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Mutation Reduction Strategies Considered Harmful
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Abstract—Mutation analysis is a well known yet unfortunately
costly method for measuring test suite quality. Researchers have
proposed numerous mutation reduction strategies in order to re-
duce the high cost of mutation analysis, while preserving the repre-
sentativeness of the original set of mutants. As mutation reduction
is an area of active research, it is important to understand the
limits of possible improvements. We theoretically and empirically
investigate the limits of improvement in effectiveness from using
mutation reduction strategies compared to random sampling. Us-
ing real-world open source programs as subjects, we find an abso-
lute limit in improvement of effectiveness over random sampling—
13.078%. Given our findings with respect to absolute limits, one
may ask: How effective are the extant mutation reduction strate-
gies? We evaluate the effectiveness of multiple mutation reduction
strategies in comparison to random sampling. We find that none
of the mutation reduction strategies evaluated—many forms of op-
erator selection, and stratified sampling (on operators or program
elements)—produced an effectiveness advantage larger than 5% in
comparison with random sampling. Given the poor performance
of mutation selection strategies—they may have a negligible ad-
vantage at best, and often perform worse than random sampling—
we caution practicing testers against applying mutation reduction
strategies without adequate justification.

Index Terms—Mutation analysis, software testing.

NOMENCLATURE

Efficiency Amount of reduction achieved by the
selection procedure. Given by |M |/
|Mselected|.

Effectiveness Ratio between the unique mutants in the
selected set of mutants to that of the
unique mutants in complete set of mu-
tants.

Utility Improvement in effectiveness due to a
technique when compared to mean ran-
dom sample of the same efficiency.
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Adequacy Test suite is adequate for a set of mutants
if it is able to kill all mutants in that set.

Mutation strata In sampling terminology, a stratum is
a non-overlapping subgroup that shares
some characteristic. For our analysis, we
consider each set of nondistinguished
mutants as separate strata.

Reduction strategy Strategy that seeks to minimize the num-
ber of mutants by identifying representa-
tive mutants for each stratum by predict-
ing how mutants will perform against
different test cases.

Oracular strategy Theoretical limit for any reduction strat-
egy achieved by considering the actual
behavior of mutants against test cases,
used for the purpose of evaluating per-
formance of mutation reduction strate-
gies.

Minimal test suite Test suite is minimal when removing any
test case results in a reduction in mutant
score.

Minimal mutant set Minimal mutant set has a bijective cor-
respondence with a minimal test suite in
terms of kills.

kill : T ×M→M Number of mutants from M killed by
the test suite T .

cover : T ×M→ T Number of tests in T that kill mutants in
M .

Mstrategy Reduced set of mutants due to applying
a mutant reduction strategy.

Tstrategy Test suite adequate for Mstrategy.
Tmin

strategy Minimized test suite corresponding to
mutant set Mstrategy. Further, Tmin cor-
responds to M .

Distinguished Two mutants m and m′ are distin-
guished if the tests that kill them are
different (also called unique). That is,
cover(T, {m}) �= cover(T, {m′}).

Muniq Set of distinguished mutants from the
original set of detected mutants Mkilled
such that ∀m,m ′∈M cover(T, {m}) �=
cover(T, {m′}).

I. INTRODUCTION

MUTATION analysis is the best known approach for eval-
uating the quality of test suites. It involves producing a

set of mutants (programs with small differences from the orig-
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inal program), which is then used to evaluate the effectiveness
of test suites at detecting the mutants [1], [2]. Studies by An-
drews et al. [3], [4] and more recently by Just et al. [5] suggest
that mutations resemble and can simulate the behavior of real
faults. However, mutation analysis of test suites has not been
widely adopted as a software engineering practice [6], despite
the need for tools able to evaluate tests [7]. A major impediment
to wider adoption is its high-computational cost; the set of mu-
tants for even a moderate-sized program can be very large, and
their evaluation prohibitively time consuming.

Many strategies have been proposed to deal with the prob-
lematic cost of mutation analysis. These have been classified [8]
into do faster, do smarter, and do fewer approaches, which
correspond, respectively, to techniques improving the speed of
execution of a single mutant, techniques parallelizing the evalu-
ation of mutants, and techniques reducing the number of mutants
evaluated.

Many do fewer strategies—mutation reduction methods that
aim to select choose a smaller, representative, subset of mutants
to evaluate—have been investigated in the past. These can be
broadly divided into two groups. First, there are operator se-
lection strategies, which seek to identify the smallest subset of
mutation operators that generates the most useful mutants [9],
[10]. Alternatively, there are strata sampling [11], [12] tech-
niques, which propose to identify groups of mutants that have
high mutual similarity to reduce the number of mutants without
sacrificing representativeness or diversity [13], [14]. Other ac-
tively studied methods [15] include using clustering [16], [17],
static analysis [18], [19] and other intelligent techniques [20].

These efforts raise an important question: What is the actual
effectiveness of a perfect mutation reduction strategy over the
baseline—random sampling—given any arbitrary program?

We approach the value of mutation reduction in two ways.
The first way is via an evaluation of the absolute limit, in terms
of improvement in effectiveness, that an oracular strategy (an
unrealistic strategy with access to the result of mutant kills) can
achieve. The second approach is via evaluation of the effec-
tiveness of actual common mutation reduction strategies using
multiple methods.

For the first part, we consider a simple theoretical framework
that allows us to evaluate the improvement in effectiveness pro-
vided by the best mutation reduction possible (under the simpli-
fying assumptions of uniform redundancy of faults in mutants,
and sufficiency of tests to distinguish faults uniquely), given
oracular knowledge of mutation kills. This provides us with an
approximate upper bound for the mean effectiveness1 that can
be obtained in this simple theoretical system, and suggests that
a similar upper bound for mean effectiveness may exist for real-
world systems. Next, we empirically evaluate the best mutation
reduction possible for a large number of projects, given post

1The mean effectiveness here is the average effectiveness that can be expected
when considering the set of all valid programs. There can be specific instances
where the particular features of a given program may lead to arbitrarily better
effectiveness if it produces highly skewed mutants. We also note that the random
sample we compare to is the expected sample. It is possible (but unlikely as the
sample size increases) for a particular random sample of mutants to be either
extremely good or bad in terms of the number of redundant mutants.

hoc (that is, oracular) detection knowledge. This gives us mean
effectiveness limits under real-world conditions.

For the second part, we evaluate the current mutation re-
duction strategies to determine the advantage they proffer with
respect to random sampling. First, we use traditional effective-
ness of each strategy, as given in the first part. This involves
using a given strategy to choose a reduced set of mutants from
the set of detected mutants in the original population, and choos-
ing a minimum set of test cases that can kill all the mutants in
the reduced set. The minimum set of test cases is then evaluated
against the detected mutants from the original set of mutants to
determine the effectiveness of the selected test set. This is taken
as the effectiveness of the reduced set mutants. Indeed mutants
produced differ in terms of their utility. We know that a large
number of mutants are redundant [21], which can skew results.2

While the test suites of many open source programs are far
from adequate,3 they should satisfy a different requirement:
Namely, each test was almost always added through consider-
able manual labor [22], and was at least believed to be useful
(the number of test cases correlates with the quality of soft-
ware [22]). Therefore, any test omitted creates a potential for
missed faults. An effective mutation reduction strategy should,
therefore, identify the smallest possible set of nonredundant mu-
tants to exercise the largest possible nonredundant test suite,4

and perform better than random selection. This criterion—the
cardinality of minimum test suite (which is the same as the cardi-
nality of the corresponding minimum mutant set)—was recently
suggested by Ammann et al. [23] as a measure of quality of a
test suite. Hence we use the size of the minimum test suite, which
is the same as the size of the minimum mutant set as the second
criterion to judge reduction strategies.

All test cases are not created equal. Some check large and
complex conditions, whereas others check only for relatively
trivial conditions. Hence, using a single mutant killed by that
test case to represent each test case (as we do above, using the
minimum mutant set as the criterion for evaluation) is susceptible
to skew. Our understanding of mutation semiotics5 is far from
sufficient to specify the actual semantic impact of a mutant.
However, we have a reasonably good proxy. We know that test
case assertions6 play a large role in the effectiveness of a test
case [24]–[26]. So, we use test case assertion counts as a proxy
for the effectiveness of a test case.

There could be other ways to evaluate mutation reduction
strategies; for example, one could imagine a criterion that en-
courages hardest to detect—yet not-equivalent—mutants, or one
based on the cost of evaluation of mutants. However, such cri-
teria would not be useful for the basic purpose of mutation
analysis—as an adequacy measure of the test suites targeting all

2Indeed, one of the criticisms leveled against our research was that mutants
may be of different strengths in terms of the tests they kill.

3Mutation adequate test suites are suites with maximal mutation coverage;
usually much less than 100% due to equivalent mutants.

4We only approximate a minimum suite with greedy methods. See
Algorithm 1 for details.

5Here semiotics is the relation between a syntactic change and its semantic
impact.

6For the remainder of this paper, we use assertions to mean exclusively test
case assertions.
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kinds of bugs, not just hard to find bugs, or the easiest tests to
evaluate.

Our results indicate that none of the reduction strategies eval-
uated provide any practical advantage over pure random sam-
pling.

Does the adequacy of test suites have an impact on our em-
pirical results? While our empirical analysis was carried out
with strong, but less than adequate test suites, we believe that
using mutation adequate test suites will not change our results
significantly.

This paper makes the following contributions:
1) We show that under simplifying assumptions of uniform

redundancy of faults in mutants, and sufficiency of test
sets to distinguish faults uniquely, no mutation reduction
strategy can have a mean effectiveness improvement of
more than 58.2% when compared to random sampling,
where the mean effectiveness is the expected effectiveness
when considering the set of all valid programs.

2) We show an empirical upper limit for mean effective-
ness, through the evaluation of a large number of open
source projects, with 13.1% mean effectiveness; for 95%
of projects the maximum utility is between 12.2% and
14.3% (one sample u-test p < 0.001).7

3) We examine a larger number of mutant reduction strate-
gies than previous studies, including all the common and
influential strategies for operator selection and strata-
based sampling.

4) We use multiple evaluation criteria: Traditional, size of
minimum set of mutants, and effectiveness of selected
minimum test suites, using assertions to evaluate the dif-
ferent reduction strategies. Our evaluation results are ap-
plicable to both real-world nonadequate test suites, and
traditional mutation adequate test suites.

5) We find that extant mutation reduction strategies seldom
perform better and are often harmful to effectiveness when
compared to simple random sampling of mutants.

This is an extension of our previous work [28], where we
showed that there is an absolute empirical and theoretical limit
(13.1% on average) to the improvement in mutation effective-
ness that is possible using any mutation reduction strategy pos-
sible, under oracular knowledge. This paper extends that result
by evaluating the actual improvement achieved by extant mu-
tation reduction strategies. We examine both operator selection
methods and strata sampling methods, and our research suggests
that even the relatively modest advantage that theory suggests is
possible is rarely achieved in practice. Further, we also account
for the possible differences in utility of different mutants by
incorporating both test utility and assert utility.

