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Our confidence in software systems depends on our confidence in the exhaustiveness 

of our testing. As software systems get more complex, the task of exhaustive testing 

becomes more complex and even infeasible in some cases. In order to build less error 

prone systems, we therefore need to not only focus on quickly and efficiently 

identifying bugs through testing and verification of software, but also on identifying 

factors associated with bugs in order to prevent them from occurring in the first place. 

This thesis shows how mutation testing and fault prediction can be used to improve the 

quality of software. 

In the first part of this thesis, we investigate the notion of testedness and how that is 

associated with widely-used measures of test suite quality. The first measure is 

statement coverage, the simplest and best-known code coverage measure. The second 

measure is mutation score, a supposedly more powerful, though expensive, measure. 

We evaluate these measures using the actual criteria of interest; if a program element 

is (by these measures) well tested at a given point in time, it should require fewer future 

bug-fixes than a "poorly tested" element. If not, then it seems likely that we are not 

effectively measuring testedness. We show that both statement coverage and mutation 

score have only a weak negative correlation with bug-fixes, mutation score having 

slightly stronger correlation between the two.  



 
 

 

In the second part, we investigate the applicability of mutation analysis in real world 

complex software system. Despite four decades of research on mutation analysis 

technique, its use in large systems is still rare, in part due to computational requirements 

and high numbers of false positives.  We present our experiences using mutation 

analysis on the Linux kernel’s RCU (Read Copy Update) module, where we adapt 

existing techniques to constrain the complexity and computation requirements. We 

show that mutation analysis can be a useful tool, uncovering gaps in even well-tested 

module like RCU. This experiment has not only led to the identification of gaps and 

bugs in the RCU module but also has led to a discussion on identifying domain specific 

mutants in order to increase the applicability of mutation analysis in real world 

applications. 

In the third part, we investigate fault prediction models. Although there has been 

much research on predicting failures, those predictions usually concentrate either on 

the technical, or the social side of software development. However, software 

development is not an isolated activity, it requires coordination between individuals 

and technology. Therefore, to attain the best possible predictive capability, we need to 

analyze the complex interactions between socio-technical factors. Using one such socio 

technical factor, merge conflict, we found significant improvement in fault prediction.  
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Chapter 1 INTRODUCTION 

Software continues to become a more and more pervasive part of our lives, making 

quality of these software systems important. Unfortunately evaluating quality, 

especially with regards to the presence of bugs, becomes more difficult as the 

complexity of the software increases. Failure to meet quality requirements can carry 

significant costs, especially when these lead to software failures [29]. Thus, checking 

software quality may consume a large amount of time and resources not only during 

development stages, but also after the software is released. 

The best way to ensure software meets quality requirements is to engage in extensive 

and thorough software testing. The goal of testing is to discover faults in the System 

under Test (SUT) by executing test cases that create the conditions that will lead to 

failure, and provide the instrumentation to detect such a failure. In addition to common 

manual testing approaches, such as Unit Tests [108], there are a growing number of 

popular automated testing techniques such as symbolic execution (SE) [123], random 

testing [172], and Search-Based Software Testing (SBST) [17].  

The best technique for evaluating test suites and test coverage is currently mutation 

analysis which introduces simple syntactic changes to the program and measures the 

ability of test-suite to distinguish the semantic difference caused by these changes. 

Mutation analysis subsumes condition coverage criteria [143, 167] detects more bugs 

[132], produces mutations that have some characteristics of real-world bugs [ 9,10], 

and tracks the fault detection capability of test-suites. These factors make mutation 

analysis an attractive tool for researchers investigating test-suite quality. 

Despite its potential, mutation analysis is not often used by practitioners on large and 

complex programs. One of the primary reasons mutation analysis is avoided is the large 

number of mutants that can be generated, which grows exponentially with program 

complexity. Exhaustive mutation analysis generates large numbers of mutants, but 

mutant sampling [176, 209, 215] and mutant execution optimizations [109, 177, 216] 
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can help to mitigate the problem. Offutt et al. [166] categorized these efforts into do 

fewer, do faster, and do smarter approaches. Unlike model checking, mutation analysis 

doesn’t require any kind of modeling of the environment and associated data structures, 

which makes it more easily applicable to complex systems.  

