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Abstract Though mutation analysis is the primary means of evaluating the quality of test

suites, it suffers from inadequate standardization. Mutation analysis tools vary based on

language, when mutants are generated (phase of compilation), and target audience.

Mutation tools rarely implement the complete set of operators proposed in the literature

and mostly implement at least a few domain-specific mutation operators. Thus different

tools may not always agree on the mutant kills of a test suite. Few criteria exist to guide a

practitioner in choosing the right tool for either evaluating effectiveness of a test suite or

for comparing different testing techniques. We investigate an ensemble of measures for

evaluating efficacy of mutants produced by different tools. These include the traditional

difficulty of detection, strength of minimal sets, and the diversity of mutants, as well as the

information carried by the mutants produced. We find that mutation tools rarely agree. The

disagreement between scores can be large, and the variation due to characteristics of the

project—even after accounting for difference due to test suites—is a significant factor.

However, the mean difference between tools is very small, indicating that no single tool

consistently skews mutation scores high or low for all projects. These results suggest that

experiments yielding small differences in mutation score, especially using a single tool, or

a small number of projects may not be reliable. There is a clear need for greater stan-

dardization of mutation analysis. We propose one approach for such a standardization.
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1 Introduction

Mutation analysis (Lipton 1971; Budd et al. 1979) is one of the best known methods for

evaluating the quality of a test suite. Traditional mutation analysis involves exhaustive

generation of first-order faults, under the assumption that programmers make simple

mistakes (the competent programmer hypothesis) and that most complex faults can be

found by tests able to detect simpler faults (the coupling effect). The ability of a test suite to

detect the injected mutants is taken to represent its effectiveness in detecting real faults.

Mutation analysis has been validated many times in the past. Daran and Thévenod-

Fosse (1996), Andrews et al. (2005, 2006), Do and Rothermel (2006), and more recently

Just et al. (2014) suggest that failures generated by mutants resemble failures from real

faults, that mutation analysis is capable of generating faults that resemble real bugs, that

the ease of detection for mutants is similar to that for real faults, and that the effectiveness

of a test suite in detecting real faults is reflected in its mutation score.

These qualities have led developers to create numerous mutation analysis tools (Jia and

Harman 2011; Delahaye and Du Bousquet 2013), with different tools for different lan-

guages, virtual machines, and introducing mutations at various stages—including design

level and specification (Budd and Gopal 1985; Okun 2004), directly from source code

(Smith and Williams 2007; Jia and Harman 2008), abstract syntax tree (Derezińska and

Hałas 2014; Le et al. 2014; Just 2014), intermediate representation (Kusano and Wang

2013), byte code of various virtual machines (Coles 2016; Irvine et al. 2007), and even

machine code (Duraes and Madeira 2002). This also means that there is often no direct

translation between modifications carried out at a latter phase to an earlier phase,1 or a

direct first-order translation between an earlier phase and a latter one.2 Tools may also

choose to implement uncommon domain-specific mutation operators such as those tar-

geting multi-threaded (Gligoric et al. 2010) code, using memory-related (Nanavati et al.

2015) operators, higher-order mutations (Jia and Harman 2008), object-oriented opera-

tors (Ma et al. 2002, 2005), or database-targeting operators (Zhou and Frankl 2009).

Not all mutants are similar in their fault emulation capabilities (Siami Namin et al.

2008; Offutt et al. 1996; Barbosa et al. 2001). Redundant mutants tend to add noise (Just

et al. 2012; Kurtz et al. 2014), and undetected equivalent mutants deflate the measured

mutation score (Schuler et al. 2009; Offutt and Craft 1994; Schuler and Zeller 2013; Nica

and Wotawa 2012; Papadakis et al. 2015). There may be numerous easy-to-detect mutants,

and a few stubborn mutants that are hard to find (Yao et al. 2014).

This presents a predicament for the software practitioner. There is no guideline for

choosing a tool that is best suited for evaluating quality of a test suite, or for comparing

multiple testing techniques. This paper proposes multiple measures to evaluate different

tools and also provide a comparative benchmark for existing tools.

One measure that is often used for comparing mutants produced by different tools is to

consider the mean scores obtained by different tools on similar subjects. It is assumed that

the mutation tool with the lowest mean score produced the hardest to find (and hence best)

mutants. However, this criteria fails to account for problems due to equivalent mutants.

Equivalent mutants are undetectable and hence deflate the mutation score. This causes

1 Very often, a single high level statement is implemented as multiple lower level instructions. Hence, a
simple change in assembly may not have an equivalent source representation. See Pit switch mutator (Coles
2016b) for an example which does not have a direct source equivalent.
2 See Pit return values mutator (Coles 2016b) for an example where first-order source changes imply much
larger bytecode changes.
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skew in favor of tools that produce numerous equivalent mutants. It is also sometimes

assumed that tools generating only a small number of mutants are better than those gen-

erating a larger number of mutants for a program. In fact, some tools apply selective

mutation by default, resulting in a smaller number of mutants. However, we note that

selective mutation has questionable benefits (Gopinath et al. 2016, 2015) and that any

large set of mutants can be reduced to a much smaller number by random sampling without

significant loss of accuracy (Gopinath et al. 2015) or effectiveness (Gopinath et al. 2016).

Hence, generating a smaller number of mutants is in itself not necessarily a desirable

attribute.

The traditional way to evaluate a selected set of mutants is to first compute the mini-

mum adequate test suite required for that set of mutants and then evaluate the effectiveness

of that minimum test suite against the larger set from which the mutants were selected. If

the minimal adequate test suite for the selected set of mutants is still adequate for the larger

set of mutants, the selected set is deemed equal in effectiveness to the larger set of mutants.

This evaluation criteria can be extended for non-adequate test suites trivially by consid-

ering only the detected mutants. However, we note that this criteria cannot provide a

standard measure for comparing mutants from different tools because it requires a superset

of mutants to compare against. Since we are trying to come up with a standard score, we

have to consider any mutant that can possibly be introduced by a mutation tool. That is, the

full set of mutants that is required for a standard measure is the complete set of faults a

program can have, which is infeasible to evaluate.

Previous comparisons of mutation tools (Coles 2016a; Madeyski and Radyk 2010;

Singh et al. 2014; Delahaye and Du Bousquet 2013) have focused on syntactic features, the

number of mutants produced and tool support, with few considering the actual semantic3

characteristics of mutants. Mutant semantics assumes new importance in the wake of

recent questions regarding the efficacy of various mutation tools (Offut 2016a; Ammann

2015a; Offut 2016b).

We benchmark multiple tools using an ensemble of measures from different fields. We

use raw mutation scores (without removing non-detected mutants first—which may be

subject to skew due to equivalent mutants) and refined mutation scores (removing non-

detected mutants which may contain equivalent mutants) and compare the scores produced

by different random subsets of test suites. Next we consider the strength4 of mutants

produced, using the minimal set of mutants (Kintis et al. 2010; Ammann et al. 2014)

originally formulated by Kintis et al. (2010) as disjoint mutant set as a measure of the

utility of a mutant set, and also a slightly relaxed criterion—using non-subsumed (surface)

mutants rather than a minimal set for comparison. We then measure the diversity5 of a set

of mutants using statistical measures such as sum of covariance [which we have shown

3 By semantics, we mean the actual behavior (in contrast to the static syntax) of the mutants. That is, some
mutants, while syntactically different, are actually indistinguishable in their behavior. Similarly mutants
may be hard or easy to detect, and a set of mutants may encode more difference in behavior than another set.
We use measures such as mutual information and entropy to measure the ability of a set of mutants to
provide a diverse a behavior set.
4 For any set of mutants, the strength of a test suite required to detect them depends on the number of non-
redundant mutants within that set. Thus, for this paper, we define the strength of a set of mutants as the
number of non-redundant mutants within that set.
5 Diversity of a set of mutants refers to how different one can expect any two mutants from the set to be, in
terms of the tests that kill them. For example, say we have mutant set A, and killing tests given by
fðm1; t1Þ; ðm2; t2Þg, and mutant set B and killing tests given by fðm1; t1Þ; ðm2; t2Þ; ðm3; t3Þg, both have
similar diversity, while another set C given by fðm1; t1Þ; ðm2; t1Þg has a different diversity.
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previously (Gopinath et al. 2015) to be related to the sample size required for any set of

mutants for accurate estimation of mutation score], and the mutual information of mutants

(which measures the redundancy of a mutant set).

Finally, consider that a test suite is often considered to be one of the ways to specify

program behavior (Nimmer and Ernst 2002). The quality of the test suite is defined by how

much of the specification it is able to accurately provide and verify (Harder et al. 2001,

2003). Hence, a set of mutants of a program may be considered to represent the program

behavior with respect to the possibilities of deviation, and the information carried by a set

of mutants is a reasonable measure of its quality. We use entropy as a measure of the

information content of a set of mutants. We also evaluate whether the number of mutants

used has an impact on the scores by using a constant number of mutants (100 mutants

sampled 100 times) in each measurement. We further evaluate whether the phase of

generation (source or bytecode) or the audience targeted (industry or research) has an

impact on the measures since these are seen as causes for variation (Ammann 2015a).

Our evaluation suggests that there is often a wide variation in the mutation scores for

mutants produced by different tools (low correlation by R2 and sb). However, there is

very little difference in mean across multiple projects.

Comparing the quality of mutants produced, there is some variation between tools, with

Pit producing the most diverse and strongest set of mutants. However, the difference with

other tools is often small. We also note that project is a significant factor on all measures,

generally larger than the impact of tool, phase of generation or target audience, even after

accounting for the variability due to difference of test suites (same test suites are used for

all tools) and number of mutants. This suggests that individual project characteristics have

a larger impact on the mutants produced than the tool used.

The rest of this paper is organized as follows. The previous research that is related to

ours is given in Sect. 2. Our methodology is given in Sects. 3 and 3.4 details the different

measures we evaluated. The results from the empirical analysis are given in Sect. 4, and its

implications are discussed in Sect. 5. Threats to validity of our research are discussed in

Sect. 6, and we summarize our research in Sect. 7.

2 Related work

The idea of mutation analysis was first proposed by Lipton (1971), and its main concepts

were formalized by DeMillo et al. in the ‘‘Hints’’ (DeMillo et al. 1978) paper. The first

implementation of mutation analysis was provided in the PhD thesis of Budd et al. (1980).

Previous research on mutation analysis suggests that it subsumes different coverage

measures, including statement, branch, and all-defs dataflow coverage (Budd 1980;

Mathur and Wong 1994; Offutt and Voas 1996). There is also some evidence that the faults

produced by mutation analysis are similar to real faults in terms of error trace pro-

duced (Daran and Thévenod-Fosse 1996) and the ease of detection (Andrews et al. 2005,

2006). Recent research by Just et al. (2014) using 357 real bugs suggests that mutation

score increases with test effectiveness for 75 % of the cases, which was better than the

46 % reported for structural coverage.

The validity of mutation analysis rests upon two fundamental assumptions: ‘‘The

competent programmer hypothesis’’—which states that programmers tend to make simple

mistakes, and ‘‘The coupling effect’’—which states that test cases that can detect all small
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faults will, with high probability, detect a large portion of complex faults composed of

these small faults (DeMillo et al. 1978). Evidence for the coupling effect comes from

theoretical analysis by Wah (2000), Wah (2003) and empirical studies by Offutt (1989),

Offutt (1992) and Langdon et al. (2010). The competent programmer hypothesis is harder

to verify; however, the mean syntactic difference between faults was quantified in our

previous work (Gopinath et al. 2014).