Our results can be interpreted as showing that, while any ad-
vantage gained over random sampling is indeed an advantage,
however small, these benefits may not be worth their costs. Our
understanding of mutant semiotics, as noted before, is very lim-
ited, and certainly insufficient to infer whether each kind of

7We use the nonparametric Mann–Whitney u-test as it is more robust to
normality assumptions and outliers [27]. The more common t-test yields similar
results.

selection proposed is advantageous. Indeed, our results suggest
that one is often led astray in the effort to find a good heuristic,
ending up with methods that decrease the effectiveness of the
mutant set compared to a simple random sample (which on its
own is a perfectly reasonable approach [29]). We note that even
elimination of operators based on subsumption is not [30] a fore-
gone conclusion. The effort directed toward mutant selection
mechanisms should be carefully weighed against the potential
maximum utility, the known utility of existing approaches, and
the risk associated with making results less useful due to biased
sampling.

There could be other valid reasons for choosing a selective
mutation strategy, such as reduction of execution cost of spe-
cific mutants, avoidance of equivalent mutants, or selection of
specific bug types. Our results only concern mutation reduction
for a specific purpose: reduction of redundant mutants.

Our research supports the need for further research into new
mutation operators. That is, we have shown that even the best
selective strategy can at best have a limited improvement in ef-
fectiveness, whereas a bad selective strategy can lead to unlim-
ited decrease in effectiveness (for example, by choosing mutants
representing only a single fault).

We have a much more positive scenario if we implement new
operators instead, and sample from the larger population. Here,
a plausible scenario is that each new operator actually manages
to introduce new faults. In such a case, we can improve effec-
tiveness arbitrarily (under the assumption that the sample size is
larger than the number of unique faults). That is, the improve-
ment in effectiveness is unlimited. On the other hand, say the
new operators did not add any new faults, and the mutants intro-
duced were very similar to existing operators. In this scenario,
a random sample of mutants from the larger population would
have same number of unique faults as that of a random sam-
ple of mutants from the original mutant population on average.
That is, in the worst case, we can expect no or limited disad-
vantage. To summarize, if addition of new operators goes well,
there is a possibility of unlimited improvement in effectiveness,
whereas in the worst case, there is limited or no decrease in
effectiveness.

This asymmetry between removing and adding operators re-
sults from difference in the populations from which the random
comparison sample is drawn. For operator selection, the opti-
mally chosen set is always a subset of the original population.
Because the random sample is drawn from the original popula-
tion, it can potentially contain a mutant from each stratum in the
perfect set, limiting gain in effectiveness. For operator addition,
the optimal set is a superset of the original population, with
as many new strata as there are new mutants (and there is no
bound on the number of new strata). Since the random sample is
constructed from the original population, it cannot ever contain
the added strata.

A higher payoff might be obtained by finding newer cate-
gories than by removal of extant mutation operators.

Organization: Section II describes previous research in mu-
tation reduction strategies. Section III discusses the theoreti-
cal framework for estimating the limits of mutation reduction
strategies. Section IV discusses the sampling and operator se-
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lection strategies we study in detail. The results of experiments
are detailed in Section V. A detailed discussion is provided in
Section VI. Threats to validity are explained in Section VII. We
summarize our findings and conclusions in Section VIII.

II. RELATED WORK

Mathur credits [31] the idea of mutation analysis to a term
paper by Richard Lipton in 1970. The foundational assumptions
and theory were first proposed by DeMillo and Sayward [32],
and were first implemented by Budd et al. [33] in 1980. Mutation
analysis relies on two fundamental assumptions—the competent
programmer hypothesis, and the coupling effect. The competent
programmer hypothesis suggests that programmers make sim-
ple mistakes. The coupling hypothesis suggests that test cases
capable of detecting a simple fault in isolation will be able to
detect it even when the fault appears in conjunction with other
faults. Evidence of the coupling effect comes from both theoret-
ical analysis [34]–[36], as well as empirical studies [36]–[39].
For the competent programmer hypothesis, the size of a mean
syntactic neighborhood for simple mistakes was quantified in
our previous work [40].

According to Budd [12], mutation analysis is a stronger cri-
terion than other coverage measures. The subsumption of mul-
tiple coverage measures by mutation analysis, including all the
basic coverage measures [41] was shown by Offutt [42]. The
subsumption of dataflow criteria was shown by Mathur [43].
Daran et al. [44] found that mutation analysis produces faults
that are similar to actual faults in terms of the error traces pro-
duced. Andrews and Thévenod-Fosse [3], [4] found that ease
of detection of mutants was similar to that of real faults when
compared to manually generated faults (in that manually gener-
ated faults were harder to find). Recent research by Just et al. [5]
using 357 real faults suggests that in 75% of the cases, muta-
tion score and test case effectiveness improved together, which
is a strong relationship compared to the same coupling for
coverage (46%).

As mutation analysis requires a large number of potentially
complete test executions, the cost of execution is often [45]
considered to be a chief barrier to widespread adoption of the
technique. Numerous approaches exist, that seek to reduce the
cost of mutation analysis. Offutt and Untch [8] categorize these,
in an orthogonal classification, as: do fewer, do smarter, and
do faster approaches. Operator selection, mutant sampling, and
mutant clustering fall under do fewer—approaches that seek
to reduce the number of mutants evaluated. The do smarter
approaches seek to reduce the time taken for the entire mutation
analysis by intelligently managing the various phases. These
include weak mutation, parallelization of mutation analysis, and
space/time tradeoffs. Similarly, do faster approaches seek to
reduce the time taken for evaluation of a single mutant, and
include mutant schema generation, code patching, and other
methods.

The do fewer approaches, especially simple random sampling,
debuted with the initial research in mutation analysis [11], [12],
where it was noticed that even a 10% random sample of mutants
can on average be almost as effective (99%) as the complete set

of mutants. Sampling was further investigated by Mathur [46],
Wong [47], Wong and Mathur [48], and Offutt et al. [9].

Determining relative merits of selective mutation strategies
such as operator selection and random sampling has been an
active field of research. Wong and Mathur [48] found similar
effectiveness and efficiency (80%), when comparing operator
selection (two selected operators) with x% sampling of opera-
tors. Mresa and Bottaci [49] found that one can reduce the cost
of mutation by directly targeting the cost of mutation operators.
Excluding the operators with the highest cost still resulted in a
set of mutants with good effectiveness. They found that operator
selection works well compared to x% selective mutation when
the targeted effectiveness is low. However, using only cost ef-
fective operators failed to generate sufficiently diverse mutants
when targeted effectiveness is high.

Previous research by Zhang et al. [13] suggest that ran-
dom sampling of mutants provides comparable effectiveness to
that found for operator-based techniques. Counterintuitively, on
comparing strata sampling8 with random sampling, they found
that simple random sampling had a higher effectiveness for
larger programs, whereas strata sampling was more effective
for smaller programs. Zhang et al. [14] evaluated the effective-
ness of sampling strategies on top of operator-based selection
provided by Javalanche. Their research suggests that strata sam-
pling based on program elements performed best, with just 5%
of mutants sufficient for high correlation (99%) with full mu-
tation score, and that method level strata performed better than
other strata such as statement or class. They suggest method
level strata perform better against statement level strata due
to the small number of mutants at statement level, and hence
the difficulty in producing representativeness samples for each
statement at smaller fractions.

Skew in fault representativeness among mutants was initially
noticed by Budd [12] who found that particular types of mutants
are representative for particular kinds of faults. Constrained mu-
tation was pioneered by Mathur [46], [50] and was further inves-
tigated by Wong et al. [51]. An extension of this approach called
n-selection was suggested by Offutt et al. [9] where the most nu-
merous mutation operators were removed one at a time. Taking
into account the advances in mutation operator selection, a set of
guidelines for operator selection was identified, and evaluated
by Barbosa et al. [52]. Namin and Andrews [53] and Namin et al.
[54] formulated the concept of sufficient mutation operators that
reduce cost of mutation but maintain high statistical correlation
with the full mutation score. This paper showed that mutation
reduction could be seen as a variable reduction problem where
individual mutation operators were treated as independent vari-
ables, and principal variables that contributed the largest effect
were found through statistical analysis. Their conclusion was
that using just 28 out of 100 operators in Proteum was probably
sufficient for an effective mutation analysis.

Untch [55] was the first to suggest statement deletion—a form
of higher order mutation as an alternative to complete mutation
analysis. Untch found a high correlation (R2 = 0.97) between

8The two step random sampling is in effect strata sampling on operators, with
equal priority.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:20:35 UTC from IEEE Xplore.  Restrictions apply. 



858 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 3, SEPTEMBER 2017

the statement deletion mutation score and the traditional full
mutation score; deletion only generated a smaller number of
mutants than other operator selection methods. Deng et al. [56]
extended the deletion operator for diverse language elements,
and obtained an effectiveness of 92% while reducing the number
of mutants by 80%.

The subsumption of individual mutants and mutation opera-
tors is an active area of research [57]–[59]. A mutant is subsumed
by another when any test case that kills the later is guaranteed to
kill the former. Extended to subsumption in operators, it means
that particular operators could be completely avoided. Research
from Kurtz et al. [19], [60] suggest that subsumption alone can
lead to 96% reduction in mutants. We note that this result is
based on an investigation of a single program, cal.

Higher order mutants (HOM) are another approach for im-
proving the quality of mutants by combining simpler mutants
into more complex mutants. Jia and Harman [61], [62] found
that the number of mutants can be reduced by 50% by making
use of subsumption of simpler mutants by HOMs.

Mutation clustering [15], [20], [63] is another do-fewer ap-
proach where similar mutants are identified based on various
properties, and a representative set is identified.

Our paper is an extension of previous work on comparison of
mutation reduction strategies [13], [14]. We note that the study
by Zhang et al. [13] used 7 small (mean 313 LOC, maximum 513
LOC) C programs (5 programs if excluding different versions
of the same program) that are called the Siemens test suite [64].
The test suites for these were created by researchers studying
the impact of various techniques in fault detection, and hence
may not be representative of real-world test suites. Finally, they
did not consider the impact of various mutation stratification
techniques (suggested by Zhang et al. [14]) that can have a
large impact. The later study by Zhang et al. [14], while using
real-world programs and test suites, does not actually investi-
gate the relative merits of random sampling and operator selec-
tion. Rather, the study starts with a selected subset of operators
(Javalanche only implements a selected subset of operators),
on top of which other strategies are implemented. Hence, their
study does not actually evaluate the comparative benefits of op-
erator selection and pure random sampling. Our study is the first
exhaustive study for all well-known do-fewer techniques except
mutation clustering. We consider a wider range of mutation
approaches, and a larger set of large real-world projects, than
any previous comparable study, which makes our work more
generalizable and usable by practicing testers. Finally, Zhang
et al. [29] investigated the scalability of selective mutation by
considering how well a randomly sampled set of mutants rep-
resent the original population. They found that the number of
mutants to be sampled for an adequate representation of mutants
is dependent on the original number of nonequivalent mutants.
Further, they find that a small number of randomly sampled
mutants can be representative of even much larger set of mu-
tants. Note that our work is not concerned with, and does not
recommend a specific sample size for random sampling. Indeed,
for software engineers who wishes to ascertain the sample size
needed, Zhang et al. [29] may serve as a reasonable starting
point.