Though testing is effective in ensuring software quality, as software systems get more 

complex, the task of exhaustive testing becomes more complex and even infeasible in 

some cases. In order to build less error prone systems, we therefore need to not only 

focus on quickly and efficiently identifying bugs through testing and verification of 

software, but also on identifying factors associated with bugs that could be used in fault 

prediction techniques to potentially help us focus quality-assurance efforts on the most 

defect-prone parts of the code. 

Software fault prediction strives to improve software quality and testing efficiency 

by constructing predictive classification models from different types of attributes. The 

focus is to predict software faults and where they may be located, for instance which 

modules are likely to be particularly fault-prone. In order to achieve this, researchers 

have explored many different techniques that can generate a prediction system from 

known training examples. Researchers have historically hypothesized that properties 

of the code, measured using code metrics, could usefully predict fault-proneness. Code 

metrics could measure size (larger files may be more fault-prone), or complexity (more 

complicated files may be more fault-prone). The value of code metrics in fault 

prediction has been well-explored [131, 150, 220]. Studies [26, 157, 182, 207] also 

suggest that software development process (e.g., developer count, code ownership, 

developer experience, change frequency) is also important indicators of fault 

proneness. 

Overall, the primary focus so far has been on investigating technical factors but more 

recently researchers have started investigating the effectiveness of using socio-

technical factors in fault prediction [25] focusing on the fact that software development 
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is not a purely technical process but a socio-technical process and investigating socio-

technical factors can be used as important indicators of fault proneness.  

1.1 Background 

In the following section we discuss mutation analysis, the problems associated with 

applying mutation analysis and the state of the art on how to mitigate these issues. Then 

we discuss about fault prediction techniques and the current state of art on using process 

and socio-technical metrics for fault detection. 

1.1.1 Mutation Analysis 

The idea of mutation analysis was first proposed by Lipton [137].  Mutation analysis 

seeks to evaluate test suites by embedding known defects into the SUT. These defects 

are called mutants, and are produced by simple syntactic rules, e.g., changing a 

relational operator from “>” to “>=”. These rules are called mutation operators. The 

term mutagen is synonymous with both mutation-operator and mutation transformer in 

literature. If only one single mutation separates the mutant from the original program, 

it is called a first order mutant (FOM). A higher order mutant (HOM) is separated from 

the original by multiple mutations. 

1.1.1.1 Similarity of mutants to real faults 

Researchers have been trying to verify whether mutation analysis are similar to real 

faults. Daran et al. [48] found that the errors caused by 85% of mutants are similar to 

the errors caused by real faults. Unfortunately, this study has very small sample size 

both in terms of faults and SUT which makes the findings prone to statistical noise. 

Andrews et al. [9] compared the ease of detection for both real and hand seeded faults 

where ease of detection is calculated as the percentage of test cases that killed each 

mutant. Their study concluded that the ease of detection of mutants was similar to real 

faults. However, their results rely on real faults from a single program, which limits the 

scope of inference. Namin et al. [160] found that caution is required when using 

mutation analysis as a proxy for real faults. They found that programming language, 
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kind of mutagens used, and even test-suite size has an impact on the relation between 

mutations and real faults. They found that there is only a weak correlation between real 

faults and mutations. 

Just et al. [110] investigated the relation between mutation score and test case 

effectiveness using 357 bugs from 5 open source applications. They found that 

mutation score increased along with test-suite effectiveness for 75% of the cases while 

for coverage, the increase happened only for 46% of the cases. They also found that 

coverage increase results in mutation coverage increase, but the reverse does not seem 

to happen. Gopinath et al. [77] found that real faults are usually three to four tokens 

long and there is a mean syntactic difference between real faults and first order mutants, 

which means that it is not self-evident mutation analysis will help find real faults. 

1.1.1.2 Limitations of mutation analysis 

Mutation analysis suffers from a number of limitations, generating a large number of 

mutants for even small programs is one of them. We discuss about the limitations of 

mutation analysis in the following subsections. 

1.1.1.2.1 Computational Cost of Mutation Analysis 

The computational cost of mutation analysis is very high due to the large number of 

mutants that need to be analyzed. Mutants are generated exhaustively for each program 

element to which mutation operators can be applied. The total number of generated 

mutants increase with the number of applied mutation operators and the size of the 

program. The number of mutants eventually affects the running time of mutation 

analysis. 