One problem in mutation analysis is the existence of equivalent mutants—mutants that

are syntactically different, but semantically indistinguishable from the original program,

leading to incorrect mutation score, because in general, identifying equivalent mutants is

undecidable. The work on identifying equivalent mutants is generally divided into pre-

vention and detection (Papadakis et al. 2015), with prevention focusing on reducing the

incidence of equivalent mutants (Yao et al. 2014) and detection focusing on identifying the

equivalent mutants by examining their static and dynamic properties. Measures for

detection include efforts to identify them using compiler equivalence (Baldwin and Say-

ward 1979; Offutt and Craft 1994; Papadakis et al. 2015) dynamic analysis of constraint

violations (Offutt and Pan 1997; Nica and Wotawa 2012), and coverage (Schuler and

Zeller 2013).

A similar problem is that of redundant mutants (Just et al. 2012), where multiple

syntactically different mutants represent a single fault, resulting in a misleading mutation

score. A number of studies have measured the redundancy among mutants. Ammann et al.

(2014) compared the behavior of each mutant under all tests and found a large number of

redundant mutants. More recently, Papadakis et al. (2015) used the compiled representa-

tion of programs to identify equivalent mutants. They found that on average 7 % of

mutants are equivalent and 20 % are redundant.

Another important area of research has been reducing the cost of mutation analysis,

broadly categorized as do smarter, do faster, and do fewer by Offutt and Untch (2000). The

do smarter approaches include space–time trade-offs, weak mutation analysis, and paral-

lelization of mutation analysis. The do faster approaches include mutant schema genera-

tion, code patching, and other methods to make the mutation analysis faster as a whole.

Finally, the do fewer approaches try to reduce the number of mutants examined and include

selective mutation and mutant sampling.

Various studies have tried to tackle the problem of approximating the full mutation

score without running a full mutation analysis. The idea of using only a subset of mutants

(do fewer) was conceived first by Budd (1980) and Acree Jr (1980) who showed that using

just 10 % of the mutants was sufficient to achieve 99 % accuracy of prediction for the final

mutation score. This idea was further investigated by Mathur (1991), Wong (1993); Wong

and Mathur 1995), and Offutt et al. (1993) using the DeMillo et al. (1988) mutation

operators for FORTRAN.

Barbosa et al. (2001) provide guidelines for operator selection, such as considering at

least one operator in each mutation class and evaluating empirical inclusion among the

operators. Zhang et al. (2010) compared operator-based mutant selection techniques to

random mutant sampling and found that random sampling performs as well as the operator

selection methods. Zhang et al. (2013) compared various forms of sampling such as

stratified random sampling based on operator strata, based on program element strata, and a

combination of the two. They found that stratified random sampling when strata were used

in conjunction performed best in predicting the final mutation score, and as few as 5 % of

mutants were a sufficient sample for a 99 % correlation with the actual mutation score. The

number of samples required for larger projects was found to be still smaller (Zhang et al.

2014), and recently, it was found (Gopinath et al. 2015) that 9604 mutants were sufficient
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for obtaining 99 % accuracy for 99 % of the projects, irrespective of the independence of

mutants or the size of the program.

A number of researchers have tried to approximate mutation score. Gligoric et al.

(2013) found that branch coverage is highly correlated with mutation score. Cai and Lyu

(2005) found that decision coverage was closely correlated with mutation coverage. Namin

and Andrews (2009) found that fault detection ratio was well correlated with block cov-

erage, decision coverage, and two different data-flow criteria. Our analysis (Gopinath et al.

2014) of 232 projects using both manually generated test suites and test suites generated by

randoop suggests that of the different coverage criteria we tested—statement, branch, and

path—statement coverage had the highest correlation with mutation score.

Researchers have evaluated different mutation tools in the past. Delahaye and Du

Bousquet (2013) compared tools based on fault model (operators used), order (syntactic

complexity of mutations), selectivity (eliminating most frequent operators), mutation

strength (weak, firm, and strong), and the sophistication of the tool in evaluating mutants.

The details of subject programs and mutations are given in Table 1,6 and the correlations

found (computed by us using the reported data in the paper) are given in Table 2.

Our evaluation differs from their research in focusing on the semantic impact of mutants

produced by different tools.

Table 1 Mutation data computed from Delahaye and Du Bousquet (2013)

Project Test suite Judy Major Pit Jumble Javalanche

Subject programs, test suites and mutation scores

codec1.5 380 78.33 70.49 91.35 84.94

codec1.7 519 81.42 72.52 88.23 76.98

codec1.6 1973 72.17 85.54 79.99

jdom2 1813 71.83 82.24 44.99

jopt-simple 677 87.36 80.27 94.62 43.67 83

json-simple 3 51.85 21.37 58.52 53.90 68

Project Judy Major Pit Jumble Javalanche

Number of mutants

codec1.5 5302 5809 1826 1082

codec1.7 7206 6922 2651 1525

codec1.6 19,472 9544 4657

jdom2 6699 4978 1958

jopt-simple 1060 674 539 229
100

json-simple 677 1783 393 141
100

6 Note that the LOC given by Delahaye et al. is ambiguous. The text suggests that the LOC is that of the
program. However, checking the LOC of some of the programs such as jopt-simple and commons-lang
suggests that the given LOC is that of the test suite (and it is reported in the table as details of the test suite).
Hence we do not include LOC details here.
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3 Methodology

Mutation tools vary along different dimensions. As Ammann suggests in his keynote

(Ammann 2015b), tools targeting different communities tend to have different priorities,

with theoretical completeness a bone of contention between researchers and industry.

Further, mutants generated in different phases of program compilation often do not have

first-order equivalents in other phases. For example, changes in bytecode may not have a

representation in the source code. Similarly changes in source may have a larger impact in

the byte code. Hence, it is important to ensure that representatives of as many different

dimensions of variation are included.

The major avenues of variation are: variation due to mutant distribution in individual

projects, variation due to the language used, and variation due to the mutation generation

tools used (especially the phase during which the mutants were produced). Unfortunately,

the language choice is not orthogonal to other sources of variation. That is, language choice

determines projects and the tool used, which makes it difficult to compare different tools

and variation introduced due to projects. Hence, we avoided variation due to languages,

and focused solely on Java projects.

3.1 Project selection

Keeping the goal of real-world projects that best represent real-world software, we looked

for large Java projects in Github. We searched for projects that had at least 100 test cases

and had at least 1000 lines of code. Since the number of projects thus obtained was small,

we added annotation-cli from Github because it had close to 1000 lines of code and could

be compiled and tested successfully. To ensure that our projects were representative, we

also relied on projects from Apache foundation which are known to be of high quality.

We also selected only those projects that could be compiled and tested successfully

using multiple mutation analysis tools. Thus we found 25 large Java projects from Github

(2016) and Apache (2016), that had large test suites (Table 3).

Note that we have a much larger set of large sized projects (25 projects with mean 7138

LOC) than previous studies such as Ammann et al. (2014), Sridharan and Namin (2010),

Siami Namin et al. (2008), Zhang et al. (2010), all of which use the Siemens test suites and

programs (7 projects with mean 312 LOC), Zhang et al. (2013) (7 projects with mean

15,083 LOC), and Zhang et al. (2014) (12 projects with mean 6209 LOC). While our test

suites are small (mean ¼ 569, sd ¼ 931) in comparison with most previous studies using

the Siemens test suites7—Ammann et al. (2014) (mean ¼ 3294, sd ¼ 1588), Sridharan and

Table 2 Correlation for the
mutation scores—data from
Delahaye and Du Bousquet
(2013)

R2 sb % Difference l r

Jumble � Judy 0.15 -0.33

Jumble � Major 0.16 -0.33 -0.70 26.10

Jumble � Pit 0.26 0.07 -19.34 19.80

Judy � Major 1 1

Judy � Pit 0.98 0.67

Major � Pit 0.96 0.60 -18.64 9.70

7 The Siemens test suite is a test suite curated by researchers (Untch 2009), and this is at best a questionable
representative for real-world test suites.
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Namin (2010) (mean ¼ 3115, sd ¼ 1572), Siami Namin et al. (2008) (mean ¼ 3115, sd ¼
1572), Zhang et al. (2010) (mean ¼ 3115, sd ¼ 1572), Zhang et al. (2013) (mean ¼ 3115,

sd ¼ 1572), and Zhang et al. (2014) (mean ¼ 81, sd ¼ 29), we assume that the number and

size of projects, and the extent of comparison more than makes up for it.

3.2 Tool selection

We started our evaluation with the list of all known tools for Java which were available

(the first mutation system, JavaMut (Chevalley and Thévenod-Fosse 2003) is no longer

available). We also discarded Insureþþ (Parasoft 2014) which did not actually implement

mutation testing (Offutt 2016; Parasoft 2015). The tools we investigated were Pit (Coles

2016), Major (Just 2014), Judy (Madeyski and Radyk 2010), Javalanche (Schuler and

Zeller 2009), Bacterio (Usaola and Mateo 2012), MuJava (Ma et al. 2006), Jumble (Irvine

et al. 2007), Jester (Moore 2001), and Mutator (Macedo 2016). Our choice of mutation

tools for assessment was driven by three key concerns:

First, each tool had to provide a way to evaluate the full test suite against each mutant

and obtain the pass or fail status of each mutant against each test (kill matrix). This

Table 3 Subject programs, test
suite size, and mutation scores

Project Test suite Judy Major Pit

annotation-cli 126 42.42 43.27 59.38

asterisk-java 214 13.54 21.54 20.64

beanutils 1185 50.71 42.69 56.78

beanutils2 680 59.47 52.49 61.85

clazz 205 24.46 39.45 30.20

cli 373 71.17 76.61 86.14

collections 4407 76.99 58.63 34.69

commons-codec 605 92.72 73.52 82.66

commons-io 964 88.38 70.65 77.34

config-magic 111 55.19 29.80 60.69

csv 173 53.01 68.08 79.68

dbutils 239 44.23 65.20 47.34

events 206 77.14 70.03 59.95

faunus 172 2.55 58.65 49.07

java-api-wrapper 125 14.95 84.91 76.03

java-classmate 219 66.17 77.23 90.26

jopt-simple 566 84.50 79.32 94.50

mgwt 103 40.72 6.61 8.85

mirror 303 58.73 74.73 75.47

mp3agic 206 72.46 51.70 54.51

ognl 113 13.96 6.46 56.32

pipes 138 65.99 62.64 67.66

primitives 2276 93.35 71.33 35.71

validator 382 50.27 59.06 68.21

webbit 146 73.95 67.17 52.41

l 569.48 55.48 56.47 59.45

r 930.91 26.03 21.78 21.68
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eliminated Mutator, Jester, and Jumble. While unmodified Pit does not provide the full test

kill matrix, we modified Pit to run the full test suite against each mutant (as has been done

in numerous studies using Pit) and provide the result.