In our previous work [28], we showed that there is an up-
per bound (13.1% on average) on the improvement in mean
effectiveness that is possible using even an ideal mutation
reduction strategy using post-hoc oracular knowledge of mu-
tant kills. This paper extends that result by evaluating the actual
improvement achieved by extant mutation reduction strategies,
when they do not unrealistically have access to the mutant kills
achieved. We examine multiple operator selection methods and
strata sampling strategies, and our research suggests that even
the modest advantage that theory suggests is possible is only
rarely achieved. A critique of our previous research was that it
failed to account for possible utility difference between different
mutants. This paper, hence, accounts for the possible differences
in utility of different mutants by incorporating both test utility
and assert utility.

III. THEORETICAL ANALYSIS

Note that this section is a summary of the theoretical eval-
uation presented in our previous research [28]. Some of the
detailed comments are elided for brevity. The aim of a mutation
reduction strategy is to identify the minimum set of mutants that
incorporates all9 the faults in the original set. This may be done
by identifying and collecting mutants into groups that represent
particular faults. A single mutant from such a group is suffi-
cient to represent all other mutants. Such a strategy depends on
two characteristics of the mutant population if it is to be better
than random sampling. The first of these characteristics is the
amount of redundancy in each group. A uniform redundancy
of faults is the best distribution for random sampling. For any
other distribution (where the number of mutants in each faults
is dissimilar), the effectiveness of random sampling is reduced.
However, the mutant distribution is generated by the syntax of
program being evaluated, and hence dependent on the particular
program. As we seek to find the mean improvement for a per-
fect strategy for any arbitrary program, we use equal number of
mutants per fault as a conservative distribution choice.

Our second emphasized characteristic is the number of mini-
mum mutants necessary. Two mutants are distinguishable from
each other in terms of the faults they represent if the tests that
detect them are different. The set of distinguishable mutants is a
set of mutants such that any pair of mutants are distinguishable.
We note that, in the real world, the set of distinguishable mu-
tants is often larger than the set of minimum mutants required to
select a minimum test suite.10 However, we note that this is due
to the characteristics of the test suite, which is not connected to
the mutant population. The difference exists only because the

9A general solution to this is not possible. Hence, the practical aim of mutation
reduction strategies is to aim for including as many different faults as practically
possible in the original set, which is limited by the total number of unique faults.

10With respect to a mutant set, the smallest test suite that can kill all mutants
in the set is called the minimum test suite. A minimal test suite, on the other
hand, is a test suite such that removal of any test case from that test suite will
cause mutation score to decrease.

We use a greedy algorithm to approximate the minimum test suite. The greedy
algorithm has approximation bound of k · ln(n) (n number of elements, k the
true minimum). Since the algorithm is robust, with a strong approximation
bound, we assume the minimal set, thus, computed is approximately the mini-
mum set.
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test suite is not diverse enough. Hence, for theoretical purposes,
we assume that any distinguishable mutants could be uniquely
identified by tests. Further, inadequate test suites favor random
sampling because a random sample can miss any such mutant
that is actually distinguishable, but not in the minimal set (when
comparing random sampling to the perfect strategy that selects
minimal mutants).

We make the following simplifications to make theoretical
analysis tractable: Those mutants are uniformly redundant with
respect to faults, and that there exists a test case that can detect
any given fault uniquely.

Next, we analyze the limits of reduction possible using this
system using an ideal strategy with oracular knowledge of kills.

1) Impact of parameter deviation:
a) Skew: Any skew can reduce random sampling effec-

tiveness, which can mean an increase in utility for
the perfect strategy compared to random sampling.

b) Distinguishability: If a distinguishable mutant is
skipped due to inadequate test suite, it can mean a
decrease in utility for the perfect strategy compared
to random sampling.

2) Analysis: The utility (Ustrategy) of a strategy is defined as
the improvement in effectiveness from using that strat-
egy when compared to random sampling of the same
efficiency11 of mutants). That is,

Ustrategy =

∣
∣
∣
∣
∣

kill(Tmin
strategy,M)

kill(Tmin
random ,M)

∣
∣
∣
∣
∣
− 1.

This is the traditional evaluation of effectiveness [28], but
extended for nonadequate test suites. The utility is essentially a
measurement of how much advantage one gains by using this
strategy over random sampling of the same efficiency in terms
of test adequacy criteria. A perfect strategy can select the set of
minimal mutants. We denote its utility by Uperfect.12

Next, we compute the maximum Uperfect for an idealized sys-
tem, given uniform redundancy of faults, that is, equal number
of redundant mutants for each distinguished mutant.

In sampling terminology, a stratum is a nonoverlapping sub-
group that shares some characteristic. For our analysis, we con-
sider each set of nondistinguished mutants as separate strata.
For a set of detected mutants, a reduction strategy should result
in a mutant set where a test suite adequate for the reduced set
should be adequate for the original set. That is,

kill(Tperfect,M) = kill(T,M)

where Tperfect is the set of test cases adequate for perfect strategy.
The test suite quality, thus, chosen is dependent on the unique
mutants in the sample. For x elements per nondistinguished
stratum, and total k × x = n mutants (where k represents the
number of independent strata), we have a sample size of k × p
where p is the number of samples in each nondistinguished stra-
tum. For perfect representation, p = 1 is sufficient, and ensures

11For our analysis, we only compare strategies holding efficiency constant.
That is, |Mstrategy| = |Mrandom |.

12We use the subscript p to stand for perfect, and r for random.

maximum improvement in effectiveness over random sampling
(as shown below).

So, how many strata are expected in a random sample of
size s?

Let Xi be a random variable such that

Xi =

{

1, if strata i is present in the sample

0, otherwise.

Let X be the number of strata present in the sample. That is,
X =

∑k
i=1 Xi , The expected value of X is then

E(X) = E

(
k∑

i=1

Xi

)

= kE(X1).

Now, the probability that the mutant 1 was selected is given by

P [Xi = 1] = 1−
(

k − 1
k

)s

= 1−
(

k − 1
k

)pk

.

Expectation of Xi :

E(X1) = 1× P (Xi = 1).

That is, the number of strata in a random sample is given by

k ×E(X1) = k − k ×
(

k − 1
k

)pk

.

Because we know the sampling is perfect, the number of strata
appearing in any sample is k, and the utility is computed as the
ratio of difference to the baseline–random sample:

Umax =
k −

(

k − k × (
k−1

k

)pk
)

k − k × (
k−1

k

)pk =
1

( k
k−1 )pk − 1

. (1)

This converges to

lim
k→∞

1
( k

k−1 )pk − 1
=

1
ep − 1

(2)

and the maximum value is reached at p = 1:

Umax =
1

e− 1
≈ 58.2%. (3)

The Umax , thus, computed is the mean advantage that an ideal
strategy (with oracular knowledge) will have with a uniform
distribution of mutants. While individual samples could still be
arbitrarily advantageous, this is the expected improvement over
random samples.

In other words, given an arbitrary program for which one has
a robust set of test cases able to identify distinguishable mutants,
and given a perfect strategy with oracular knowledge of mutant
kills, one can expect it to have at least a mean effectiveness
advantage of 58.2% over random sampling of the same number
of mutants. If the mutant distribution is skewed, then the effec-
tiveness of a strategy with oracular knowledge increases. On the
other hand, if the test suite is not robust enough to identify distin-
guishable mutants uniquely, one may expect the effectiveness of
the strategy with oracular knowledge to decrease. For real-world
strategies without prior knowledge of kills, the advantage held
by the perfect strategy is hard (indeed, almost impossible) to
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achieve. Hence, we expect a much smaller utility for real-world
strategies.

IV. METHODOLOGY

While our theoretical analysis is useful for evaluating the
maximum utility a perfect strategy can produce under simpli-
fying assumptions, it is necessary to verify the actual utility
obtained using real-world mutants. This is important because
we do not know how close the real-world distributions for mu-
tants and test suites are to our simplifying assumptions. The
first question we tackle is this: what is the maximum advantage
one can expect to gain on real-world systems? To find the max-
imum amount of advantage, one again considers the advantage
of a hypothetical perfect strategy on a large set of open source
programs and their test suites.

While selecting the sample programs, we had a few overrid-
ing concerns to ensure the generality and applicability of our
findings [65]. First, we sought to ensure that our results were
as applicable as possible to the practicing tester. That is, our
results had to be applicable on as wide variety of systems as
possible. Second, a statistically significant result is important to
ensure that our results are not led astray by noise. To ensure the
statistical validity of our results, we tried to reduce the number
of uncontrolled variables present.

We started with 1800 Java projects from GitHub [66], and
Apache project, which used the Maven [67] build system. In
the case of GitHub, these were obtained through their search
application programming interface (API), and in the case of
Apache, we manually examined each project under the Apache
umbrella to see whether it was a Java project using Maven as
the build system. From this, we filtered out aggregate projects
and projects without a test suite, leaving 796 projects. Not all
of these compiled, with failure reasons ranging from unavail-
able dependencies and compilation errors due to syntax to bad
configurations. This left us with 326 projects. However, not all
of these projects could actually pass their own test suite. Effec-
tive mutation analysis requires a completely passing test suite,
which required filtering these out as well. We eliminated any
hung tests. We also eliminated any tests that did not detect any
mutant, since they were redundant to our analysis. As a final
step, we removed all projects with trivial test suites with tests as
the cutoff. Any projects with unstable/flaky [68] test cases (that
switched from fail to pass and back each time nondeterminis-
tically) were removed as well. The final tally was 38 projects,
given in Table II, where Project is the project name, |M | is
the size of the mutant set, Mkilled is the size of the detected
mutants, Muniq is the number of distinguished mutants within
detected mutants, |T | is the size of test set, and Tmin the size of
the minimal mutant set.

Our mutation framework was PIT [69], which was extended
to provide operators that it was lacking [70] (now accepted into
mainline). The PIT operators are given in Table I. The details of
each operator may be obtained from PIT documentation [71].
To mitigate random noise, we averaged results of each criterion
over ten runs. Fig. 1 provides the distribution of mutation scores
and test suites.

