring Method, No Low 
Memory Resolver, and Leaking Inner Class. They found that the 
Android-specific code smells occur more often than the others. 
However, their validation of PAPRIKA was based on only 15 
applications. In follow-up work, Hecht et al. [15] updated the tool 
to detect smells from different versions of the App and calculate an 
evolutionary “quality score” based on the presence of code smells. 
The updated PAPRIKA detects 7 code smells instead of 8. One 
Object Oriented (OO) code smell, Swiss Army Knife, was 
removed, probably due to infrequent detection in applications 
[13,14]. Their results show different trends for “quality evolution” 
but none can be generalized. Although Hecht et al. [13,14,15] 
compared the existence of OO vs. Android code smells, only 4 code 
smells of each category were investigated. In regards to our project, 
we don’t include the detection of Android specific smells, we do 
include all 22 OO code smells.   

Reimann et al. [35] presented a catalog listing 30 Android specific 
code smells, along with a refactoring tool called Refactory. The 
catalog was assembled to form a formal definition for Android code 
smells. The authors categorized these smells based on what 
qualities smells affect and the context they occur in. The tool 
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Refactory, as described by the authors, employs a role-based 
approach to support context-specific refactoring. Refactory was 
implemented to the code smells covered in their catalog, and then 
generate “fixes,” suggestion to the developer on how to get rid of 
the code smells detected.      

8.3 Studies that use Android applications 
Verloop et al. [41] validated four OO code smells detection tools 
on Android applications; these were JDeodorant, Checkstyle, PMD 
and UCDetector. The results show interesting code smell ratios for 
Android application code (i.e. code that inherits from the android 
framework), when compared to smells found in non-Android 
application code. Nonetheless, the author only considered 14 
applications in his study and 6 OO code smells. 

Tufano et al. [40] looked at when code smells appear in the code 
and the circumstances associated with their appearance. They 
tracked the evolution of 200 open source project (70 of which were 
Android apps). Results showed that if a file was smelly, the smell 
was most likely introduced when the file was first created.  As to 
the circumstances, Tufano et al. found that when approaching a 
deadline, developers are more likely to add a smell when adding  a 
new feature or enhancing an existing one. 

Delchev and Harun [7] were interested in how frequently code 
smells are encountered and the severity of their effect. They 
conducted a survey where they asked 73 developers about 10 code 
smells. They asked how frequently the developer encountered a 
smell and how likely they were to refactor such smells? The ten 
smells were: Data Class, Long Parameter List, Switch Statements, 
Message Chains, Primitive Obsession, Data Clumps, Refused 
Bequest, Feature Envy Shotgun Surgery and Long Method. 
Authors grouped the results based on project domain, project 
language and developer experience. With regards to Android 
projects, the survey found that developers faced Long Methods 
smells more than other smells, but Shotgun Surgery was more 
likely to be refactored. Also, frequency and severity varied relative 
to programming language. As for developer experience, they found 
that the more experienced the developer, the less likely they were 
to face smells. However, when these more experienced developers 
did, they had a higher tendency to refactor that smell.  

9. CONCLUSIONS  
This empirical study compares code smells in Android vs. desktop 
applications in terms of their variety, density, and distribution. We 
used an open-source corpus consisting of 500 Android and 750 
desktop applications. Although we expect to find important 
differences in the kinds and density of code smells, our results show 
that Android and desktop applications are very similar in terms of 
the code smells that are detected by InFusion.  

However, we found that the distribution of code smells varies 
significantly. Whereas in desktop applications the code smells are 
dominated by two smells (External Duplication and Internal 
Duplication), Android applications display a more diverse set of 
code smells. 

Our study has practical value.  For researchers we present several 
pitfalls they can avoid when studying code smells. For tool builders 
we present new areas of development. For application developers, 
we make them aware of the large variety of code smells that can 
easily creep into Android applications. 

Our literature survey also shed light on the gap between the code 
smells studied in the literature and the code smells that appear in 
practice. Researchers can easily become biased or develop blind 

spots. We hope that our study will also help others to concentrate 
on the right code smells.  

We hope that this research encourages the community to further 
investigate the important domain of mobile applications and how 
they are different from traditional desktop software. 
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Appendix 
 

Table 3. List of code smells identified by inFusion.  
Smells Definition 
Cyclic Dependencies Cyclic Dependencies are violations of the Acyclic Dependencies Principle formulated by Robert 

Martin [26] as "The dependency structure between packages must be a Directed Acyclic Graph 
(DAG). That is, there must be no cycles in the dependency structure". The design flaw applies to 
dependencies between subsystems of a system. If two or more subsystems are involved in a cycle, 
maintaining or reusing any one of those subsystems in isolation will be harder or impossible 
[19,24]. 

Brain Method Brain Methods tend to centralize the functionality of a class, in the same way as a God Class 
centralizes the functionality of an entire subsystem, or sometimes even a whole system. 

Data Class Data Classes are "dumb" data holders, without complex functionality, but which are usually 
heavily relied upon by other classes in the system. Data classes are the manifestation of a lacking 
encapsulation of data, and of a poor data-functionality proximity. By allowing other modules or 
classes to access their internal data, data classes contribute to a brittle, and harder to maintain 
design [12,19,24,37]. 