Second, we had to be able to get it to work in a distributed cluster, which provided only

command line access. Bacterio could not work in a non-GUI environment.8

Third, and most importantly, the tools had to work with a majority of the projects and

test suites we had. MuJava could not handle package hierarchies. Examination of the

source suggested that fixing this shortcoming was non-trivial. We discarded Javalanche for

several issues: (1) Javalanche had problems in analyzing the projects we chose; while we

could get it to work on simple projects, it had problems with newer projects and Junit

libraries. A large number of tests caused the JVM to either hang or crash; eliminating these,

8 Even though a script mode is available, it still requires GUI to be present, and communication with its
authors did not produce any assistance on this point.

tools

(a)

(b)

(c)

discard

discard

discard

mutate(tool,project)discard discard
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(C)

discard

discard

discard

(a) Is the tool available working?
no: 2 tools

(b) Does it provide a kill matrix?
no: 3 tools
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no: 1 tool

(d) Did it work with most projects?
no: 1 tool

(A) Does it have a test suite?
no: 1004 projects

(B) Does it compile?
no: 470 projects

(C) Is the test suite green?
no: 168 projects
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no: 133 projects
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reject

yes
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yes

25 projects3 tools

no

no

no

reject

1,800 projects

yes

yes
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Fig. 1 The process of selection
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the tests that remained were a small fraction of the original test suites. (2) Javalanche was

last updated in 2012. (3) Javalanche uses only selective mutation, while other tools

examined leave that choice to the tester. (4) We note that Javalanche could not complete

successfully for a majority of the projects in the previous comparative study by Delahaye

and Du Bousquet (2013). Hence, we removed both MuJava and Javalanche from the

benchmark. Our process of selection is detailed in Fig. 1.

Thus, we were left with three tools: (1) Pit, which uses byte code mutation and is a tool

used in industry, (2) Judy, which uses byte code mutation and is mostly used by

researchers, and (3) Major, which uses manipulation of the AST, providing source-based

mutants, and is primarily used by researchers. Note that as Fig. 2 shows, we have a

representative for all variations except (source, industry). We also note that Pit and Major

are polar opposites along both dimensions. We worked with the authors of each tool to

ensure that we had the latest version (Judy 2.1.x, Major 1.1.5, Pit 1.09) (Fig. 2).

3.3 Analysis

For each tool, we used the settings for the maximum number of operators to mutate. Unlike

other structural coverage measures such as statement, branch or path coverage, there is

very little agreement on what constitutes an acceptable set of mutants in mutation analysis.

This means that we can expect a wide variation in the number of mutants produced. The

mutants produced by each tool for each program is given in Table 4. A boxplot of the

number of mutants by each tool is given in Fig. 3. Unfortunately, this also means that the

mutation scores do not necessarily agree as we see in Table 3. One of the culprits is the

presence of equivalent mutants–mutants that do not produce a measurable semantic

variation to the original program. There is no foolproof way of separating equivalent

mutants from the merely stubborn mutants at this time. Hence, we removed the mutants

that were not killed by any of the test cases as done in similar studies (Siami Namin et al.

Pit

Majo
r

Ju
dy

industry

research

sourcebyte

Phase

A
ud

ie
nc

e

Fig. 2 Tools used for benchmark

9 In the case of Pit, we extended Pit to provide a more complete set of mutants, a modification which was
latter accepted to the main line (Pit 1.0).
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Table 4 Number of mutants by
tools in subject programs

Project LOC Judy Major Pit

annotation-cli 870 777 512 981

asterisk-java 29,477 12,658 5812 15,476

beanutils 11,640 6529 4382 9665

beanutils2 2251 990 615 2069

clazz 5681 2784 2022 5165

cli 2667 2308 1411 2677

collections 25,400 1006 10,301 24,141

commons-codec 6603 44 7362 9953

commons-io 9472 164 6486 9799

config-magic 1251 527 650 1181

csv 1384 1154 991 1798

dbutils 2596 1159 677 1922

events 1256 2353 615 1155

faunus 9000 3723 3771 9668

java-api-wrapper 1760 929 611 1711

java-classmate 2402 1423 952 2543

jopt-simple 1617 497 695 1790

mgwt 16,250 1394 6654 12,030

mirror 2590 1316 449 1876

mp3agic 4842 1272 4822 7182

ognl 13,139 8243 5616 21,227

pipes 3513 590 1171 3001

primitives 11,965 14 4916 11,312

validator 5807 3320 3655 5846

webbit 5018 144 1327 3707

l 7138.04 2212.72 3059 6715

r 7471.65 2931.64 2786.07 6369.23

Pit

Major

Judy

0 2500 5000 7500 10000 12500
Tool

M
ut
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Fig. 3 Number of mutants produced by different tools across all projects in our sample. The cross in the
center is the mean, while the central black line is the median
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2008; Zhang et al. 2010, 2013, 2014). We call the original set the raw mutant set (vs.

refined mutant set).

3.3.1 Sampling

The sampling was conducted in two dimensions. First, we sampled the test cases of each

project randomly in increasingly smaller fractions f1
2
; 1

4
; 1

8
; 1

16
; 1

32
; 1

64
g. For each fraction, we

took 100 samples, that is, using the complete set of mutants, but with 1
2

the number of test

cases of the full suite, 1
4

the number of test cases of the full suite etc. The mutation score

was computed for each.

Second, we sampled 100 mutants each from the refined set of mutants for each project.

This was again done 100 times using the complete test suite for each project. That is, the

effective size of sampling was 10,000. This sample size is of sufficient accuracy as rec-

ommended in our previous study on mutant sampling (Gopinath et al. 2015).

3.4 Measures

We considered multiple measures that can lead to insights about the characteristics of

mutants. For each, we rely on two different measures of correlation—R2 and Kendall’s sb.

For a detailed discussion on why both were used, see ‘‘Appendix’’.

We also provide the mean difference between the scores (denoted by Difference l in the

table) and the standard deviation (denoted by r in the table) for this measurement. The

mean difference is important as it provides the effect size—the consistent difference

between scores produced by two tools if they have a high correlation and a low spread

(standard deviation). That is, even if two tools are found to be different with statistical

significance,10 they may not be practically different if the mean difference is in small

percentages. Similarly a large spread (standard deviation) indicates that there is a wide

variation in the difference, while a small spread indicates that the mean difference is

consistent across samples.

For each measure, one common question was whether the phase of generation or target

audience has an impact. To answer this question, we rely on analysis of variance. By

running ANOVA11 on a model containing project, phase, and audience, we determine

whether the factor considered has an impact in predicting mutation score. The ANOVA

equations in general are given in Eq. 1, where we compare the ability of each model to

predict the variability in the measure being analyzed.

lfMeasurejProject;Phaseg ¼ Project þ Phase

lfMeasurejProject;Audienceg ¼ Project þ Audience

lfMeasurejProject; Toolg ¼ Project þ Tool

lfMeasurejProjectg ¼ Project

ð1Þ

10 Statistical significance is the confidence we have in our estimates. It says nothing about the effect size.
That is, we can be highly confident of a small consistent difference, but it may not be practically relevant.
11 Analysis of variance—ANOVA—is a statistical procedure used to compare the goodness of fit of sta-
tistical models. It can tell us whether a variable contributes significantly (statistical) to the variation in the
dependent variable by comparing against a model that does not contain that variable. If the p value—given
in tables as Prð[FÞ—is not statistically significant, it is an indication that the variable contributes little to

the model fit. Note that the R2 reported is adjusted R2 after adjusting for the effect of complexity of the
model due to the number of variables considered.
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Another question is the impact of tools after controlling for the number of mutants

produced. To answer this question, we sampled 100 mutants at a time from each project

100 times.

We use the following measures for evaluating the quality of mutants.

3.4.1 Raw mutation score

The simple mutation scores are one of the traditional means of comparison between tools,

with tools producing low mean scores deemed to have created hard to detect and hence

good mutants. There is little gain in randomly sampling test suites both for raw and refined

mutation analysis. Hence, we chose to sample the test suites only for computing refined

mutation score.

3.4.2 Refined mutation score

The problem with equivalent mutants is that, without identifying them, the true mutation

score can not be determined. This means that the premise of mutation analysis—an

exhaustive analysis of all faults implies an exhaustive analysis of all failures—cannot be

fulfilled. As done in previous studies (Siami Namin et al. 2008; Zhang et al. 2010, 2013,

2014), we remove the mutants that were not detected from our pool, leaving mutants that

were detected by at least one test case. Next, we randomly sample progressively smaller

fractions of test suites, with 1
2
; 1

4
; 1

8
; 1

16
; 1

32
and 1

64
of the original test suite. This is repeated

100 times, and the mutation scores of each sample are taken.

3.4.3 Minimal set of mutants

One of the problems with mutation analysis is that a number of faults map to the same

failure. This leads to redundant mutants which may inflate the mutation score of a program

if any one of them is killed, thus skewing the results. Ammann et al. (2014) came up with a

practical means of avoiding the effects of redundant mutants. They make use of the

concept of dynamically subsuming mutants. A mutant is dynamically subsumed by another

if all the tests that detect the former are guaranteed to detect the latter—which in effect

means that the latter is weaker than the former. A minimal test suite for a set of mutants is

any test suite from which removing even a single test case causes the mutation score to

drop. That is, the minimal set of mutants is as effective as the full set of mutants and hence

may be considered as a reasonable measure of the effectiveness of a set of mutants.

An adequate test suite is called a minimum test suite when it is the smallest test suite that

is sufficient to kill all mutants produced from a program. A set of mutants is called a

minimal set of mutants or a disjoint set of mutants when such a set is the smallest set of

mutants that requires all test cases in the minimum test suite for complete detection.

3.4.4 Surface mutants

One of the problems with the minimal set of mutants from minimal test suites is that it is

rather extreme in terms of reduction. The total number of mutants in a minimal set of

mutants is same as the minimal test suite and hence is bounded by the size of the test suite.

However, the test suite of most programs is much smaller than the complete set of mutants.

Hence, it may be argued that minimal set of mutants as given by Ammann et al. (2014)
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may miss actual mutants which map to different failures than the ones uniquely checked

for by the minimal test suite. To avoid this problem, we relax our definition of minimality

in mutants. That is, we remove the requirement that we use the minimal test suite before

removing subsumed mutants and instead use the results from full test suite to obtain non-

subsumed mutants, which we call surface mutants.

A set of test cases is called unique or distinct when no two tests in that set have the same

mutant kills. A set of mutants is called a surface set of mutants when such a set is the

smallest set of mutants that requires all test cases in a unique test suite for complete

detection.

3.4.5 Covariance between mutants

We have shown previously (Gopinath et al. 2015) that for mutation analysis, the maximum

number of mutants to be sampled for a given tolerance has an upper bound provided by the

binomial distribution. The covariance between mutants determines the size of the sample

required. That is, the larger the covariance (or correlation) between mutants, the smaller

the diversity. Hence, the sum of the covariance can be used to measure the independence of

the underlying mutants. For a detailed discussion on covariance, see ‘‘Appendix’’. The

most useful set of mutants only includes mutants that are completely independent of each

other, and the least useful set of mutants only includes mutants that are completely

dependent (redundant).

3.4.6 Mutual information between mutants

Covariance between mutants is a measure of the quality of mutants. The more independent

mutants are, the lower the covariance. There is a measure from information theory that lets

us evaluate the redundancy of mutants more directly—mutual information. See ‘‘Ap-

pendix’’ for further information on mutual information.

3.4.7 Entropy carried by mutants

The measures we introduced (minimal set, surface set, covariance) evaluated the redun-

dancy in a set of mutants. Another way to think about a set of mutants is to think of mutants

as expressing all possible divergence from the specifications of a program, and a test suite

can be thought of as carrying information about the specification of the program. This

suggests that a measure of information contained in the mutant�test-case matrix can be

reasonable measure of goodness of a set of mutants. See ‘‘Appendix’’ for more information

on entropy.

4 Results

4.1 Raw mutation score

We use different visualizations to inspect the distribution of mutation scores. Figures 4 and

5 show the distribution of mutation score, and the mean values, respectively. Note that this
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is for raw mutants (without removing equivalent mutants and sampling). The correlations

between mutation tools are given in Table 5.

A few observations are in order. The first is that the correlation between the mutation

scores from different tools is weaker than we expected for a standard measure. However,

the mean difference in mutation scores is less than 4 % (paired t test p\0:05). The

standard deviation is high, indicating a large spread.