TABLE I
PIT MUTATION OPERATORS (WE USE ABBREVIATIONS INSTEAD OF

OPERATOR NAMES)

IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove nonvoid method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI * Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS * Replace switch labels with default (thus removing them)
RC * Replace Boolean conditions (extension)
DC * Replace Boolean conditions with false (folded into RC in mainline)

The starred (*) operators were added to account for inadequacies identified in
original PIT operators.

TABLE II
PROJECTS, SIZE OF MUTANT SET, AND TEST SUITES

Project |M | M k i l l e d M u n iq |T | |Tm in |

annotation-cli 992 589 110 109 38.97
asterisk-java 15,530 3206 451 214 196.32
beanutils 12,017 6823 1570 1143 556.67
beanutils2 2071 1281 465 670 181.00
betwixt 7213 4271 1198 305 206.35
clazz 5242 1583 151 140 64.00
cli 2705 2330 788 365 186.24
cli2 3759 3145 1066 494 303.86
collections 24,681 8561 2091 2241 938.32
commons-codec 9983 8252 1393 605 444.69
commons-lang3 32,323 26,741 4479 2456 1998.11
commons-math1-l10n 6067 2980 219 119 109.02
commons-math1 122,484 90,681 17,424 5881 4009.98
config-magic 1188 721 204 112 74.55
configuration 18,198 13,766 4522 1772 1058.36
csv 1831 1459 411 173 117.97
dbutils 2030 961 207 224 141.53
events 1171 702 59 180 33.87
faunus 9801 4809 553 173 146.11
fongo 1461 1209 175 113 70.73
hank 26,622 7109 546 171 162.88
java-api-wrapper 1715 1304 308 125 107.04
java-classmate 2566 2316 551 215 196.57
jdbi 7754 4362 903 277 175.57
jfreechart 99,657 32,456 4686 2167 1696.86
joda-money 2512 1272 236 173 128.48
jodatime 32,293 23,796 6920 3973 2333.49
jopt-simple 1818 1718 589 538 158.37
mercurial-plugin 2069 401 102 138 61.77
mirror 1908 1440 532 301 201.21
mp3agic 7344 4003 730 206 146.79
ognl 21,852 12,308 2990 114 85.43
pipes 3216 2176 338 138 120.00
primitives 11,553 4125 1365 803 486.71
sandbox-primitives 11,553 4125 1365 803 488.56
validator 5967 4070 759 383 264.35
webbit 3780 1981 325 147 116.93
xstream 18,030 9163 1960 1010 488.25

For our experiment, we first evaluated an oracular perfect
strategy against random sampling. Next, we compared the per-
formance of various stratified sampling strategies and operator
selection strategies against random sampling.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:20:35 UTC from IEEE Xplore.  Restrictions apply. 



GOPINATH et al.: MUTATION REDUCTION STRATEGIES CONSIDERED HARMFUL 861

Fig. 1. Distribution of mutants and kills from test suites. The graph sug-
gests a reasonably nonbiased sample. We have both large, high mutation score
programs, and also small projects with low mutation scores.

Fig. 2. Variation of minimal test suite size ordered by mean minimal test suite
size. The figure suggests that there is very little variation, and the variation
decreases with the increase in the number of test cases.

A. Oracular Strategy

Our task is to find the Uperfect for each project. For a perfect
strategy, we only need complete representativeness

kill(Tp,M) = kill(T,M)

and nonredundancy in selected mutants:

∀m∈Mp
kill(Tp,Mp \ {m}) ⊂ kill(Tp,Mp).

The minimum mutant set [23] is representative and nonredun-
dant. Hence, it satisfies our requirements.

While finding the minimum test suite is NP-Complete13

one can approximate it using the greedy algorithm due to
Chvatal [73], given in Algorithm 1. In the worst case, if the
number of mutants is n, and the smallest test suite that can
cover it is k, this algorithm will achieve a k · ln(n) approxima-
tion. As we see in Fig. 2, the algorithm is robust in practice, and
finds results close to the actual minimum. So long as NP �= P ,14

13This is the set covering problem [23] which is NP-Complete [72].
14Ammann et al. [23] provides another algorithm that we call reverse greedy

algorithm. It has two deficiencies. Say k is the actual minimum. The approxima-
tion ratio of the greedy algorithm is at most k · ln(n). However, that of reverse
greedy would be much larger [74] (if an approximation ratio exists). The reverse
greedy also requires a much larger number of steps to complete than the greedy
when the size of minimal set is very small compared to the full set.

this is the best approximation one can have for the actual min-
imum [75]. To ensure that our algorithm returned the correct
results, we verified that the minimum frequency of kills of the
set of mutants by the minimal test suite was 1 (A larger minimum
frequency indicates a redundancy in that many tests—a rare but
well-known problem with the greedy algorithm).

We also average the estimated minimal,15 test suite size over
100 runs (see Fig. 2, which provides the variability of the runs
ordered by the size of minimal test suite). The variability is
indeed very little, and decreases as the size of test suite increases.

We next randomly sampled |Mmin
perfect| mutants from M . The

minimal test suite Tmin
random was calculated, and was applied to M

to find the mutants that are killed: kill(Tmin
random ,M). This result

is used to compute the utility of perfect strategy with respect to
that particular random sample. We repeated the experiments 100
times for each project. The results were averaged to compute
Uperfect for each project.

B. Sampling Strategies

We used several sampling criteria suggested in the literature.
For each sampling criterion we sampled mutants on a decreasing
power scale, sampling fractions 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , and 1
64 of the

total mutants.
1) Stratified Random Sampling Over Mutation Operators:

First suggested by Wong and Mathur [48], this strategy samples
the same proportion of mutants from each operator. While Wong
seems to treat this as equivalent to x% selection, this sampling
is subtly different from pure random sampling in that it provides
a stratified sampling based on mutation operators.

2) Stratified Random Sampling Over Program Elements:
Following the suggestion of Zhang et al. [14], we extended
x% selection to sample from within different program elements.
We sampled in increasing order of scope—line, method, and
class (project scope is just x% selection). We used the formula
from Zhang et al. [14] for sampling fractional values:

sample(x) = 
x + random(0..1)�.

C. Operator Selection

For selective methods, we evaluated the mutation opera-
tors suggested by Wong and Mathur [48], Offutt et al. [56],
[76], and Namin et al. [54]. Since Javalanche [77] uses opera-
tor selection mechanisms, we included operators suggested by
Javalanche separately. Note that all of these techniques except
for Javalanche have targeted C programs. Thus, some operators
may make sense in C but not in Java. For example, deletion of
the return statement is tolerated by C compilers, but not in
Java. Moreover, there were a few operators that could only be
partially implemented in PIT (see below).

1) Constrained Mutation: Wong and Mathur [48] selected
relational operator replacement (ROR) and absolute value in-
sertion (ABS) from Mothra for selective mutation. The ABS
operator was chosen because it forces users to consider all parts
of the input domain, and ROR because it forces users to consider

15We use the minimal approximation to minimum from here on. Hence, we
do not distinguish between minimal and minimum further.
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values of predicates. ROR mutates relational operators, whereas
ABS replaces variables and expressions by their positive or neg-
ative absolute value, or zero. CB and NC from PIT are a good
mapping for ROR. Similarly, IN is able to partially cover the
ABS functionality.

2) E-Selective: Proposed by Offutt et al. [76]. Mothra sup-
ports three main classes of operators: Replacement (operand)
mutators, expression (operator) mutators, and statement muta-
tors. The operator selections used in this paper are groupings of
these operators: ES, ER, RE, RS, E.

The best strategy identified by Offutt et al. [76] was the E-
Selective strategy, which chooses only those mutators that mod-
ify operators. For Mothra, these were ABS, unary operator in-
sertion (UOI), logical connector replacement (LCR), arithmetic
operator replacement (AOR), and ROR. UOI operates by in-
crementing or decrementing arithmetic expressions by 1, LCR
changes the relational operators, and AOR mutates arithmetic
operators.

To accomplish the same with PIT, we divided the PIT opera-
tors similarly. Operand mutators are IC, EMV, and IN. Operator
mutators are M, CB, NC, RC, and DC. Statement mutators are
given by RV, I, VMC, NMC, CC, RI, ES, RS. We report the
results of all combinations: ES, ER, RS, E, R, and S.

3) Javalanche: Javalanche [10], [77] adapts for Java byte-
code the E-Selective operator set suggested by Offutt et al. [76]
for Fortran and implemented in C by Andrews et al. [3]. The
original operators adapted by Andrews were 1) replacing an
integer constant by its predecessor, successor, or by a small
constant, 2) replacing arithmetic or Boolean operators by an
operator of the same class, 3) negating Boolean conditions in
control flow, and 4) statement deletion.

This translated [77] to 1) replace numerical constant opera-
tors. 2) Replace arithmetic operator, and 3) negate jump con-
dition. The last operator, 4) the omit method call, was added
later [10].16 These map directly to PIT operators IC, M, NC,
and VMC.

4) Variable Reduction: This method was proposed by
Namin et al. [54], who framed the question as a statistical prob-
lem of finding the minimum set of operators that can best predict
the final mutation score. That is, given that M is the final mu-
tation score, and m1 ,m2 ,...,mn are mutation scores given by
n mutation operators, Namin wanted to find the smallest set of
mutations that can predict M from the set of m1,...,n . This boils
down to finding the linear regression model.

Emulating the variable reduction methodology for our exper-
iment, we took advantage of the limited set of operators to run
a complete subset model comparison to obtain the best model
given by

µMs = 0 + 0.55 nmc + 0.2 rc + 0.1 dc + 0.2 rv

+ 0.1 cc + 0.7 emv + 0.02 m + 0.02 ri

16We have already given a translation of the original operators suggested
by Offutt as they apply to PIT. Here, we are evaluating how the translation
implemented by Javalanche works. Javalanche has since this publication, added
more operators to the default set. However it is not clear if they belong to a
selected set under some criteria or if Javalanche is simply attempting to increase
its repertoire of mutations.

with R2 = 0.96. This suggests that the variables we are inter-
ested in are NMC, RC, DC, RV, CC, EMV, M, and RI.

5) N-Selection: Offutt et al. [9] suggested removal of the
n most numerous operators. In our experiment, the order of
operators was NMC, RV, IC, DC, NC, RC, VMC, CC, EMV, M,
CB, I, RI, RS, ES, and IN. We discarded one at each step and
evaluated the effectiveness at each n.

6) Statement Deletion Emulation: Statement deletion based
operator selection is based on the work by Deng et al. [56].
The operations on single statements were modeled using VMC,
NMC, CC, EMV, and RI for simple statements, and using
RC for control structures. RC replaces Boolean conditions with
false, resulting in removal of the conditional block. The operator
for return values was modeled using RV, which is similar. The
operators for while, for, and if statements were modeled using dc,
which replaced the Boolean condition with true, which removed
the effect of the conditional. The switch statement deletion was
modeled using RS, which replaced the first 100 labels with a
default label, resulting in the switch element being deleted. Due
to the constraints of the architecture of PIT only the first 100
labels were replaced. Deleting try/catch was not necessary at
the bytecode level.