Feature Envy The Feature Envy design flaw refers to functions or methods that seem more interested in the data 
of other Classes and modules than the data of those in which they reside. These "envious 
operations" access either directly or via accessor methods. This situation is a strong indication 
that the affected method was probably misplaced and that it should be moved to the capsule that 
defines the "envied data" [12,19,24,37]. 

God Class The "God class" tends to concentrate functionality from several unrelated classes, while at the 
same time increasing coupling in the system. The god class itself is probably not very cohesive 
and because of its size and inherent complexity it will have a clear negative impact on the 
maintainability of the system [12,19,24,37]. 

Intensive Coupling Intensive Coupling is the flaw of an method when a method is tied to many other operations in 
the system, whereby these provider operations are dispersed only into one or a few classes 
[12,19,24,37]. 

Missing Template Method Two different components have significant similarities, but do not   use   an interface or a common 
implementation (the Template Method). [12] 

Refused Parent Bequest Refused Parent Bequest occurs when a derived class uses very few or none of the inheritance-
specific members defined by its base class. [12] 

Sibling Duplication Sibling Duplication means duplication between siblings in an inheritance hierarchy. Two or more 
siblings that define a similar functionality make it much harder to locate errors [4,12,18,19]. 

Shotgun Surgery This smell is evident when you must change lots of pieces of code in different places simply to 
add a new or extended piece of behavior. Whenever a method is called by too many other 
methods, any change to such a method ripples through the design. Such changes are likely to fail 
when the number of to-be-changed locations exceeds the capacity of human’s short term 
memory.[24] 

SAPBreakers Stable Abstraction Breaker is a subsystem (component) for which its stability level is not 
proportional with its abstractness. This design flaw is inspired by Robert Martin's stable 
abstractions principle, which states that for well-designed software there should be a specific 
relationship between two subsystem measures: the abstractness of a subsystem, which shall 
express the portion of contained abstract types, and its stability, which indicates whether the 
subsystem is mainly used by other client subsystems (stable) or if it mainly depends on other 
subsystems (unstable). For short, "a subsystem should be as abstract as it is stable". The problem 
with subsystems that are heavily used by other subsystems and at the same time are not abstract 
is that if they change (and they are likely to), potentially all clients must also change. This in turn 
leads to systems that are hard to maintain. [26 and 19] 

Internal Duplication  Internal Duplication means duplication between portions of the same class or module. Thus, the 
presence of code duplication bloats the class or module and all the clones do not evolve the same 
way [4,12,18,19]. 

External Duplication External Duplication means duplication between unrelated capsules of the system [4,12,18,19]. 
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Smells Definition 
Blob Class Blob Classes are very large and complex classes, which makes them harder to maintain. Because 

of their size, they are also more likely to be strongly coupled to other classes in the system and to 
be non-cohesive [4,12,24,19]. 

Blob Operation A Blob Operation is a very large and complex operation, which tends to centralize too much of 
the functionality of a class or module. Such an operation usually starts normal and grows over 
time until it gets out of control, becoming hard to read and maintain [4,12,24,19]. 

Data Clumps Data Clumps is a design flaw where groups of data that appear together over and over again, as 
parameters that are passed to operations throughout the system. This represents bad/lacking of 
encapsulation. Data Clumps are good candidates to become objects. [12] 

Message Chains This smell occur when a long sequence of method calls or temporary variables are required to get 
some data. Navigating this way means the client is coupled to the structure of the navigation. 
[4,12,24] 

Distorted Hierarchy A Distorted Hierarchy is an inheritance hierarchy that is unusually narrow and deep. This design 
flaw is inspired by one of Arthur Riel's [37] heuristics, which says that "in practice, inheritance 
hierarchies should be no deeper than an average person can keep in his or her short-term memory. 
A popular value for this depth is six". Having an inheritance hierarchy that is too deep may cause 
maintainers "to get lost" in the hierarchy making the system in general harder to maintain.[37] 

Schizophrenic Class A "schizophrenic class" is a class that captures two or more key abstractions. It negatively affects 
the ability to understand and change in isolation the individual abstractions that it captures. 
[12,37] 

Tradition Breaker This strategy takes its name from the principle that the interface of a class (i.e., the services that 
it provides to the rest of the system) should increase in an evolutionary fashion. This means that 
a derived class should not break the inherited "tradition" and provide a large set of services which 
are unrelated to those provided by its base class. [37,24] 

Unstable Dependencies Unstable Dependencies are violations of Robert Martin's Stable Dependencies Principle 
(SDP)[26]. The SDP affirms that "the dependencies between subsystems in a design should be in 
the direction of the stability of the subsystems. A subsystem should only depend upon subsystems 
that are more or at least as stable as it is". Stability is defined in terms of number of reasons to 
change and number of reasons not to change for a given subsystem.  A subsystem that does not 
depend on many other subsystems but is depended upon by other subsystems, has few reasons to 
change and respectively many reasons not to change. [26] 
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