Q: Does the phase of generation or target audience have an impact?

As Table 6 shows, ANOVA suggests that there is no evidence that a complex model

containing either of the variables phase or audience contributes to a better model fit for raw

mutation scores.

4.2 Refined mutation scores

The mutation scores using randomly sampled fractions of the original test cases are given

in Table 7.

annotation−cli
asterisk−java

beanutils
beanutils2

clazz

cli
collections

commons−codec
commons−io
config−magic

csv
dbutils
events

faunus
java−api−wrapper

java−classmate

jopt−simple
mgwt
mirror

mp3agic
ognl

pipes

primitives
validator

webbit

0.00 0.25 0.50 0.75

Mutation score

P
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Tool Pit Major Judy

Fig. 4 Distribution of raw mutation score by different tools: mutation scores from different tools rarely
agree, and none of the tools produce a consistently larger or smaller score compared to the other tools
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Figure 6 visualizes the relationship of mutation scores by different tools. In the figure,

the fraction of test suite determines the darkness of the point. Larger fractions have darker

colors. We can see that the light colors cluster near the origin, while darker colors cluster

around unity as expected (larger fractions of test suite will have higher mutation scores,

and hence darker colors).

The refined mutation scores produced after removing the undetected mutants also tend

to follow the same pattern. In Table 7, we see that the maximum R2 is 0.69, with high

Pit

Major

Judy

0.00 0.25 0.50 0.75
Mutation score

To
ol

Fig. 5 Mean raw mutation score produced by different tools. Mutation scores produced by different tools
are on average not consistently larger or smaller compared to other tools

Table 5 Correlation between
mutation tools R2 sb % Difference l r

Judy � Pit 0.37 0.27 -3.97 26.93

Judy � Major 0.52 0.41 -0.99 23.72

Pit � Major 0.67 0.54 2.98 17.53

Table 6 Model fit—mutation
score for raw mutants

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:5

Project 24 2.62 0.11 4.12 0.0000

Phase 1 0 0 0.06 0.8034

Residuals 49 1.30 0.03

Model fit with audience R2 ¼ 0:51

Project 24 2.62 0.11 4.18 0.0000

Audience 1 0.02 0.02 0.77 0.3836

Residuals 49 1.28 0.03

Model fit with tool R2 ¼ 0:5

Project 24 2.62 0.11 4.10 0.0000

Tool 2 0.02 0.01 0.40 0.6713

Residuals 48 1.28 0.03

Base model fit R2 ¼ 0:51

Project 24 2.62 0.11 4.20 0.0000

Residuals 50 1.30 0.03
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spread. Further, maximum Kendall’s sb is 0.52. This suggests that the mutation scores

often do not agree. However, the mean difference in mutation score is still less than 3 %,

which suggests that none of the tools produce mutants with consistently higher or lower

mutation scores.

Q: Does the phase of generation or target audience have an impact?

The ANOVA in Table 8 shows no evidence to suggest that phase and audience con-

tribute toward model fit for the refined mutation score.

Table 7 Correlation between
mutation tools for refined

mutants ( 1
2x

test suite sample)

Tool R2 sb % Difference l r Test suite

Judy � Pit 0.55 0.41 1.07 11.94 1/2

Judy � Major 0.54 0.42 0.92 12.16 1/2

Pit � Major 0.66 0.44 -0.16 7.74 1/2

Judy � Pit 0.56 0.44 3.14 15.76 1/4

Judy � Major 0.63 0.47 2.22 14.70 1/4

Pit � Major 0.61 0.45 -0.92 11.37 1/4

Judy � Pit 0.52 0.42 3.07 19.78 1/8

Judy � Major 0.61 0.49 1.82 18.26 1/8

Pit � Major 0.62 0.49 -1.25 12.70 1/8

Judy � Pit 0.47 0.35 3.10 19.57 1/16

Judy � Major 0.61 0.46 1.41 17.28 1/16

Pit � Major 0.63 0.50 -1.69 12.63 1/16

Judy � Pit 0.52 0.39 0.67 17.27 1/32

Judy � Major 0.63 0.48 -0.69 15.64 1/32

Pit � Major 0.69 0.52 -1.36 10.65 1/32

Judy � Pit 0.51 0.38 0.35 14.22 1/64

Judy � Major 0.57 0.44 -0.53 13.39 1/64

Pit � Major 0.65 0.50 -0.88 9.72 1/64
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Fig. 6 The mutation scores of different tools plotted against each other for different fractions of the full test
suite. The mutation score at larger fractions of the full test suites are colored darker

Software Qual J (2017) 25:871–920 887

123



4.3 Minimal set of mutants

Figure 7a provides the mean and variance for the size of the minimum mutant set for all

projects. The size of minimal mutant set is given in Table 9, and a comparison between the

tools is given in Table 10. As the number of minimal mutants determines the strength of a

set of mutants (the factor of reduction is not the important aspect here), we provide the

number rather than the ratio of reduction.

Impact of minimal set: Mutant sets with larger-sized minimal sets are stronger.

Hence, tools that produce larger-sized minimal sets are better.

Table 10 suggests that the correlation between different tools is a maximum of 0.96

(between Pit and Major) which is very strong. However, Judy and Major have a very low

correlation (0.26). Similarly Kendall’s sb is strong (maximum 0.85 between Pit and Major),

suggesting a stronger similarity between Pit and Major.

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the size of minimum mutant set.

The ANOVA (Table 11) suggests that audience is a statistically significant (p\0:05)

factor. When comparing R2 of models containing both project and the factors investigated,

the variation explained by models incorporating a given factor in addition to project is as

follows: phase 46 %, audience 49 %, tool 58 %. Investigating the increase in explanatory

power of complex models over a model containing only project, the increase in R2 (ex-

planatory power) was as follows: phase 1.1 %, audience 4.4 %, tool 13 %.

Table 8 Model fit with refined
mutation score after removing
undetected mutants

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:098

Project 24 34.15 1.42 21.33 0.0000

Phase 1 0 0 0.01 0.9084

Residuals 4474 298.41 0.07

Model fit with audience R2 ¼ 0:098

Project 24 34.15 1.42 21.35 0.0000

Audience 1 0.22 0.22 3.25 0.0715

Residuals 4474 298.20 0.07

Model fit with tool R2 ¼ 0:098

Project 24 34.15 1.42 21.35 0.0000

Tool 2 0.27 0.14 2.04 0.1306

Residuals 4473 298.14 0.07

Base model fit R2 ¼ 0:098

Project 24 34.15 1.42 21.34 0.0000

Residuals 4475 298.42 0.07
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4.3.1 What is the impact of tools after controlling for the number of mutants
produced?

Figure 7b provides the mean and variance for the size of minimum mutant set for all

projects when controlling for the number of mutants.

Table 12 suggests that the correlation between Pit and Major is very strong (0.93) and

that the correlation between Judy and Major improved. We find the same with Kendall’s

sb, with strong correlation between Pit and Major (0.73). Finally, the spread is large

compared to the mean (except for Pit and Major).

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the size of the minimum mutant set, after controlling for the number of mutants.

The ANOVA (Table 13) suggests that phase and audience are statistically significant

(p\0:05) factors. When comparing R2 of models containing both project and the factors

investigated, the variation explained by models incorporating a given factor in addition to

project is as follows: phase 65 %, audience 69 %, tool 79 %. Investigating the increase in

explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase 2.2 %, audience 6.2 %, tool 16 %.

(a)

Pit

Major

Judy

0 250 500 750

Minimal Mutants

To
ol
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Minimal Mutants
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Fig. 7 Minimal mutant set sizes of tools—larger is better. a Full mutant set. b 100 mutant samples
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4.4 Surface mutants

Surface mutants are given in Table 14, and the relation between different tools is given in

Table 15. The mean surface mutant sizes are plotted in Fig. 8a.

Impact of surface set: Mutant set with a larger surface set is stronger, and hence

tools that produce larger-sized surface sets are better.

Table 9 Minimal set of mutants
from different mutation tools

Project Judy Major Pit

annotation-cli 20 20 26

asterisk-java 121 142 171

beanutils 348 344 398

beanutils2 67 105 145

clazz 18 59 49

cli 106 130 136

collections 130 910 797

commons-codec 4 267 351

commons-io 33 477 570

config-magic 33 45 49

csv 64 91 99

dbutils 73 60 104

events 21 10 30

faunus 7 103 122

java-api-wrapper 10 42 90

java-classmate 98 108 184

jopt-simple 67 95 131

mgwt 55 70 74

mirror 127 112 173

mp3agic 54 108 116

ognl 14 27 81

pipes 29 81 95

primitives 9 662 445

validator 102 168 204

webbit 9 59 90

l 64.76 171.80 189.20

r 71.94 215.33 185.83

Table 10 Correlation between minimal set of mutants from different mutation tools

R2 sb Difference l r

Judy � Pit 0.34 0.34 -124.44 175.05

Judy � Major 0.26 0.35 -107.04 208.59

Pit � Major 0.96 0.85 17.40 62.86
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Table 15 suggests that the R2 correlation between Pit and Major is strong (0.94), while

that between Judy and Pit is low (0.27) and that between Judy and Major is low (0.25).

Similarly with Kendall’s sb, it ranges from 0.76 to 0.24. We also note that the values

observed are very close to those observed for minimal mutants, which is as we expect

given that the surface mutants are obtained by a small modification to the definition of

minimal mutants.

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the size of surface mutant set.

The ANOVA (Table 16) suggests that audience is a statistically significant (p\0:05)

factor. When comparing R2 of models containing both project and the factors investigated,

the variation explained by models incorporating a given factor in addition to project is as

follows: phase 41 %, audience 50 %, tool 58 %. Investigating the increase in explanatory

power of complex models over a model containing only project, the increase in R2 (ex-

planatory power) was as follows: phase -0.25 %, audience 8.6 %, tool 16 %.

Table 11 Model fit with minimum mutant set

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:46

Project 24 1,440,910.19 60,037.92 3.59 0.0001

Phase 1 33,480.54 33,480.54 2 0.1631

Residuals 49 818,380.79 16,701.65

Model fit with audience R2 ¼ 0:49

Project 24 1,440,910.19 60,037.92 3.83 0.0000

Audience 1 83,827.44 83,827.44 5.35 0.0250

Residuals 49 768,033.89 15,674.16

Model fit with tool R2 ¼ 0:58

Project 24 1,440,910.19 60,037.92 4.61 0.0000

Tool 2 227,046.96 113,523.48 8.72 0.0006

Residuals 48 624,814.37 13,016.97

Base model fit R2 ¼ 0:45

Project 24 1,440,910.19 60,037.92 3.52 0.0001

Residuals 50 851,861.33 17,037.23

Table 12 Minimal set of mutants from different mutation tools (100 samples)

R2 sb Difference l r

Judy � Pit 0.49 0.35 -17.86 17.97

Judy � Major 0.52 0.40 -15.05 17.49

Pit � Major 0.93 0.73 2.82 7.01
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4.4.1 What is the impact of tools after controlling for the number of mutants
produced?

The correlation between different tools is given in Table 17. The mean surface mutant

sizes after controlling number of mutants are plotted in Fig. 8b.

As we expect from the values for minimal mutants, controlling for the number of

mutants has a large impact. Table 17 suggests that the correlation between Pit and Major is

very strong (0.92), while that between Judy and Major improved, as did the correlation

between Judy and Pit. Similarly for Kendall’s sb it ranges from 0.72 to 0.34.

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the size of the surface mutant set, after controlling for the number of mutants.