Note that we are not attempting to evaluate statement dele-
tion mutation (SDL) directly. Rather, we have chosen a set of
operators that would be involved in deletion of statements. This
means that in order to translate the results from our experiment
back to the original statement deletion operator, we rely on some
assumptions. We rely on a coupling effect: If a test is able to kill
a mutant in this set, then it should kill it even when it is in com-
bination with other mutants of this set (resulting in the deletion
of the statement in question). That is, since statement deletion
is a HOM, according to the coupling hypothesis, it should fail
more often than its component mutants, and should result in a
lesser number of tests selected than the component faults taken
separately, and hence a lower test utility. If all tests detected all
deleted statements, only a single test would be present in the
minimum test suite.

Finally, reported results of statement deletion are based on
component mutants involved in the emulation of true statement
deletion. While this has no impact on the utility measures and
strategy effectiveness, the mutation share differs between true
statement deletion, and emulated statement deletion, and only
the emulated mutation share is reported.17

D. Evaluation of Reduction Strategies

For the purpose of comparing different mutation reduction
strategies, we use three different measures. The traditional strat-
egy effectiveness that compares the effectiveness of selected mu-
tants in representing the full set of mutants, the test utility (also
called minimum mutant set utility) that compares the size of
minimum test suite (or the size of minimum set of mutants—
which is the same), and the assert utility that incorporates the
effectiveness of the selected test cases by using the number of

17If n mutants in a statement were needed to emulate the statement deletion,
the mutation share is reported based on n rather than based on the single
statement deletion mutation that was emulated.
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asserts in each. Note that there is a difference between mini-
mal test suite and minimum test suite. A minimal test suite is
test suite such that removal of any test case from that test suite
will cause the mutation score to decrease. However, there can
be other test suites that have a smaller number of test cases. A
minimum test suite is the smallest minimal test suite.

To evaluate a mutation reduction strategy, we use the strategy
to select a subset of mutants. We then collect all test cases that
killed any of the selected mutants. Next, we compute the mini-
mum, nonredundant test suite that detects all of these mutants.
The observation is repeated multiple times to account for any
noise.

Test utility (Ut) approximates the extra tests a selection strat-
egy requires, compared to a random sampling, to kill the same
number of mutants. The result is reported as a percentage of
the nonredundant tests above the random sample (the baseline).
That is, the test utility is given by

Ut =
|min(Tstrategy)|
|min(Trandom)| − 1.

Positive values show that the strategy requires more tests
than the random selection (it is better than random selection),
and a negative test utility indicates that the strategy needs fewer
test cases (it is worse than random selection). Values close to
zero mean that the strategy tested performed similar to random
selection. Note that the comparison here is between the sizes of
tests and does not imply any subset relationship between test
suites.

Since the assertions in a test were found to have a significant
correlation with fault detection and mutation kill rate [24], [26],
we also compute the number of assertions in the test cases
required by a strategy. If a test case does not have any assertions,
we assume its number of assertions to be one (to account for
uncaught exceptions and other kinds of failure).

The assert utility (Ua ) is computed as the difference between
the number of assertions in the selected nonredundant test cases
and the number of assertions in the random sample. As before,
it is reported as a percentage of the asserts of the nonredundant
tests of the random sample:

Ua =
|asserts(min(Tstrategy))|
|asserts(min(Trandom))| − 1.

The baseline effectiveness (Er ) is computed by getting the
number of mutants selected by the strategy under test, and se-
lecting the same number of mutants randomly. We then collect
the minimum test suite (using Algorithm 1) that kill these mu-
tants, and apply the same test cases against the original (com-
plete) set of mutants. The result is then divided by the original
number of detected mutants:

Er =
|kill(Tmin

random ,M)|
|kill(T,M)| .

The traditional mutation reduction criterion strategy
effectiveness18 (Es), is computed by collecting the minimum
set of test cases that detect any of the mutants selected by the

18Also called operator mutation score by Mresa and Bottaci [49].

strategy under test, and applying these to the complete set of
mutants. The score obtained is divided by the original number
of detected mutants, and the effectiveness above that of baseline
is reported:

Es =
|kill(Tmin

strategy,M)|
|kill(T,M)| − Er .

The utility of the strategy is computed as

Us =
Es − Er

Er
=

∣
∣
∣
∣
∣

kill(Tmin
strategy,M)

kill(Tmin
random ,M)

∣
∣
∣
∣
∣
− 1.

All values are reported as percentage (multiplied by 100).
It has to be noted that having a good test utility does not

preclude a reduction strategy from having a poor strategy ef-
fectiveness or vice versa. It is possible for a strategy to select
mutants such that there are a number of independent tests killing
each mutant; however, if the tests kill no other mutants than the
strategy selected ones, the strategy will have very poor strat-
egy effectiveness. A similar argument applies for the inverse—a
strategy selects a small number of very strong tests, which are
able to kill most other mutants. However, we would expect a
strong test that kills a much larger number of mutants than its
peers to be distinguished by a larger number of assert state-
ments. By computing the assert utility, we guard against such
a possibility. We require only a strong positive utility in any
one of the criteria to judge a strategy to be useful. However, a
negative or inconsequential result for all three criteria is a strong
statement on the nonutility of the strategy in question.

V. RESULTS

This section presents the results of our experiments. Each
experiment was repeated multiple times to avoid random noise
in the results.

A. Comparison of Oracular Strategy to Random Sample

1) All Mutants: Our results for the comparison of oracu-
lar strategy with random sample are given in Table III, where
Project is the project name, |kill(T,M)| the number of mutants
detected in M by the test suite T , kill(Tm

r ,M) the number of
mutants detected in M by the test suite Tmin

random , and Uperf is
the utility of the perfect strategy. The largest utility achieved
by the perfect strategy was 18%, whereas the lowest utility was
1.15%. The mean utility of the perfect strategy was 13.1%. One
sample u-test shows that 95% of projects have maximum utility
between 12.2% and 14.3% with p < 0.001. Fig. 5 shows dis-
tribution of utility for each project. The projects are sorted by
their average minimal test suite size.

Does the situation improve with larger test suite size or project
size? Not really. Fig. 3 plots utility Up against the average min-
imal test suite size (log). The figure shows that there is little
correlation between the two, and test suite size is not a factor in
improving utility. Similarly, the Fig. 4 plots utility Up against
the number of detected mutants. Indeed, none of the factors in-
cluding minimal test suite size, total mutants, killed mutants,
and mutation score show even moderate correlation with utility
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TABLE III
MAXIMUM UTILITY ACHIEVABLE BY A PERFECT STRATEGY FOR EACH PROJECT

Project |kill(T , M )| |kill(T m
r , M )| Up e r f

annotation-cli 589 529.51 0.11
asterisk-java 3206 2754.69 0.16
beanutils 6823 6071.53 0.12
beanutils2 1281 1141.73 0.12
betwixt 4271 3809.19 0.12
clazz 1583 1402.39 0.13
cli 2330 2069.84 0.13
cli2 3145 2760.66 0.14
collections 8561 7392.63 0.16
commons-codec 8252 7455.50 0.11
commons-lang3 26,741 22,742.46 0.18
commons-math1-l10n 2980 2527.66 0.18
commons-math1 90,681 81,898.25 0.11
config-magic 721 640.91 0.13
configuration 13,766 12,359.89 0.11
csv 1459 1282.93 0.14
dbutils 961 854.83 0.12
events 702 662.97 0.06
faunus 4809 4078.22 0.18
fongo 1209 1052.99 0.15
hank 7109 6200.08 0.15
java-api-wrapper 1304 1148.52 0.14
java-classmate 2316 1969.76 0.18
jdbi 4362 3914.73 0.11
jfreechart 32,456 28,171.19 0.15
joda-money 1272 1257.55 0.01
jodatime 23,796 20,491.96 0.16
jopt-simple 1718 1546.21 0.11
mercurial-plugin 401 342.91 0.17
mirror 1440 1252.50 0.15
mp3agic 4003 3620.41 0.11
ognl 12,308 11,426.09 0.08
pipes 2176 1884.73 0.16
primitives 4125 3565.83 0.16
sandbox-primitives 4125 3563.85 0.16
validator 4070 3616.71 0.13
webbit 1981 1793.96 0.10
xstream 9163 8307.12 0.10

Fig. 3. Figure plots utility (y-axis) against the average minimal test suite size
(log10). Bubble size represents the magnitude of detected mutants (log10). The
figure suggests that there is no correlation between utility and average minimal
test suite size.

Up . The correlation factors are given in Table V. The low corre-
lation suggests that population characteristics such as mutation
score, or size of minimal test suite does not have an impact on
our results.

An analysis of variance (ANOVA) to determine signifi-
cant variables affecting Uperfect does suggest that variability

Fig. 4. Figure plots utility (y-axis) against the number of detected mutants.
Bubble size represents the magnitude of average minimal test suite size (log10).
The figure suggests that there is no correlation between utility and number of
detected mutants.

Fig. 5. Using all mutants. Distribution of maximum utility using distinguished
mutants across projects. The projects are ordered by the cardinality of mean
minimal test suite. The red line indicates the mean of all observations.

due to project is significant (p < 0.001) and interacts with
kill(Trandom ,M) strongly.

µ{Up} = project + kill(Tr ,M) + project× kill(Tr ,M).

The variable project has a correlation of 0.689 with Uperfect, and
the combined terms have a correlation with Uperfect of 0.9995.

2) Distinguishable Mutants: Results are given in Table IV,
where Project is the project name, |kill(T, M̂)| the number of
mutants detected in Muniq by the test suite T , kill(Tm

r , M̂) the
number of mutants detected in Muniq by the test suite Tmin

random ,
and Uperf is the utility of the perfect strategy. The largest utility
achieved by the perfect strategy was 26.2%, whereas the lowest
utility was 2.28%.

The mean utility of the perfect strategy was 17.5%. One sam-
ple u-test showed that 95% of projects have a maximum utility
between 16.8% and 18.8% (p < 0.001).