The runtime Ttotal of mutation analysis can be expressed as: 

𝑻𝒕𝒐𝒕𝒂𝒍 = ' 𝒕𝒔𝒆𝒆𝒅,𝒎
𝒎∈𝑴

+ ' 𝒕𝒄𝒎𝒑𝒍,𝒎
𝒎∈𝑴

+ ' ' 𝒕𝒕𝒆𝒔𝒕,𝒎,𝒕𝒄
𝒕𝒄∈𝑻𝑪𝒎∈𝑴
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Where M is the set of mutants, TC is the set of test cases and  𝑡4556,7 ,	𝑡9:;<,7 and 

𝑡=54=,7,=>	are the times for seeding, compiling, and testing respectively, a combination 

of a mutant m and a test case tc. Generally, the compilation time and the testing time 

are the dominant components in the total time of traditional mutation analysis. 

1.1.1.2.2 Equivalent mutants 

One problem with mutation analysis is that a syntactic change to the code may leave 

the program semantically the same. This is known as the “equivalent mutant problem”. 

Identification of equivalent mutants and verification whether there exist any test inputs 

that expose semantically equivalent mutants account for a large amount of time and 

effort. Equivalent mutants could easily skew the test suites’ mutation score, and no 

automated method can completely remove this problem. Manual equivalence 

inspection [212] requires a significant investment of developer time to weed out 

equivalent mutants.  Even then, the identification rate of equivalent mutants is about 

8% [1]. 

As the problem of identifying equivalent mutants is fundamentally an undecidable 

problem [33], the literature is limited to approximation techniques. One approach is to 

use compiler optimization rules to detect equivalent mutants [20]. If the original 

program and a mutant are both compiled to the same object code, using semantics-

preserving optimizations, then the mutant is equivalent to the original program. Even 

in the presence of undefined behavior (which could make an optimization semantically 

unsafe), no test could ever reveal differences, so there is effective equivalence. Mothra 

[164] uses this technique and can identify about 45% of equivalent mutants. Recently 

Papadakis et al. proposed Trivial Compiler Equivalence (TCE) which simply declares 

equivalencies only for those mutants where the compiled object code is identical to the 

compiled object code of the original program [178] and collects mutants into 

equivalence classes for execution. In our studies we use TCE for equivalent mutant 

identification. 
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Another approach identified by researchers is using constraint solving [164, 165] to 

detect equivalence. Researchers also showed that program slicing [89, 94] can help in 

detecting equivalent mutants. Although these techniques are powerful, they suffer from 

the inherent limitations of the constraint-based and slicing-based techniques: these 

techniques are often neither very scalable nor very easy for developers to apply. Many 

other techniques, such as dependence-based analysis [89] have been proposed by 

researchers. 

1.1.1.2.3 Duplicate mutants 

Another problem related to equivalent mutants is the “duplicate mutant” problem. This 

is when multiple mutants generate the same program, semantically speaking. Papadakis 

et al. proposed to use TCE for identifying duplicate mutants [178] as well. In our studies 

we use TCE for duplicate mutant identification. 

1.1.1.2.4 Need for human oracle 

Another reason for less adoption of mutation analysis is the lack of proof of mutation 

analysis’ applicability and effectiveness for complex real-world projects. Mutants that 

are not identified by the test suite needs to be manually checked and this requires human 

oracle. Researchers have been trying to reduce the computational cost in mutational 

analysis and but none of these efforts try to prioritize among the surviving mutants that 

need human intervention. Because of these shortcomings, mutation analysis has been 

more widely adopted by academia than industry, and the technique and associated tools 

have mostly been evaluated using relatively simple programs and test suites. 

1.1.1.3 Techniques for making mutation scalable 

Although mutation testing is powerful, its high execution cost has always been a 

problem. This problem has been extensively researched. Researchers have come up 

with various techniques for mitigating this issue. Offutt et al. [166] categorized these 

efforts into “do fewer”, “do faster”, and “do smarter” approaches. The “do fewer” 

approach seeks to reduce the number of mutants tested without a significant loss in 

accuracy of the final result, while the “do faster” approach tries to make the process of 
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running each mutant as fast as possible, and “do smarter” approach tries to distribute 

the load over several machines, or save and reuse the invariant results of a previous run 

to make the current run faster. 

1.1.1.3.1 Do Fewer 

Jia et al. [102] classified the approaches that use fewer mutants into four categories: 

selective mutation, mutant sampling, higher order mutation and mutant clustering. 

Selective mutation technique proposed by Wong and Mathur [209] seeks to find a small 

set of mutation operators that generate a subset of all possible mutants without a 

significant loss of test effectiveness. It is useful for reducing the size of a mutation 

operator list. Mutants sampling is another technique which had significant success. 