The ANOVA (Table 18) suggests that phase and audience are statistically significant

(p\0:05) factors. When comparing R2 of models containing both project and the factors

investigated, the variation explained by models incorporating a given factor in addition to

project is as follows: phase 64 %, audience 68 %, tool 78 %. Investigating the increase in

explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase 2.2 %, audience 6 %, tool 16 %.

4.5 Covariance between mutants

Figure 9a shows the mean covariance across the different tools.

Impact of sum of covariance: Mutant sets with smaller sum of covariance are more

independent compared to other sets of similar size, and hence tools that produce

mutants with a smaller sum of covariance are better.

Table 13 Model fit with minimal mutant set (100 samples)

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:65

Project 24 1,812,892.77 75,537.20 569.70 0.0000

Phase 1 62,358.74 62,358.74 470.31 0.0000

Residuals 7474 990,978.33 132.59

Model fit with audience R2 ¼ 0:69

Project 24 1,812,892.77 75,537.20 645.12 0.0000

Audience 1 178,199.56 178,199.56 1521.89 0.0000

Residuals 7474 875,137.50 117.09

Model fit with tool R2 ¼ 0:79

Project 24 1,812,892.77 75,537.20 953.47 0.0000

Tool 2 461,297.59 230,648.79 2911.36 0.0000

Residuals 7473 592,039.48 79.22

Base model fit R2 ¼ 0:63

Project 24 1,812,892.77 75,537.20 536.05 0.0000

Residuals 7475 1,053,337.06 140.91
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Table 19 provides the sum of covariance for different projects, and Table 20 provides

the correlation between the sum of covariance from different tools. Table 20 suggests that

in terms of sum of covariance, Judy and Pit are in closest agreement (0.45), with medium

correlation, while the correlation between other tools is low. However, Kendall’s sb
indicates a medium correlation between all tools (0.43, 0.43, 0.57).

Q: Does the phase of generation or target audience have an impact?

Table 14 Surface set of mutants
from different mutation tools

Project Judy Major Pit

annotation-cli 29 20 31

asterisk-java 148 170 211

beanutils 478 428 548

beanutils2 80 105 149

clazz 24 73 64

cli 157 174 207

collections 148 995 898

commons-codec 6 364 488

commons-io 30 552 692

config-magic 42 50 60

csv 67 104 139

dbutils 78 69 124

events 25 22 25

faunus 8 126 179

java-api-wrapper 12 72 137

java-classmate 116 136 217

jopt-simple 90 118 177

mgwt 58 77 85

mirror 148 124 205

mp3agic 88 149 160

ognl 20 39 379

pipes 41 110 130

primitives 10 723 685

validator 140 218 273

webbit 15 69 114

l 82.32 203.48 255.08

r 97.04 237.65 230.22

Table 15 Correlation between surface set of mutants from different mutation tools

R2 sb Difference l r

Judy � Pit 0.27 0.24 -172.76 223.98

Judy � Major 0.25 0.31 -121.16 233.17

Pit � Major 0.94 0.76 51.60 78.48
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Fig. 8 Surface mutant sizes between tools—larger is better. a Full mutant set. b 100 mutant samples

Table 16 Model fit for surface mutants

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:41

Project 24 1,967,892.21 81,995.51 3.19 0.0003

Phase 1 20,160.81 20,160.81 0.78 0.3800

Residuals 49 1,258,614.53 25,686.01

Model fit with audience R2 ¼ 0:5

Project 24 1,967,892.21 81,995.51 3.76 0.0000

Audience 1 209,739.21 209,739.21 9.61 0.0032

Residuals 49 1,069,036.13 21,817.06

Model fit with tool R2 ¼ 0:58

Project 24 1,967,892.21 81,995.51 4.44 0.0000

Tool 2 393,236.03 196,618.01 10.66 0.0001

Residuals 48 885,539.31 18,448.74

Base model fit R2 ¼ 0:42

Project 24 1,967,892.21 81,995.51 3.21 0.0003

Residuals 50 1,278,775.33 25,575.51
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We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the sum of covariance of mutant kill matrix.

The ANOVA (Table 21) suggests that audience is a statistically significant (p\0:05)

factor. When comparing R2 of models containing both project and the factors investigated,

the variation explained by models incorporating a given factor in addition to project is as

follows: phase 14 %, audience 18 %, tool 17 %. Investigating the increase in explanatory

power of complex models over a model containing only project, the increase in R2 (ex-

planatory power) was as follows: phase 0.62 %, audience 5 % tool 3.4 %. We note that

project is not a statistically significant factor.

4.5.1 What is the impact of tools after controlling for the number of mutants
produced?

Figure 9b shows the mean covariance across the different tools after controlling for the

number of mutants.

Table 22 provides the correlation between sum of covariance from different tools after

controlling for the number of mutants. We see that both R2 and sb increase across all the

Table 17 Correlation between surface set of mutants from different mutation tools (100 samples)

R2 sb Difference l r

Judy � Pit 0.47 0.34 -17.28 18.12

Judy � Major 0.51 0.39 -14.66 17.69

Pit � Major 0.92 0.72 2.62 7.08

Table 18 Model fit for surface mutants (100 samples)

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:64

Project 24 1,708,095.67 71,170.65 539.73 0.0000

Phase 1 60,356.53 60,356.53 457.72 0.0000

Residuals 7474 985,549.60 131.86

Model fit with audience R2 ¼ 0:68

Project 24 1,708,095.67 71,170.65 603.93 0.0000

Audience 1 165,130.22 165,130.22 1,401.25 0.0000

Residuals 7474 880,775.91 117.85

Model fit with tool R2 ¼ 0:78

Project 24 1,708,095.67 71,170.65 868.84 0.0000

Tool 2 433,760.06 216,880.03 2,647.64 0.0000

Residuals 7473 612,146.07 81.91

Base model fit R2 ¼ 0:62

Project 24 1,708,095.67 71,170.65 508.65 0.0000

Residuals 7475 1,045,906.13 139.92
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tools, with the Pit and Major correlation being highest (0.68), with medium correlation.

Similar improvement is also seen over Kendall’s sb—highest is between Judy and Major

(0.66).

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the sum of covariance of mutant kill matrix, after controlling for the number of

mutants.

The ANOVA (Table 23) suggests that phase and audience are statistically significant

(p\0:05) factors. When comparing R2 of models containing both project and the factors

investigated, the variation explained by models incorporating a given factor in addition to

project is as follows: phase 65 %, audience 66 %, tool 68 %. Investigating the increase in

explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase 0.46 %, audience 1.5 %, tool 4.1 %. We

note that project is statistically significant once number of mutants is controlled.

4.6 Mutual information (total correlation) between mutants

Figure 10a shows the mean mutual information between mutants produced.

Impact of mutual information: Mutant sets with smaller mutual information have

more diverse mutants compared to similar-sized mutant sets. Hence, tools that

produce mutants with smaller mutual information are better.
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Fig. 9 Covariance between mutants produced—larger is better. a Full mutant set. b 100 samples
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Table 24 shows the mutual information of different tools across projects, and Table 25

provides the correlation of mutual information by different tools.

Table 25 suggests that the correlation between different tools is rather weak in terms of

both R2 (0.29 to -0.063) and sb (0.43 to -0.14).

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the mutual information of mutant kill matrix.

Table 19 Covariance different
mutation tools

Project Judy Major Pit

annotation-cli 4.69 2.71 11.27

asterisk-java 0.74 0.44 1.36

beanutils 5.13 1.31 3.77

beanutils2 3.42 1.25 1.56

clazz 22.76 6.86 2.22

cli 1.93 1.04 4.60

collections 0.10 0.20 0.13

commons-codec 0.41 2.34 2.01

commons-io 0.04 0.28 0.38

config-magic 1.59 0.97 4.44

csv 4.38 2.69 5.13

dbutils 0.80 1.40 0.73

events 15.60 4.05 5.32

faunus 0.12 6.79 8

java-api-wrapper 0.34 9.59 7.27

java-classmate 4.15 1.68 7.19

jopt-simple 3.86 2.69 9.92

mgwt 1.53 0.54 1.22

mirror 2.64 0.26 2.04

mp3agic 9.09 22.17 30.40

ognl 15.65 1.50 118.63

pipes 2.10 1 1.57

primitives 0.03 0.20 0.15

validator 1.02 0.94 5.90

webbit 4.16 13.15 22.53

l 4.25 3.44 10.31

r 5.73 5.05 23.64

Table 20 Correlation of sum of covariance between different mutation tools

R2 sb Difference l r

Judy � Pit 0.45 0.43 -6.06 21.65

Judy � Major 0.29 0.43 0.81 6.45

Pit � Major 0.19 0.57 6.87 23.23

Software Qual J (2017) 25:871–920 897

123



Table 21 Model fit for
covariance

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:14

Project 24 6407.53 266.98 1.48 0.1229

Phase 1 245.55 245.55 1.36 0.2495

Residuals 49 8858.36 180.78

Model fit with audience R2 ¼ 0:18

Project 24 6407.53 266.98 1.56 0.0945

Audience 1 696.10 696.10 4.06 0.0495

Residuals 49 8407.81 171.59

Model fit with tool R2 ¼ 0:17

Project 24 6407.53 266.98 1.53 0.1057

Tool 2 704.28 352.14 2.01 0.1448

Residuals 48 8399.62 174.99

Base model fit R2 ¼ 0:13

Project 24 6407.53 266.98 1.47 0.1261

Residuals 50 9103.91 182.08

Table 22 Correlation of sum of covariance between different mutation tools (100 samples)

R2 sb Difference l r

Judy � Pit 0.50 0.61 0.34 0.86

Judy � Major 0.60 0.66 0.29 0.80

Pit � Major 0.68 0.61 -0.05 0.41

Table 23 Model fit for covari-
ance (100 samples)

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:65

Project 24 2320.14 96.67 547.48 0.0000

Phase 1 16.69 16.69 94.53 0.0000

Residuals 7174 1266.77 0.18

Model fit with audience R2 ¼ 0:66

Project 24 2320.14 96.67 564.47 0.0000

Audience 1 54.82 54.82 320.09 0.0000

Residuals 7174 1228.64 0.17

Model fit with tool R2 ¼ 0:68

Project 24 2320.14 96.67 611.28 0.0000

Tool 2 149.07 74.54 471.31 0.0000

Residuals 7173 1134.39 0.16

Base model fit R2 ¼ 0:64

Project 24 2320.14 96.67 540.43 0.0000

Residuals 7175 1283.46 0.18
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The ANOVA (Table 26) suggests that audience is a statistically significant (p\0:05)

factor. When comparing R2 of models containing both project and the factors investigated,

the variation explained by models incorporating a given factor in addition to project is as

follows: phase -0.015 %, audience 19 %, tool 18 %. Investigating the increase in

explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase -64 %, audience -46 %, tool -47 %.

4.6.1 What is the impact of tools after controlling for the number of mutants
produced?

Figure 10b shows the mean mutual information between mutants produced, after con-

trolling for the number of mutants.

Table 27 provides the correlation of mutual information by different tools after con-

trolling number of mutants. Table 27 suggests that the correlation between different tools

improves across all tools in terms of both R2 (0.86–0.78) and sb (0.59–0.53).

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the mutual information of the mutant kill matrix, after controlling for the

number of mutants.

The ANOVA (Table 28) suggests that phase and audience are statistically significant

(p\0:05) factors. When comparing R2 of models containing both project and the factors

investigated, the variation explained by models incorporating a given factor in addition to

project is as follows: phase 90 %, audience 90 %, tool 90 %. Investigating the increase in
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Fig. 10 Mutual Information of the mutant set produced—larger is better. a Full mutant set. b 100 samples
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explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase 0.06 %, audience 0.039 %, tool 0.065 %.