Fig. 6 shows utility distribution for each project, again sorted
by average minimal test suite size. This situation does not change
with either test suite or project size.
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TABLE IV
MAXIMUM UTILITY ACHIEVABLE BY A PERFECT STRATEGY FOR EACH

PROJECT USING DISTINGUISHABLE MUTANTS M̂

Project |kill(T , M̂ )| |kill(T m
r , M̂ )| Up e r f

annotation-cli 110 93.68 0.18
asterisk-java 451 372.25 0.21
beanutils 1570 1341.04 0.17
beanutils2 465 392.30 0.19
betwixt 1198 1055.30 0.14
clazz 151 129.24 0.17
cli 788 688.05 0.15
cli2 1066 903.30 0.18
collections 2091 1750.05 0.19
commons-codec 1393 1192.29 0.17
commons-lang3 4479 3663.98 0.22
commons-math1-l10n 219 177.86 0.23
commons-math1 17,424 15,139.90 0.15
config-magic 204 171.60 0.19
configuration 4522 3934.21 0.15
csv 411 349.30 0.18
dbutils 207 170.60 0.21
events 59 49.15 0.20
faunus 553 467.03 0.18
fongo 175 145.13 0.21
hank 546 465.52 0.17
java-api-wrapper 308 259.87 0.19
java-classmate 551 450.46 0.22
jdbi 903 783.99 0.15
jfreechart 4686 3910.15 0.20
joda-money 236 230.76 0.02
jodatime 6920 5801.10 0.19
jopt-simple 589 514.36 0.15
mercurial-plugin 102 80.95 0.26
mirror 532 444.17 0.20
mp3agic 730 639.01 0.14
ognl 2990 2835.77 0.05
pipes 338 288.41 0.17
primitives 1365 1155.09 0.18
sandbox-primitives 1365 1155.01 0.18
validator 759 647.36 0.17
webbit 325 280.89 0.16
xstream 1960 1691.84 0.16

The utility Up e r f is computed as Up e r f = 1 − kill(T , M )
kill(T m

r , M ) where

kill(T , M ) is the number of detected mutants in M, and kill(T m
r , M )

is the number of mutants detected by a minimal test correspond-
ing to a random sample of mutants of the same size as the minimal
set of mutants.

TABLE V
CORRELATION OF UTILITY FOR ALL MUTANTS, KILLED MUTANTS, MUTATION

SCORE, AND MINIMAL TEST SUITE SIZE, BASED ON BOTH FULL SET OF

MUTANTS, AND ALSO CONSIDERING ONLY DISTINGUISHED MUTANTS

R2
all R2

distinguished

M −0.02 −0.03
M kill −0.03 −0.02
M kill/M −0.02 −0.01
T m in −0.02 −0.02

Utility Up has low correlation with total mutants, detected
mutants, mutation score, and minimal test suite size. Correlation
factors are given in Table V.

ANOVA on Uperfect found that the variability due to project
is again significant at p < 0.001 and strongly interacts with

Fig. 6. Using distinguished mutants. Distribution of maximum utility using
distinguished mutants across projects. The projects are ordered by the cardinality
of mean minimal test suite. The red line indicates the mean of all observations.

kill(Trandom ,M):

µ{Up} = project + kill(Tr ,M) + project× kill(Tr ,M).

The variable project has a correlation of 0.742 with the Uperfect,
and the combined terms have a correlation with Uperfect of
0.9994.

B. Comparison of Selection Strategies

1) Operator Selection: Considering the operator selection
results (Table VI, standard deviation in Table XI. The strategy
with the maximum advantage in utility was Constrained (0.18%
compared to random sampling). The strategy with the maxi-
mum advantage in test utility was S-Selective (3.02% compared
to random sampling). Similarly, the strategy with the maximum
advantage in assert utility was again S-Selective (1.44% com-
pared to random sampling).

Considering the N-selection results (Table VII, standard de-
viation in Table XII. In terms of utility, the best strategy was
RS (4.75% compared to random sampling). The strategy with
the maximum advantage in test utility was removal of NMC
(2.37% compared to random sampling). Similarly, the strategy
with the maximum advantage in assert utility was NMC (2.02%
compared to random sampling).

2) Stratified Sampling Over Operators: Considering strat-
ified sampling over operators (Table VIII, standard deviation
in Table XIII). In terms of utility, the best strategy was 1/64
(0.69% compared to random sampling). The strategy with the
maximum advantage in test utility was 1/32 (0.78% compared
to random sampling). Similarly, the strategy with the maximum
advantage in assert utility was 1/64 (2.06% compared to random
sampling).

3) Stratified Sampling Over Program Elements: Consider-
ing stratified sampling over program elements (Table IX, stan-
dard deviation in Table XIV). In terms of utility, the best strategy
was 1/64 sampling of class (2.81% compared to random sam-
pling). The strategy with the maximum advantage in test utility
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TABLE VI
OPERATOR SELECTION STRATEGY

Mean operator selection results for all projects

Strategy Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

Constrained 0.18 −12.94 −9.24 14.13 0.05 98.32
E-Selective −1.05 −7.76 −7.60 36.42 −1.04 99.64
S-Selective 0.08 3.02 1.44 49.35 0.08 99.86
R-Selective −1.39 −9.89 −9.03 14.22 −1.35 98.74
ES-Selective 0.01 0.63 0.38 85.78 0.01 99.99
RS-Selective −0.57 −6.10 −5.77 50.65 −0.56 99.82
RE-Selective 0.00 1.87 1.37 63.58 0.00 99.94
Javalance −0.10 −5.49 −3.88 59.73 −0.10 99.91
VarReduction 0.03 1.73 1.29 71.09 0.03 99.97
SDL −0.01 1.58 0.30 63.02 −0.01 99.94

TABLE VII
N-SELECTIVE STRATEGY

Removed Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

rm.nmc 0.04 2.37 2.02 73.00 0.04 99.96
rm.rv 0.04 −1.46 −2.21 63.09 0.04 99.92
rm.ic 0.02 −1.38 −2.29 53.45 0.02 99.87
rm.dc 0.08 −2.77 −3.43 44.45 0.08 99.81
rm.nc 0.05 0.22 −2.00 32.02 0.05 99.64
rm.rc −0.28 −1.99 −7.14 20.92 −0.27 99.31
rm.vmc −0.68 −5.06 −11.62 17.32 −0.67 99.14
rm.cc −1.03 −18.25 −18.17 11.70 −1.19 97.55
rm.emv −5.94 −29.54 −28.13 7.03 −6.02 94.48
rm.m −7.59 −29.93 −26.79 4.56 −6.39 92.66
rm.cb −12.89 −36.36 −36.96 2.89 −9.72 88.49
rm.i −21.00 −40.58 −40.81 1.73 −15.18 82.11
rm.ri −33.38 −39.81 −31.14 0.59 −13.29 47.87
rm.rs 4.75 −12.11 −25.68 0.15 0.86 33.69
rm.es −11.08 −14.25 −16.28 0.04 −1.81 10.37

Each row removes the named mutation operator from the preceding row.

TABLE VIII
OPERATOR-BASED x% SAMPLE STRATEGY

Fraction Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

1/2 0.01 0.23 0.26 50.00 0.01 99.87
1/4 0.04 −0.33 −0.24 25.00 0.03 99.50
1/8 0.11 0.60 0.83 12.51 0.10 98.63
1/16 0.23 −0.35 −0.59 6.25 0.20 96.57
1/32 −0.02 0.78 1.89 3.13 −0.05 92.83
1/64 0.69 0.74 2.06 1.56 0.42 86.08

was 1/16 sampling of method (6.68% compared to random sam-
pling). Similarly, the strategy with the maximum advantage in
assert utility was 1/32 sampling of class (7.82% compared to
random sampling).

VI. DISCUSSION

One of the biggest questions for a practicing software tester is
whether the test suite is good enough. While there exist numer-
ous techniques to evaluate test suites, mutation analysis is often
considered to be the golden standard. Unfortunately, mutation
analysis is hobbled by the amount of computation required for a
full run. A reduction in the computational requirements of mu-

tation analysis, while maintaining its effectiveness, is actively
sought after.

In this context, it is crucial to understand the limits of such
reduction strategies, especially the comparative performance of
each strategy against simple random sampling that serves as a
baseline. This can help us evaluate benefits of further research.

A. Comparison With Oracular Strategy

Theoretical analysis of a simple idealized system finds a mean
effectiveness improvement of 58.2% over random sampling for
a perfect mutation reduction strategy with oracular knowledge
of mutation kills, assuming a uniform redundancy of mutants,
and robust test cases able to distinguish unique faults.
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TABLE IX
ELEMENT-BASED x% SAMPLE STRATEGY

Fraction Elt Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

1/2 line 0.05 2.24 1.74 49.98 0.05 99.87
1/4 line 0.12 3.11 2.21 24.96 0.12 99.49
1/8 line 0.35 3.92 3.16 12.47 0.34 98.62
1/16 line 0.67 3.03 2.14 6.24 0.59 96.57
1/32 line 0.54 1.50 0.64 3.15 0.40 92.81
1/64 line 0.39 0.05 1.20 1.57 0.32 86.04
1/2 method 0.04 2.16 1.73 50.00 0.04 99.87
1/4 method 0.11 3.25 2.34 25.00 0.11 99.51
1/8 method 0.39 4.48 3.62 12.51 0.38 98.68
1/16 method 0.98 6.68 7.15 6.24 0.91 96.69
1/32 method 1.94 5.30 5.92 3.13 1.66 92.69
1/64 method 1.91 6.37 6.24 1.57 1.12 86.35
1/2 class 0.01 0.90 0.80 49.99 0.01 99.88
1/4 class 0.05 0.84 0.31 25.01 0.05 99.53
1/8 class 0.21 2.45 1.91 12.50 0.20 98.68
1/16 class 0.59 3.29 3.39 6.24 0.55 96.85
1/32 class 1.79 5.17 7.82 3.12 1.42 92.77
1/64 class 2.81 4.12 5.00 1.55 2.08 86.09

Format: The test and assert utility shows how good the mutation strategy is in selecting nonredundant test cases as percentage
difference. The mutation share is the fraction of mutants selected by the strategy compared to the full set. The strategy
effectiveness shows the total mutants caught by a test suite selected by the strategy mutants, and is provided as comparison to
baseline effectiveness in percentage.

Empirical analysis of a large number of open source projects
reveals that the practical limit is much lower than this theoretical
advantage: It is on average only 13.1% for mutants produced
by PIT. Discounting the effects of skew (by using only distin-
guished mutants) the potential improvement is still just 17.5%
on average.

The theoretical limit in analysis shows the best that can be
done by a perfect mutation strategy, given the worst distribution
of mutants one may encounter. On the other hand, the empirical
analysis finds the average utility of a perfect strategy without
regard to the distribution of mutants in different programs. How
different is the distribution of faults in mutants in real world
compared to our simple model? And how far is our assumption
of test cases that distinguishes faults uniquely? The TVD col-
umn in Table X captures the total variation distance19 between
a uniform distribution of faults and the actual distribution. The
Mean column is computed in the following manner: We com-
puted the total number of mutants detected by each test in a
given project, and divided that by the total number of mutants.
We then computed the mean and variance of this set of values
for each project. That is, a low value for Mean and Var provides
an indication of whether that test case was able to detect a mutant
uniquely. Note that violation of these two assumptions have op-
posite effects on the mean effectiveness. So what do these values
mean? Indeed, the real-world distribution of faults in mutants
seem to be far from the simplified model we considered in the
theoretical analysis. The value of the theoretical model is in
showing that there exists a limit, even for such simple systems,
and the possible improvement in reduction is not unlimited as is
often supposed. Further, as we have seen in the empirical anal-
ysis, the effect of sharing in the mutant kills between test cases

19The TVD is the largest difference in probabilities that can be assigned to an
event when it is considered under the different probability distributions under
consideration [78].

is larger than the effect due skew in redundant mutants leading
to a much lower upper bound in mean effectiveness.