4.7 Entropy carried by mutants

The entropy of the set of mutants produced by each tool is given in Table 29, and the

comparison between different tools in terms of entropy is given in Table 30. Figure 11a

shows the entropy carried by the mutants.

Table 24 Mutual information
different mutation tools

Project Judy Major Pit

annotation-cli 90.94 58 173.20

asterisk-java 130.34 96.99 297.53

beanutils 320.20 150.88 461.81

beanutils2 84.11 37.02 114.10

clazz 159.27 227.02 129.75

cli 202.29 127.75 360.27

collections 13.81 106.72 103.23

commons-codec 2.86 329.49 460.89

commons-io 3.06 140.78 250.94

config-magic 75.37 42.38 185.80

csv 98.43 115.39 271.59

dbutils 46.28 53.06 75.68

events 125.51 35.33 83.69

faunus 3.54 340.23 616.76

java-api-wrapper 9.73 121.26 235.57

java-classmate 118.77 80.57 288.54

jopt-simple 83.76 80.80 301.70

mgwt 79.93 45.56 126.94

mirror 103.04 24.29 169.21

mp3agic 162.77 465.32 677.62

ognl 176.89 43.10 2665.86

pipes 56.44 87.35 225.87

primitives 0.27 137.59 69.53

validator 98.11 178.66 450.97

webbit 31.03 239.10 497.23

l 91.07 134.59 371.77

r 75.57 110.12 507.05

Table 25 Mutual information correlation of different mutation tools

R2 sb Difference l r

Judy � Pit 0.29 0.19 -280.70 490.79

Judy � Major -0.06 -0.14 -43.52 137.45

Pit � Major 0.10 0.43 237.19 507.78
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Impact of entropy: Mutant sets with higher entropy carry more information. Hence,

tools that produce mutant sets with higher entropy are better.

We compare the number of mutants produced by each tool (Fig. 3) and entropy from

mutants by each (Fig. 11a). As expected, a larger number of mutants can carry more

information.

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the entropy of the mutant kill matrix.

The ANOVA (Table 31) suggests that audience is a statistically significant (p\0:05)

factor. When comparing R2 of models containing both project and the factors investigated,

the variation explained by models incorporating a given factor in addition to project is as

follows: phase 0.66 %, audience 8 %, tool 41 %. Investigating the increase in explanatory

power of complex models over a model containing only project, the increase in R2 (ex-

planatory power) was as follows: phase 6.9 %, audience 14 %, tool 47 %.

Table 26 Model fit for covariance

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ �0:00015

Project 24 2,457,752.40 102,406.35 0.98 0.5078

Phase 1 156,285.44 156,285.44 1.49 0.2274

Residuals 49 5,125,806.30 104,608.29

Model fit with audience R2 ¼ 0:19

Project 24 2,457,752.40 102,406.35 1.20 0.2840

Audience 1 1,117,537.88 1,117,537.88 13.15 0.0007

Residuals 49 4,164,553.86 84,990.90

Model fit with tool R2 ¼ 0:18

Project 24 2,457,752.40 102,406.35 1.19 0.2997

Tool 2 1,141,207.98 570,603.99 6.61 0.0029

Residuals 48 4,140,883.76 86,268.41

Base model fit R2 ¼ 0:64

Project 24 2320.14 96.67 540.43 0.0000

Residuals 7175 1283.46 0.18

Table 27 Mutual information correlation of different mutation tools (100 samples)

R2 sb Difference l r

Judy � Pit 0.86 0.53 0.14 6.48

Judy � Major 0.85 0.59 -0.42 6.73

Pit � Major 0.78 0.58 -0.56 8.13
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4.7.1 What is the impact of tools after controlling for the number of mutants
produced?

Figure 11b shows the entropy carried by the mutants, after controlling the number of

mutants.

Table 32 provides the correlation of entropy of mutants produced by different tools for

different projects. As in other statistical measures, we note an across the board improve-

ment in both correlation measures—R2 (0.69–0.53) and sb (0.5–0.35).

Q: Does the phase of generation or target audience have an impact?

We use ANOVA to answer this question, for which models are given in Eq. 1. The

measure is the entropy of the mutant kill matrix, after controlling for the number of

mutants.

The ANOVA (Table 33) suggests that phase and audience are statistically significant

(p\0:05) factors. When comparing R2 of models containing both project and the factors

investigated, the variation explained by models incorporating a given factor in addition to

project is as follows: phase 62 %, audience 63 %, tool 73 %. Investigating the increase in

explanatory power of complex models over a model containing only project, the increase

in R2 (explanatory power) was as follows: phase 2.9 %, audience 3.4 %, tool 14 %.

5 Discussion

We evaluated an ensemble of measures including traditional mutation scores, strength of

mutants using minimal and surface mutants, statistical measures of diversity of mutants,

and information content in the mutant kills to find whether any tool produced mutants that

were consistently better.

Table 28 Model fit for mutual
information (100 samples)

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:9

Project 24 980,113.02 40,838.04 2575.91 0.0000

Phase 1 672.77 672.77 42.44 0.0000

Residuals 7174 113,735.56 15.85

Model fit with audience R2 ¼ 0:9

Project 24 980,113.02 40,838.04 2570.60 0.0000

Audience 1 437.78 437.78 27.56 0.0000

Residuals 7174 113,970.54 15.89

Model fit with tool R2 ¼ 0:9

Project 24 980,113.02 40,838.04 2577.02 0.0000

Tool 2 737.74 368.87 23.28 0.0000

Residuals 7173 113,670.58 15.85

Base model fit R2 ¼ 0:9

Project 24 980,113.02 40,838.04 2561.12 0.0000

Residuals 7175 114,408.33 15.95
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5.1 Comparison of difficulty of detection with mutation scores

We include two measures in the traditional comparison; the raw mutation score (Sect. 4.1)

and the refined mutation score (Sect. 4.2). Considering the raw mutation scores that were

reported by different tools, we find that Pit produces a much larger number of mutants than

other tools (Fig. 3) and that the mean mutation scores across projects produced by different

tools are quite close (Fig. 5). Surprisingly, the correlation between the mutation scores

produced ranges from 0.37 (Judy � Pit) to 0.67 (Pit � Major). Similarly Kendall’s sb

Table 29 Entropy of different
mutation tools

Project Judy Major Pit

annotation-cli 2.81 2.69 3.38

asterisk-java 4.37 5.13 5.27

beanutils 5.71 6.37 6.44

beanutils2 3.97 4.13 4.80

clazz 1.06 4.62 3.20

cli 5.27 5.22 5.28

collections 1.51 6.34 4.41

commons-codec 0.23 5.80 6.27

commons-io 1.52 6.35 6.67

config-magic 4.19 4.35 4.41

csv 3.34 4.72 5.06

dbutils 4.10 4.07 4.73

events 3.48 1.95 3.94

faunus 0.35 4.99 4.91

java-api-wrapper 0.72 4.59 4.82

java-classmate 4.01 4.30 5.35

jopt-simple 4.41 4.79 5.34

mgwt 3.79 4.34 4.50

mirror 4.22 4.76 5.63

mp3agic 3.93 5.10 5.15

ognl 0.89 1.82 4.70

pipes 3.53 4.77 4.88

primitives 0.47 6.85 2.87

validator 3.36 5.40 5.62

webbit 1.29 4.42 4.88

l 2.90 4.71 4.90

r 1.66 1.23 0.92

Table 30 Entropy correlation of
different mutation tools R2 sb Difference l r

Judy � Pit 0.28 0.25 -2 1.66

Judy � Major -0.07 0.01 �1.81 2.13

Pit � Major 0.35 0.41 0.19 1.25
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Fig. 11 Entropy of the mutant set produced—larger is better. a Full set of mutants. b 100 samples

Table 31 Model fit for entropy
df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:0066

Project 24 51.89 2.16 0.88 0.6293

Phase 1 11.03 11.03 4.47 0.0396

Residuals 49 120.95 2.47

Model fit with audience R2 ¼ 0:08

Project 24 51.89 2.16 0.95 0.5468

Audience 1 19.92 19.92 8.71 0.0048

Residuals 49 112.07 2.29

Model fit with tool R2 ¼ 0:41

Project 24 51.89 2.16 1.46 0.1298

Tool 2 61.04 30.52 20.65 0.0000

Residuals 48 70.95 1.48

Base model fit R2 ¼ �0:062

Project 24 51.89 2.16 0.82 0.6971

Residuals 50 131.99 2.64
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ranges from 0.27 (Judy � Pit) to 0.54 (Pit � Major). We also see a large standard

deviation—up to 27 (Judy � Pit).

Our measures of correlation are markedly different from those obtained from mutation

scores reported by Delahaye et al. (Table 2) where the three tools we compare were found

to have high correlation. However, we note that we have a much larger variety of subject

programs and that the data from Delahaye et al. are incomplete (only four complete

observations with all the three tools under consideration), which may explain the dis-

crepancy. We also note that the tools we have not considered—Jumble and Javalanche—

have even worse correlation with other tools in Delahaye’s data. However, Madeyski and

Radyk (2010) report that Judy and Jumble had a high correlation (0.89). Taken together,

this corroborates our finding that the relationship between tools varies based on the project

being tested.

Our data from raw mutation scores suggest that tools rarely agree with each other on

mutation score and often differ by a large amount. However, we find no tool consistently

under or over reporting the mutation scores.

This suggests two things: (1) the mutation score from a single tool can be severely

misleading; (2) there is no single tool that can be said to produce consistently hard-

to-detect mutants or easy-to-detect mutants.

Table 32 Entropy correlation of different mutation tools (100 samples)

R2 sb Difference l r

Judy � Pit 0.53 0.40 -1.03 1.17

Judy � Major 0.54 0.35 -0.92 1.18

Pit � Major 0.69 0.50 0.11 0.74

Table 33 Model fit for entropy
(100 samples)

df Sum sq Mean sq F value Prð[FÞ

Model fit with phase R2 ¼ 0:62

Project 24 5963.01 248.46 467.59 0.0000

Phase 1 290.32 290.32 546.37 0.0000

Residuals 7174 3812.02 0.53

Model fit with audience R2 ¼ 0:63

Project 24 5963.01 248.46 474.42 0.0000

Audience 1 345.22 345.22 659.18 0.0000

Residuals 7174 3757.12 0.52

Model fit with tool R2 ¼ 0:73

Project 24 5963.01 248.46 659.32 0.0000

Tool 2 1399.24 699.62 1856.53 0.0000

Residuals 7173 2703.10 0.38

Base model fit R2 ¼ 0:59

Project 24 5963.01 248.46 434.55 0.0000

Residuals 7175 4102.34 0.57
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For raw mutation scores, we do not consider the impact of equivalent mutants. For our

second measure (Sect. 4.2), we removed all undetected mutants, and for the remaining

mutants, we evaluated mutation scores produced by partial test suites containing a fixed

fraction of the original test suite. Our results for refined mutants corroborate our findings

with raw mutation scores. As Table 7 shows, the differences between Judy and Pit reduced

in terms of both R2 and sb, while measurements of other pairings remain very close. The

spread, while slightly smaller than raw mutation scores, still remains high.

Note that mutation score is often the only measure from a set of mutants that is obtained

by testers and researchers interested in the quality of a test suite. Hence, irrespective of the

other measures of quality, the low agreement between tools for such a standard measure is

disheartening. Interestingly, Pit and Major are polar opposites in both dimensions we

evaluate—phase of generation, and target audience. However, we find that they show a

consistently higher correlation with each other when compared with Judy. This suggests

that at least as far as mutation score is concerned, the impact of phase of generation and

target audience is minimal.

5.2 Comparison of mutant strength with minimal mutation sets

The strength of a set of mutants irrespective of the size of the set provides a good measure

of the quality of a set of mutants. We analyzed (Sect. 4.3) the minimal mutants from

different tools across the subject programs using both the entire set of mutants, and also

restricting the number of mutants to just 100.

Our results from Sect. 4.3 suggest that the minimal set of mutants produced by different

tools varies widely, from 0.26 (Judy � Major) to 0.96 (Pit � Major). Kendall’s sb ranges

from 0.35 (Judy � Major) to 0.85 (Pit � Major). We also see the maximum standard

deviation of 209 (Judy � Major). Further, the mean difference between minimum mutants

produced by tools ranges from -124 mutants (r ¼175) (Judy � Pit) to 17 mutants (r ¼63)

(Pit � Major). Note that we compare count of minimal mutants rather than the fraction of

reduction. The reason is that the strength of a set of mutants for the same program is

determined by the size of the minimal mutant set irrespective of the size of the full mutant

set. Unfortunately, this also means that one cannot normalize the size of minimal mutant

set. The most interesting information here is the ordering between the tools, with Pit

producing the strongest set of mutants, closely followed by Major.

Interestingly, the situation is different when the number of mutants is controlled for. We

see a correlation between the minimum set from different tools from 0.49 (Judy � Pit) to

0.93 (Pit � Major). Similarly Kendall’s sb ranges from 0.35 (Judy � Pit) to 0.73 (Pit �
Major).

The mean difference between minimum mutants produced by tools ranges from -18

mutants (r ¼18) (Judy � Pit) to 2.8 mutants (r ¼7) (Pit � Major). That is, in our com-

parison, the tools that exhibit high correlation—Pit and Major—differ only by a mean

small amount compared to either the total number of mutants, or the mean for Judy � Pit.

We find a similar result from our analysis of surface mutants (Sect. 4.4). Surface

mutants are similar to minimal set of mutants, but with a small relaxation in their con-

struction—we do not require that the test suite be minimized. Rather, we remove all

mutants that are dynamically subsumed by another. This results in a slightly larger, but

more accurate estimation of redundancy. The measures vary from 0.25 (Judy � Major) to

0.94 (Pit � Major). Kendall’s sb ranges from 0.24 (Judy � Pit) to 0.76 (Pit � Major). We

also see a maximum standard deviation of 233 (Judy � Major). Further, the mean
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difference between minimum mutants produced by tools ranges from -173 (Judy � Pit) to

52 (Pit � Major).

We find a similar result as that of minimal mutants when the number of mutants is

controlled for. We see a correlation between the minimum set from different tools from

0.47 (Judy � Pit) to 0.92 (Pit � Major). Similarly Kendall’s sb ranges from 0.34 (Judy �
Pit) to 0.72 (Pit � Major). As before, the mean difference between minimum mutants

produced by tools ranges from -17 (Judy � Pit) to 2.6 (Pit � Major). That is, like in

minimum mutants, the tools that exhibit high correlation—Pit and Major—differ only by a

mean small number of mutants on average.

Finally, note that Pit produces the strongest set of mutants, as measured by size of

minimal and surface sets, irrespective of whether the size of mutant set is controlled for.

However, we note that characteristics of projects are a significant factor and have a strong

impact on the size of minimal or surface mutant sets.

Using strength of mutants measured as by minimal and surface mutant sets, Pit and

Major produce high strength mutants and only differ by a small amount. However,

the characteristics of the project have a significant impact even after accounting for

the number of mutants considered.

5.3 Comparison of mutant diversity with statistical measures

We had shown before (Gopinath et al. 2015) that sum of covariance of a set of mutants

reduces the fraction of mutants that can represent the mutation score accurately. A smaller

sum of covariance is strong evidence that one set of mutants is more varied than a set with

a larger sum of covariance if both have a similar number of mutants.

Our evaluation (Sect. 4.5) shows that the correlation between tools for covariance

ranges from 0.19 (Pit � Major) to 0.45 (Judy � Pit). The Kendall sb correlation ranges

from 0.43 (Judy � Pit) to 0.43 (Pit � Major). These values are small, as expected.

Remember that a larger covariance essentially means a smaller fraction of mutants can

represent the full mutant set. Here, the number of mutants is different and hence not really

comparable. The interesting part is the mean difference. That is, if the mutants are com-

parable, we would expect a larger difference in covariance between Pit and other tools

since it generates a larger set of mutants. Similarly, Major and Judy should differ little.

This is confirmed by our results, where the mean differences are 6.9 (Pit � Major), -6.1

(Judy � Pit) and 0.81 (Judy � Major).

Controlling the number of mutants should on the other hand lead to a higher correlation

and smaller difference. Our results show that this is as expected, with mean difference

ranging from -0.053 (Pit � Major) to 0.34 (Judy � Pit).

Our mutual information observations (Sect. 4.6) paint a similar picture. A low corre-

lation between tools, but larger difference in mutual information between mutants pro-

duced by tools generating a larger number of mutants and those producing a smaller

number, with mean differences of -281 (Judy � Pit) 237 (Pit � Major) and -44 (Judy �
Major).

As before, if the number of mutants is controlled, we have higher correlation ranging

from 0.86 (Judy � Pit) to 0.78 (Pit � Major) and small mean differences ranging from 0.14

(Judy � Pit) to -0.56 (Pit � Major).

These measures show that there is very little difference between mutants generated by

different tools, although Pit comes out slightly better once the number of mutants is

controlled.
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Our statistical measures of diversity of mutants show that once the number of

mutants is controlled, there is little difference in the diversity of mutants produced by

different tools.

5.4 Comparison of information carried with entropy

Similar to diversity measures, we expect little correlation when number of mutants is not

controlled for. The correlation ranges from -0.066 (Judy � Major) to 0.35 (Pit � Major).

We expect a larger set of mutants to have more entropy, and smaller set of mutants to have

less entropy. The mean difference ranges from -2 (Judy � Pit) to 0.19 (Pit � Major).

Once the number of mutants is controlled for, we see a larger correlation ranging from

0.54 (Judy � Major) to 0.69 (Pit � Major), but little difference in mean, ranging from -2

(Judy � Pit) to 0.19 (Pit � Major).

For entropy, we again find Pit and Major better than Judy. Pit and Major have similar

values, with Pit leading by a slight margin. However, note that once the size of the mutant

set is controlled for, the characteristics of the project assume significance.

In terms of entropy, the leaders are Pit and Major, with Pit leading by a small

margin. However, the characteristics of the project are a significant factor, even after

accounting for the number of mutants considered.

5.5 Tool assessment

In general, we found that tool is a significant factor in almost all measures we examined.

Further, the impact of tool remains significant even when the number of mutants is con-

trolled for. This points to the fact that the particular tool used is an important factor in the

quality of mutations produced. Next, provide assessments of each tool examined.

5.5.1 Judy

Judy is a tool oriented toward a research audience and produces bytecode-based mutants.

We see that Judy produces the smallest number of mutants, compared to Major and Pit. In

terms of raw mutation score, Judy has a slight advantage over other tools, with Judy

producing the lowest mean mutation score. However, the difference is small, further

reduced if non-detected mutants are removed first. In terms of mutant strength with either

minimal mutants or surface mutants, the other two tools (Major and Pit) perform better

than Judy. In terms of covariance between mutants, while Judy is better than Pit and Major

on average when number of mutants is not considered, both Pit and Major are better than

Judy when we restrict the number of mutants. In terms of multi-information, Judy is better

than Pit and Major when full sets of mutants are considered. However, this is likely to be

due to the small number of mutants produced by Judy, as shown by the sampled measure.

That is, for a constant-sized sample of mutants, Pit and Major produced more diverse

mutants than Judy. The entropy measure also suggests that mutants from Pit and Major

contain more information about the program than Judy.

5.5.2 Major

Major is one of the few tools in use that is source based. It is also oriented toward the

research community. In terms of raw mutation score, Major produces a medium mean
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mutation score compared to Pit (higher) and Judy (lower). However, the mean difference is

marginal. The conclusions are similar for refined mutation scores, with a difference of a

few percentage points between mean mutation score across projects with other tools. In

terms of minimal and surface mutant sets, without controlling for the number of mutants,

Major produces the best mean mutant set. However, this advantage disappears once we

control the number of mutants, with Pit producing better mean mutant set. In terms of

diversity measures, sum of covariance and mutual information, Major occupies a middle

rank between Pit and Judy both with and without control for number of mutants, with Judy

better when the number of mutants is not controlled, and Pit better when the number of

mutants is controlled. For entropy, Major is better than Judy, while Pit is better than Major.

We also note that Mutants from Major and Pit are very close in most measures.

5.5.3 Pit

Pit is a tool firmly focused on an industrial audience. It is bytecode based, and in terms of

ease of use, it provides the best user experience. Pit produces a large number of mutants

compared to Major and Judy. In terms of mean raw mutation score, the mutants produced

by Pit are marginally easier to detect than those produced by other tools (the difference

decreases if refined mutants are used). In terms of size of minimal and surface mutant sets,

Pit occupies a middle ground between Judy (smaller) and Major (larger). However, when

the number of mutants is controlled, Pit produces the strongest mutant set. For diversity

measures such as sum of covariance and mutual information, controlling for the number of

mutants, Pit produces mutants with the most diversity. In terms of information content, Pit

produces mutants with the largest entropy both when number of mutants is controlled or

otherwise.

5.6 Impact of phase of generation

There is no evidence that phase of generation had any impact on the mutation score—

either raw or refined. For strength of mutants—using minimal or surface sets—there was

no evidence that phase mattered when the number of mutants was not controlled. While the

variable phase could explain some of the variability in mutation score with statistical

significance once the number of mutants was controlled, the actual effect was only a few

percentage points and was dwarfed by the variability introduced by the tool. For mea-

surements of diversity of mutants—sum of covariance and mutual information—we found

similar results. While statistically significant effect was observed once the number of

mutants was controlled, the effect was less than a percentage point and was dwarfed by the

difference due to tool. For entropy, the effect of phase was statistically significant both

with and without control for number of mutants. However, as for the measures of diversity,

the variability explained was small, and dwarfed by the variability due to tool.

In summary, there is little evidence of a large impact of phase of generation on the

variability of mutants.

5.7 Impact of target audience

There is no evidence that target audience had any impact on the mutation score—either

raw or refined. For strength of mutants—using minimal or surface sets—the variable

audience is a statistically significant factor. For both minimal and surface sets, the variance
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explained by audience is less than that explained by tool for both full set of mutants, and

constant number of sampled mutants. Considering the measurements for diversity of

mutants—sum of covariance and mutual information—we found that audience is indeed

statistically significant and the impact is larger than that of considering tool separately

when considering the full set of mutants. However, when considering a constant sample of

mutants, the impact of tool is larger for sum of covariance. For mutual information, the

variation due to project dwarfs the variation due to tool or audience. For entropy, the

impact of tool is again much larger than that due to audience.

In summary, there is some evidence of a practical impact of target audience on the

variability of mutants using some of the measures. However, the variability due to tool is

larger than the variability due to target audience, except for diversity measures, and for

diversity measures, the effect disappears when the number of mutants is controlled.

The target audience has an impact on the variability of mutants. However, this may

be an artifact of the particular tools used, and the number of mutants produced.