Finally, we found that effects of skew were small (the dif-
ference between mean effectiveness improvement of the set of
distinguished mutants and the mean effectiveness improvement
of all mutants is only 4.39%).

The empirical upper bounds on gain in utility are quite low,
and call into question the effort invested into devising, evalu-
ating, and improving mutation reduction strategies. Of course,
random sampling is subject to the vagaries of chance: one can
obtain arbitrarily good or bad samples. However, our results
suggest that the variance of individual samples is rather low,
and the situation improves quite a bit with larger projects—e.g.,
the variance of commons-math is just 0.397%. The chance for
a really bad sample is very low in the case of any project large
enough to require mutant reduction, and drops quickly as the
number of test cases increases. It is possible that the adequacy
of test suites has an impact, but our analysis of projects with ad-
equate test suites suggests that there is very little difference due
to adequacy (Uperfect =14%). In general, using accepted stan-
dard practices for statistical sampling to produce reasonably
sized random mutant samples should be effective in practice for
avoiding unusually bad results. Random sampling is also easy
to implement and incurs negligible overhead.

B. Comparison With Selection Strategies

An important concern for a software tester during develop-
ment is whether a newly added test contributes toward the ef-
fectiveness of a test suite. Not all tests are useful—some are
redundant—recall that we use minimum test suites for our test
utility and assert utility measures, averaged over multiple runs.
Even if tests are not equal, a new test will improve a test suite if
it increases the average size of a minimum test suite. Hence, the
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TABLE X
COMPARISON OF ACTUAL DISTRIBUTION TO THE HYPOTHETICAL

DISTRIBUTION OF MUTANTS

Project TVD Mean Var

annotation-cli 0.610 132.519 619.194
asterisk-java 0.824 54.634 2233.218
beanutils 0.528 114.084 11,379.741
beanutils2 0.797 22.927 989.231
betwixt 0.370 375.375 85,282.405
clazz 0.761 45.633 1831.671
cli 0.649 103.560 4305.466
cli2 0.578 77.097 6895.613
collections 0.828 23.263 608.567
commons-codec 0.694 66.869 8155.081
commons-lang3 0.658 38.425 2385.877
commons-math1-l10n 0.882 167.735 45,788.994
commons-math1 0.874 46.839 9733.084
config-magic 0.556 77.784 1279.737
configuration 0.596 311.203 190,370.838
csv 0.417 66.973 3135.170
dbutils 0.832 15.247 277.450
events 0.785 34.732 1638.498
faunus 0.777 162.535 17,236.249
fongo 0.665 87.982 1152.285
hank 0.851 102.035 10,957.940
java-api-wrapper 0.700 59.073 4382.035
java-classmate 0.540 56.341 6825.645
jdbi 0.512 369.899 70,890.693
jfreechart 0.890 122.665 39,898.268
joda-money 0.949 15.907 2745.724
jodatime 0.787 139.046 17,765.564
jopt-simple 0.576 74.075 6906.461
mercurial-plugin 0.911 10.688 60.632
mirror 0.696 35.847 1182.496
mp3agic 0.545 142.746 58,857.711
ognl 0.516 523.544 161,933.423
pipes 0.770 45.934 1372.295
primitives 0.676 21.181 347.946
sandbox-primitives 0.674 21.253 348.259
validator 0.555 107.037 13,150.119
webbit 0.694 143.712 27,401.945
xstream 0.621 362.312 166,391.685

The TVD is the total variation distance of the actual distri-
bution of mutant kills from a Uniform distribution. The Mean
and Var are, respectively, the mean and variance of the mean
number of mutants killed per test case.

average size of a minimum test suite is a reasonable measure
for the utility of a set of mutants.

The second question is whether the test suite selected by a
subset of mutants is similarly effective to the test suite selected
by the full set of mutants. This is the question answered by the
traditional criteria of strategy effectiveness.

It is possible for our criteria to return contrary results to the
traditional criteria. For a pathological example, consider a set of
test cases with a single strong test case, and a large number of
weak test cases. This can result in a high strategy effectiveness
if the strong test is included, and a low test utility due to the very
low number of nonredundant test cases. Similarly, if the strong
test case is excluded, it can result in a high test utility, while
having a low strategy effectiveness if the mutants discarded by
the strategy are same ones that are killed by the strong test.
However, we consider a mutation strategy useful if it has some
utility for at least one of these criteria. Consider the results from
our empirical evaluation:

1) Operator Selection: For operator selection (see
Table VI), constrained performs best in utility, while S-
Selective performs best in test utility and assert utility. For
N-selection, (see Table VII) the best test utility and assert utility
was removal of operators until NMC. The best strategy effec-
tiveness for all projects was the removal of operators until RS.
Note that the advantage gained for most strategies compared to
random sampling is very small, and are often negative.

2) Stratified Sampling Over Operators: For stratified sam-
pling over operators (see Table VIII), the best test utility appears
to be at 1/32 and for assert utility, and strategy effectiveness,
the best is 1/64. Note that the advantage gained in each case is
very small.

3) Stratified Sampling Over Program Elements: For strati-
fied sampling over program elements (see Table IX), there ap-
pears to be a small but consistent advantage for most sample
fractions. The best test utility was achieved by 1/16 method-
based sampling. Similarly, the best assert utility was achieved by
1/32 class based sampling, and the best strategy effectiveness
was for 1/64 class based sampling.

The interesting thing to note here is that there is no consis-
tent winning strategy. That is, there is no strategy that provides
an advantage over all others. Second, operator selection strate-
gies provide little benefit (or even decrease performance) over
random selection for even strategy effectiveness (the traditional
criteria).

The results indicate that operator selection strategies in gen-
eral tend to be either disadvantageous (sometimes by a large
difference), or where advantageous, this is by a very small mar-
gin compared to the baseline.

The strata-based random selection strategies fare a little bet-
ter. While they are mostly advantageous, the advantage is always
rather small—below 5%. Strata-based selection is founded upon
a simple assumption; mutants within strata are more similar to
each other than to those outside, and strata-based selection works
well for approximating full mutation scores [14], [79] when this
assumption is met. Our results indicate that while there is a
small advantage, this advantage is almost always less than 1%
compared to the baseline for strategy effectiveness. One factor
that one may wish to consider is that strata-based techniques can
reduce the variance of computed results compared to random
sampling, and hence may be of use. However, strata-based sam-
pling is effective only as long as all the elements of a given strata
can provide samples for a given fraction. A 1

64 fraction sample
for a statement generating ten mutants is effectively zero, and
hence statement-based strata may no longer be useful for 1

64
samples. Hence simple strata-based sampling may be advanta-
geous to consider when the considered strata are large enough
to provide representative samples. However, in this respect, one
may consider using one of the subrandom sampling systems
such as Poisson disc sampling [80], which avoids the regularity
of systematic sampling, but also reduces variability of results.

We caution that cost reduction is not the only reason for
using selective mutation. Operator selection techniques [81]
have been used to reduce the incidence of equivalent mu-
tants, and some of the higher order mutation operators such
as statement deletion [56], [82] have markedly fewer equivalent
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TABLE XI
OPERATOR SELECTION STRATEGY—STANDARD DEVIATION

Operator selection results for all projects (standard deviation)

Strategy Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

Constrained 4.32 7.92 12.17 2.72 3.56 3.65
E-Selective 2.26 9.48 9.76 6.64 2.24 0.66
S-Selective 0.18 6.44 6.55 8.25 0.18 0.19
R-Selective 3.95 14.13 20.78 4.29 3.81 1.48
ES-Selective 0.02 3.54 4.30 4.29 0.02 0.02
RS-Selective 2.07 8.70 10.20 8.25 2.06 0.35
RE-Selective 0.12 3.46 3.37 6.64 0.12 0.09
Javalance 0.31 7.12 5.52 4.50 0.31 0.16
VarReduction 0.05 4.75 4.17 5.90 0.05 0.05
SDL 0.23 3.85 2.44 7.49 0.23 0.09

TABLE XII
N-SELECTIVE STRATEGY

Removed Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

rm.nmc 0.06 4.60 5.23 6.86 0.06 0.06
rm.rv 0.13 9.34 8.74 7.51 0.13 0.14
rm.ic 0.31 10.33 8.67 5.39 0.30 0.20
rm.dc 0.30 9.65 8.39 5.90 0.30 0.28
rm.nc 0.53 10.81 8.29 5.59 0.52 0.48
rm.rc 1.44 12.43 10.32 5.17 1.41 0.85
rm.vmc 2.70 10.50 12.41 4.80 2.65 0.97
rm.cc 5.72 12.41 16.37 5.03 4.82 5.77
rm.emv 8.41 11.49 17.63 5.17 6.72 12.50
rm.m 9.05 12.33 23.15 2.55 7.15 12.56
rm.cb 17.85 13.14 25.74 1.79 12.14 15.18
rm.i 22.03 22.86 28.05 1.31 13.87 19.51
rm.ri 28.24 19.77 35.09 1.09 16.01 38.52
rm.rs 41.41 16.20 36.77 0.21 12.63 33.22
rm.es 54.96 15.33 57.23 0.12 10.48 21.52

Each row removes the named operator from the preceding row—standard deviation.

TABLE XIII
OPERATOR-BASED x% SAMPLE STRATEGY—STANDARD DEVIATION

Fraction Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

1/2 0.05 1.42 1.64 0.03 0.05 0.21
1/4 0.12 1.90 2.10 0.03 0.12 0.62
1/8 0.58 3.04 4.41 0.03 0.55 1.59
1/16 1.39 2.97 4.49 0.03 1.18 3.60
1/32 1.54 4.84 6.32 0.04 1.25 7.11
1/64 3.89 4.89 12.43 0.03 2.55 12.20

mutants than other operators. Further, one of the stated aims
of Javalanche [83] is to avoid equivalent mutants as much as
possible. However, one has to be very careful about the impact
in effectiveness if one uses operator selection for these purposes.