5.8 Impact of project characteristics

In every measure tested, even after accounting for obvious factors such as number of

mutants, and quality of test suites, the variation due to individual characteristics of the

project was the single highest factor contributing to the variation of measurements for

different tools. Note that since we control for number of mutants and test suite quality, this

means that some underlying semantic property of each project is the driving factor, not

mere size or test effort.

The characteristics of individual projects were the most important factor deter-

mining the effectiveness of different tools by a large margin.

That is, the interaction of syntactic and semantic characteristics of the project seems to

determine whether a particular mutation tool will perform well with a given project or not.

This is an area where further investigation is required to understand what these factors are

both in generation and detection of mutants, and especially how they affect the quality of

mutants produced. A more immediate implication is that, until we have an understanding

of the factors involved, researchers should be wary of relying on a small number of projects

for evaluation of their techniques. Finally, evolving a consensus on the standardization of

mutants produced is important for the validity of mutation analysis in further research.

5.9 Need for standardization

We find that in terms of mutation score, there is very little mean difference between

different tools. However, we have a more worrying result. Even though there was negli-

gible mean difference, the standard deviation and different forms of correlation indicated

that the mutant sets seldom agree on the mutation scores and often even disagree on how to

rank two test suites in terms of effectiveness. This is especially worrying given that a

number of research papers rely on small differences in correlation between mutation scores

and other measures to show that a particular technique works well (Zhang et al. 2010,

2013; Gligoric et al. 2013; Gopinath et al. 2014). This means that the research conducted

so far is strongly tool dependent. Further, the relatively large spread of mutation scores

suggests that some mutation tools may judge a test set to be effective by some benchmark,

and others may not, which makes using any target mutation score (e.g., 80 %) problematic
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as a guideline for testing practice. It is unsafe to rely on any single tool to measure

adequacy of a test suite.

Our findings indicate a need to standardize mutation scores. We propose that we go

back to the original definition. That is, we standardize the mutation scores based on the

actual exhaustive generation of all mutants as permitted by the grammar of the language in

question. In fact, as Just et al. (2014) show, traditional ‘‘easy’’ operators are not sufficient,

and we have to be serious about including all possible first-order mutants including

function call mistakes, argument swapping, casts etc.—all that are indicated by the lan-

guage grammar. Since even first-order changes can be infeasibly large, we suggest that the

changes to primitive types such as integers be restricted to the well-known traditional

boundary values such as 0, 1, -1, and (-)maxint.

Once a standard mutation framework is available, for any new mutation tool or

reduction technique that targets test quality assessment we require that the mutation score

from the proposed technique be in high R2 correlation, of at least 0.95 with the standard,

and the coefficients b0; b1 of linear regression lstandard ¼ b0 þ b1lnew be available. On the

other hand, for tools and reduction techniques that target comparison of testing techniques,

we require that the new mutation scores be in high Kendall’s sb correlation of at least 0.95

with the standard.

There is a reason for insisting on different correlation measures. For test assessment, it

is only required that the standard mutation scores can be predicted from the new mutation

score with the given accuracy. That is, it does not matter if the difference is not consis-

tently positive or negative. However, for comparison between different testing techniques,

it is important that if the new technique finds a tool to be better than another, it is in

agreement with the standard mutation analysis, also. Using Kendall’s sb also lets other

tools be more discriminating in specific areas than the standard, but still be in overall

agreement.

Obviously, in the long run there may be new standards (e.g., more complete sets of

mutation operators) that replace the current standard; such a tool needs to offer an argu-

ment for its superiority and measure its statistical divergence from the standard to place

results using an older standard in context.

6 Threats to validity

Our research makes use of multiple mutation tools, a variety of measures, and a large

number of subjects. This means that our research is subject to the following threats to

validity.

The single most important threat to validity is the applicability of our findings. Our

subject programs were open source Java projects from Github. While our choice of sub-

jects was driven by concerns about the size of the project (the larger the better), the size of

the test suite (the larger the better), and the project’s ability to complete mutation analysis

successfully for the tools we selected, none of which have any direct influence on the

measures, threats due to indirect unforeseen influences cannot be ruled out. Further, our

research results are only directly applicable only to Java programs. Though we expect our

findings to be applicable to mutation tools in other programming languages, there is no

statistical guarantee for such a belief other than the relative similarity between languages,

between possible bugs, and hence between mutants.
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While we tried very hard to use different kinds of tools, the fact remains that only three

tools could be evaluated. This is not statistically adequate for any sort of guarantee about

the behavior of these tools. We base our confidence on the observation that these tools are

actively developed, used by real-world practitioners of testing, and researchers, and also

that the mutation operators are reasonably complete. However, it is possible that our tools

may not be representative of the categories such as source based or bytecode mutation

engines, or a typical representative of a tool aimed at research or industry. It is not clear if

source and bytecode is a reasonable representation of the variation in mutation due to

difference in phase of generation. More importantly, since we have only three tools, large

deviance from any single tool is a threat to the validity of our research.

Finally, software bugs are a fact of life, and it cannot be ruled out either in the tools used

or in the analysis we performed.

While we have taken every care, the possibility of these threats remains. Hence, it is

important that our research be replicated on other languages with different tools, and on

tools using different phases for mutant generation. To facilitate such a research, we place

the data from our research and also the source code of our publication which can be

regenerated from new data in the given format in public domain (Gopinath 2015).

7 Conclusion

We evaluated mutants produced by different mutation tools for Java across a large number

of projects using diverse measures of tool effectiveness. Using these measures, we find that

the tool targeting industry—Pit—produced the best mutants, although the difference with

other tools was often very small. We also find that the influence of project, even after

controlling for factors such as test suite and number of mutants (which usually follows

source code size of the project), is still the dominant contributor to the variation between

the measurements from different tools.

We find that in terms of mutation score, while there is very little mean difference

between different tools, there was often large standard deviation suggesting that tools

seldom agree. Our findings indicate that in order to be useful as a measure of software

quality, there is a need for standardization of mutation scores. We propose an approach for

such a standardization.

In the meantime, we make a recommendation for languages such as Java where there

are multiple tools, with no single tool consistently better than others. We suggest that

researchers use a much larger set of projects, and multiple tools to evaluate mutation

scores, since a large number of projects tend to reduce the ill effects of an incomplete set of

mutants. For practicing testers, for whom a large number of projects is not appropriate, we

recommend using multiple tools to compute the mutation score. A low mutation score

reported by any tool used should be a cause for concern, and be manually reviewed and

verified.
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Appendix

Measures of correlation

We rely on two different correlations here: The first is R2, which suggests how close

variables are linearly. R2 (Pearson’s correlation coefficient) is a statistical measure of the

goodness of fit, that is, the amount of variation in one variable that is explained by the

variation in the other. For our purposes, it is the ability of mutation scores produced by one

tool to predict the score of the other. We expect R2 ¼ 1 if either A) scores given by both

tools for same program are the same, or B) they are always separated by same amount. The

Kendall’s sb is a measure of monotonicity between variables compared, measuring the

difference between concordant and discordant pairs. Kendall’s sb rank correlation coeffi-

cient is a nonparametric measure of association between two variables. It requires only that

the dependent and independent variables (here mutation scores from two different tools)

are connected by a monotonic function. It is defined as

sb ¼
concordant pairs � discordant pairs

1
2
nðn� 1Þ

R2 and sb provide information along two different dimensions of comparison. That is,

R2 can be close to 1 if the scores from both tools are different by a small amount, even if

there is no consistency in which one has the larger score. However, such data would result

in very low sb, since the difference between concordant and discordant pairs would be

small. On the other hand, say the mutation scores of one tool are linearly proportional to

the test suite, while another tool has a different relation to the test suite—say squared

increase. In such a case, the R2 would be low since the relation between the two tools is not

linear, while sb would be high. Hence both measures provide useful comparative infor-

mation. Note that low sb indicates that the troubling situation in which tools would rank

two test suites in opposite order of effectiveness is more frequent—this could lead to a

change in the results of software testing experiments using mutation analysis to evaluate

techniques, just by changing the tool used for measurement.

While what can be considered high and low correlation is subjective, for the purpose of

this paper, we consider R2 � 0:40 to be low correlation, and R2 � 0:60 to be high

correlation.

Covariance

We showed (Gopinath et al. 2015) that for mutation analysis, the maximum number of

mutants to be sampled for given tolerance has an upper bound provided by the binomial

distribution, and the actual number is determined by the covariance.

Let the random variable Dn denote the number of detected mutants out of our sample n.

The estimated mutation score is given by Mn ¼ Dn

n
. The random variable Dn can be

modeled as the sum of all random variables representing mutants X1...n. That is,

Dn ¼
Pn

i Xi. The expected value of EðMnÞ is given by 1
n
EðDnÞ. The variance VðMnÞ is

given by 1
n2 VðDnÞ, which can be written in terms of component random variables X1...n as:

1

n2
VðDnÞ ¼

1

n2

Xn

i

VðXiÞ þ 2
Xn

i\j

CovðXi;XjÞ
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Using a simplifying assumption that mutants are more similar to each other than dissimilar,

we can assume that

2
Xn

i\j

CovðXi;XjÞ[ ¼ 0

The sum of covariance will be zero when the mutants are independent. That is, the variance

of the mutants VðMnÞ is strictly greater than or equal to that of a similar distribution of

independent random variables.

This means that the covariance between mutants determines the size of the sample

required. That is, the larger the covariance (or correlation) between mutants, the smaller

the diversity.

Mutual information

The mutual information of a variable is defined as the reduction in uncertainty of a variable

due to knowledge of another. That is, given two variables X and Y, the redundancy between

them is estimated as:

IðX; YÞ ¼ IðY ;XÞ ¼
X

y2Y

X

x2X
pðx; yÞ log

�
pðx; yÞ
pðxÞpðyÞ

�

To extend this to a set of mutants, we use one of the multivariate generalizations of mutual

information proposed by Watanabe (1960)—multi-information also called total correla-

tion. The important aspects of multi-information that are relevant to us are that it is well

behaved—that is it allows only positive values, and is zero only when all variables are

completely independent. The multi-information for a set of random variables xi 2 X is

defined formally as:

CðX1. . .XnÞ ¼
X

x12X1

. . .
X

xn2Xn

pðx1. . .xnÞ log

�
pðx1. . .xnÞ

pðx1Þ. . .pðxnÞ

�

:

Entropy

In information theory, Shannon entropy (Shannon 2001) is a measure of the information

content in the given data. Entropy is related to multi-information. That is, multi-infor-

mation is the difference between the sum of independent entropies of random variables and

their joint entropy. Formally,

CðX1. . .XnÞ ¼
XN

i¼1

HðXiÞ � HðX1. . .XnÞ

Another reason we are interested in the entropy of a set of mutants is that the properties

of entropy are also relevant to how good we judge a set of mutants to be. That is, as we

expect from a measure of quality of a set of mutants, the value can never be negative

(adding a mutant to a set of mutants should not decrease the utility of a mutant set).

Secondly, a mutant set where all mutants are killed by all test cases has minimal value

(think of a minimal set of mutants for such a matrix). This is mirrored by the entropy

property that Ið1Þ ¼ 0. Similarly, a mutant set where no mutants are killed by any test
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cases is also of no value (again consider the minimal set of mutants for such a matrix),

which is also mirrored by entropy Ið0Þ ¼ 0. Finally, we expect that if two mutant sets

representing independent failures are combined, the measure should reflect the sum of their

utilities. With entropy, the joint information of two independent random variables is their

sum of respective information. Finally, the maximum entropy for a set of mutants happens

when none of the mutants in the set are subsumed by any other mutants in the set. The

entropy of a random variable is given by:

IðpÞ ¼ �p� log2ðpÞ:
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