Our results are applicable not only to selective mutation, but
also to mutation implementors looking to add new mutation op-
erators. Imagine a mutation system implementor has achieved
perfect set of mutation operators: Their current set of mutants
does not have any redundant mutants (this is highly unlikely
given our understanding of mutant semiotics, and the complex-
ity of real programs). When we consider the addition of a new
set of random mutants that do not improve the mutant set, in that
they are all redundant with respect to the original set (probably

unlikely in practice, given that we are introducing new mutants),
the maximum disadvantage thus caused is bounded by our limit
(18.8% upper limit for 95% of projects). However, at least a few
of the new mutants are in reality likely to improve the represen-
tativeness of a mutation set compared to possible faults. Since
there is no upper bound on the number of new distinguishable
mutants that could be introduced, there is no upper bound for
the maximum advantage gained by adding new mutation op-
erators. A bounded disadvantage and unbounded advantage is
clearly a desirable situation. Adding new operators is especially
attractive in the light of recent results showing classes of real
faults that are not effectively captured by any of the mutation
operators in common use [5].
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TABLE XIV
ELEMENT-BASED x% SAMPLE STRATEGY—STANDARD DEVIATION

Fraction Elt Utility Test utility Assert utility Mutation share Strategy effectiveness Baseline effectiveness

1/2 line 0.09 1.63 2.16 0.16 0.09 0.18
1/4 line 0.16 1.77 2.52 0.15 0.16 0.63
1/8 line 0.70 2.81 2.98 0.16 0.67 1.48
1/16 line 2.01 3.45 4.72 0.19 1.63 4.00
1/32 line 2.16 5.85 7.88 0.15 1.53 7.03
1/64 line 2.15 5.59 7.93 0.10 1.70 12.31
1/2 method 0.12 2.01 2.09 0.10 0.12 0.20
1/4 method 0.18 2.48 2.35 0.08 0.17 0.62
1/8 method 0.69 3.32 3.92 0.09 0.66 1.38
1/16 method 1.37 5.79 6.63 0.09 1.20 3.48
1/32 method 2.22 4.55 7.72 0.07 1.67 7.33
1/64 method 6.20 10.23 11.25 0.08 2.55 12.97
1/2 class 0.07 1.18 1.86 0.04 0.07 0.18
1/4 class 0.14 1.78 2.35 0.05 0.14 0.61
1/8 class 0.36 2.36 3.09 0.05 0.35 1.39
1/16 class 0.77 4.55 5.02 0.04 0.70 3.20
1/32 class 4.22 3.81 7.11 0.06 2.71 7.45
1/64 class 4.03 5.95 10.69 0.05 2.18 12.18

VII. THREATS TO VALIDITY

Our theoretical study may be subject to the following threats
to validity. We showed that there exist a limit to the mean ef-
fectiveness under two simplifying assumptions: uniform redun-
dancy of faults in mutants, and sufficient test cases to uniquely
identify faults. However, it is possible that the real-world dis-
tribution of faults may be much more complex, and our con-
clusions from this simple model may not be applicable to the
real-world faults and test cases.

Our empirical study may be subject to the following threats
to validity.

Construct validity: We use the minimum set of mutants as the
measure of diversity of mutants. It is possible that the minimum
set of mutants is not representative of the actual diversity of
mutants. However, we note that the minimum set of mutants is
the best method suggested in the literature to measure actual
diversity of mutants. We have further used the number of asserts
as a secondary measure to further protect against unforeseen
biases.

Internal validity: Our measurement of the minimal set of
mutants is only an approximation. While the algorithm used
guarantees an H(|M |) approximation, it is not clear how much
actual variation this could have caused in our measurement. We
note that we take an average of 100 runs for each observation to
protect against such errors.

As our focus was on the practical advantages of different mu-
tation reduction strategies for a practicing tester, we relied on
a popular mutation tool used in industry—PIT. However, PIT
does have some drawbacks such as an incomplete repertoire of
mutation operators and an imperfect mapping to source level
mutants. While we have ensured a fair repertoire of mutation
operators in PIT, and have tried to map the source level mutants
to bytecode level mutants, some imperfections may still exist.
However, given that we have captured the original reasoning be-
hind the strategies, and also that previous research on same area
has used Javalanche, which operates under similar constraints,
we believe that the influence on our results is minimal.

External validity: Our results depend on the representative-
ness of our samples, which were obtained from the GitHub
repository. We have used Java Maven projects for ease of au-
tomation of experiment and measurement. While we do not
foresee any confounding biases in our selection procedure, the
possibility exists. Hence, the generalizability of our findings
depends on the representativeness of these projects.

Finally, software bugs are a part of life. While we have tried
to ensure that our tools, and analysis are free of errors, the same
cannot be guaranteed. Hence, replication of these results by a
different group using different tools is of utmost importance.

VIII. CONCLUSION

This paper shows that blind random sampling of mutants is
surprisingly close in effectiveness to the best achievable bound
for mutation reduction strategies that unrealistically use perfect
knowledge of mutation analysis results. There is surprisingly
little room for improvement over random sampling to be gained
by smarter reduction strategies. Previous researchers showed
that there is very little advantage to current operator selection
strategies compared to random sampling [13], [14]. However,
these experiments lacked direct comparison with random sam-
pling of the same number of mutants. It was also demonstrated
that the current strategies fare poorly [23] when compared to
the actual minimum mutant set, again without a comparison to
random sampling. Our primary contribution in this paper is to
combine an analysis of the absolute limits to the improvement
over random sampling that any reduction strategy can have (ir-
respective of the intelligence of the strategy) with a thorough,
direct, empirical comparison of the effectiveness of most current
strategies’ effectiveness compared to random sampling.

The theoretical analysis suggests a mean effectiveness ad-
vantage of 58.2% over random sampling for a perfect mutation
reduction strategy with (unrealistic) oracular knowledge of kills
for an arbitrary program, under the assumption of uniform re-
dundancy in mutants, and test sets robust enough to distinguish
unique faults. Empirically, we find that actual projects yield a
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much lower advantage 13.1% even for a perfect reduction strat-
egy with oracular knowledge. Eliminating the effects of skew in
redundant mutant populations by considering only distinguished
mutants, we find that the advantage of a perfect mutation reduc-
tion strategy is still only 17.5% over random sampling. The low
impact of skew on results (4.39%) suggests that our simplifying
assumptions for theoretical analysis are reasonable. No actual
reduction strategies examined come close to the empirical limit,
with the best performing no better than 5%, and most others
performing worse (sometimes much worse) than random sam-
pling. The disparity between the theoretical prediction and the
empirical results is due to the inadequacies of real-world test
suites, which have a much smaller minimum mutant set than
the distinguishable mutant set. While work on mutation reduc-
tion strategies routinely claims a high reduction factor, and one
might expect a similar magnitude of utility over random sam-
pling, this to materialize either in theory or practice, for a large
set of real-world open source programs and suites.

A researcher or an implementor of mutation testing tools
should carefully consider the value of devising or implement-
ing a mutation reduction strategy, given this theoretical and
empirical performance for both hypothetical and real methods.
Because variability due to projects is significant, a testing prac-
titioner would also do well to consider whether the mutation
reduction strategy being used is suited for the particular sys-
tem they need to test (such consideration could be based on
historical data for the project, or on projects that are in some
established sense similar). Random sampling of mutants is not
extremely far from an empirical upper bound on an ideal mu-
tation reduction strategy, and has the considerable advantage of
having little room for an unanticipated bias due to adapting a
selection method that turns out to be ill-advised for a particular
program.

The most important takeaway from our research may be that
it is perhaps most effective to improve mutation analysis via fur-
ther research into newer mutation operators (or new categories
of mutation operators such as domain specific operators for con-
currency or resource allocation). We show that there is limited
or no reduction in utility due to addition of newer operators even
in the worst case, while there is no upper bound for the possible
improvement.

Our advice to mutation tool implementors is twofold: try to
provide as many sources of variation as possible, and avoid
questionable reduction strategies that reduce overall variation.
You can always reduce the number of mutants to execute using
simple random sampling of the mutants produced.

We give similar advice to the practicing tester: Pure random
sampling is the best method for mutation reduction for a generic
project. Avoid strategies such as operator selection, or clustering
unless there are other requirements such as avoidance of equiva-
lent mutants, reduction of mutation cost, or selection of specific
bug types. (Note that even subsumption of specific operators
is not a forgone conclusion [30]). Use strata-based sampling
only when you can be sure that all strata elements can produce
representative samples for a given sampling fraction.

Indeed, the most important insight to be derived from our
research can be succinctly described by what we call Hamlet’s

principle, formulated in the context of random testing [84]: in
the absence of a rational basis for systematic methods, random
methods are best at avoiding bias.

APPENDIX

A. Computing Approximate Minimum Testsuite

The computation of the minimum test suite is an instance
of the problem of set cover. It is one of the well known NP-
Complete problems, and hence the minimum test suite can only
be approximated.

There are two main algorithms for computing the approximate
minimum test suite. The greedy algorithm and the reverse greedy
algorithm.

1) Greedy Algorithm: In the greedy algorithm given in
Algorithm 1, the approximate minimum set is built step by
step by finding the next best test cases to incorporate into the
minimum set.

Algorithm 1: Finding the Approximate Minimum Test
Suite.

function GREEDYMINTEST (Tests, Mutants)
T ← Tests
M ← kill(T, Mutants)
Tmin ← ∅
while T �= ∅ ∨M �= ∅ do

t← random(max
t
|kill({t},M)|)

T ← T \ {t}
M ← kill(T, Mutants)
Tmin ← Tmin ∪ {t}

end while
return Tmin

end function

This algorithm achieves an approximation bound of k(1 +
ln(n

k )) sets where n = |U | (the total number of elements) and
k is the size of the minimal set. Further, it has been shown [85]
that if there exists a better approximation, such that it can ap-
proximate set cover in C ln(n), where C ≤ 1, then P = NP .

2) Reverse Greedy Algorithm: In the reverse greedy algo-
rithm (see Algorithm 2), for each iteration, we remove the least
effective test that is not required for maintaining the mutation
score.

We demonstrate that this algorithm will have a worse guar-
antee [74] than that of the greedy algorithm. Say we have a uni-
versal set of mutants U = {1 . . . 2n}. For every i = 1, . . . , n,
define a set with n + 1 elements by Si = {i, n + 1, . . . , 2n},
and a set A = {n + 1, . . . , 2n}. Say we want to cover U with
the sets C = {S1 , . . . , Sn ,A}. Now, the least effective set is
A because it covers only n elements when compared to Si ,
which covers n + 1 elements. Hence, it is discarded first, and
the algorithm will return a cover with {S1 , . . . , Sn}, with size
n. However, the minimum cover is just {S1 , A}, with size 2.
That is, the guarantee of approximation cannot be better than
that of greedy but could be worse.
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Algorithm 2: Finding the Approximate Minimum Test
Suite.
function REVERSEGREEDYMINTEST (Mutants, Tests)

T ← Tests
M ← kill(T, Mutants)
Tr ← {t : kill(T \ {t},M) = kill(T,M)}
while Tr �= ∅

t← min
t∈Tr

|kill({t},M)|
T ← T \ {t}
Tr ← {t : t ∈ Tr ∧ kill(T \ {t},M)
= kill(T,M)}

end while
return T

end function
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