Wong et al. [209] found that even sampling of only 10% mutants is effective in 

achieving an accuracy close to 80%. Patrick et al. [179] use static-analysis to identify 

mutations that are closest to the program. These are harder to kill, and contribute more 

to the mutation analysis. Selection of higher order mutants [104] is another successful 

technique for reducing the number of mutants without losing much efficiency. The best 

hybrid strategy of higher order mutant selection achieves about 50% reduction in effort, 

with 1.75% average loss in accuracy. Mutant clustering is an approach that selects a 

subset of mutants using a clustering algorithm. Each mutant in a cluster is likely to be 

killed by the same set of test cases. 

1.1.1.3.2 Do Faster 

Schema based mutation analysis is one of the “do faster” techniques where all 

mutations are encoded within the same source code, and the code is compiled once, 

resulting in savings by avoiding multiple compilation of non-mutating parts. The 

bytecode-based approaches such as in MuJava [139] also help in reducing the cost of 

computation and fall under the do faster approach. Just et al. [110] inserts triggering 

conditions into the source code, such that each mutant can be triggered separately. This 

eliminates the separate compilation overhead. 
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1.1.1.3.3 Do smarter 

The do smarter approaches include weak mutation, parallelization of mutant execution 

and incremental mutation approaches. Weak mutation is an approximation technique 

that compares the internal states of the mutant and the original program immediately 

after execution of the mutated potion of the program. Split-stream execution is another 

“do smarter” approach. King [123] initially proposed split-stream execution which 

splits the execution stream of the original program to begin mutant execution at the 

point where the mutated statement appears. 

1.1.2 Fault prediction 

Fault prediction strives to improve software quality and testing efficiency by 

constructing predictive classification models from different types of attributes. The 

goal is to predict software defects and their location at various granularity levels such 

as at file level, method level etc. 

1.1.2.1 Classification models for predicting faults 

Several classification models have been evaluated by researchers. Liang et al. used K-

nearest [134], Gyimothy et al. [86] used decision tree and neural network as their 

classifier. Brun et al. used SVM and decision tree [30]. Kim et al. [120] also used SVM 

as their classifier. Menzies et al. [150] empirically found that Naive Bayes with a log-

filtering preprocessor on the numeric data outperformed those of rule or tree-based 

learning methods. However, Lessmann et al. compared 22 classification models over 

10 public domain software development data sets from the NASA MDP repository 

[131] and found that predictive accuracy of most classifiers do not differ significantly. 

They also found that simple classifiers suffice to model the relationship between code 

attributes and software defect. Ensembles of classifiers are also used in prediction [200] 

and have been shown to significantly improve predictive performance. 
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1.1.2.2 Metrics used for fault prediction 

Researchers have been trying to come up with better fault prediction models. Various 

metrics have been used as the independent variables in these models. 

1.1.2.2.1 Process Metrics 

Researchers have used change metrics or code churn as predictors of faults. The 

intuition being bugs are introduced by changes [46] and thus, the more changes are 

done to a part of the source code the more likely it will contain bugs. In [80], 

Generalized Linear Models were built based on several change metrics, e.g., number 

of changes or average age of the code. A study showed that relative change metrics 

from the Windows Server change history are better indicators for defect density than 

absolute values [156]. The fault and change history in combination with a (negative 

binomial) regression model achieved good performance in predicting not only the 

location, but also the number of bugs [171]. Furthermore, the more complex source 

code changes are (as measured by entropy), the more likely they are bug-prone [91]. 

Nagappan et al. found that the number of subsequent, consecutive changes (rather than 

the total number of changes) is a strong predictor for bugs [158].  Shihab et al. predicted 

surprise defects in files that are rarely affected by changes [196].  A study on changes 

in general showed that a substantial amount of changes are non-essential changes [118]. 

1.1.2.2.2 Code Metrics 

Using code metrics for predicting bugs assumes that a more complex piece of code is 

harder to understand and to change, and therefore, it is likely to contain more bugs [46]. 

Basili et al. investigated the impact of the CK object-oriented metrics suite to software 

quality [21]. The usefulness of (static) code metrics to build prediction models was 

demonstrated using the NASA dataset [150].  In an extensive study conducted with the 

same dataset focusing on evaluating different machine learning algorithms [131] the 

conclusion was that the difference between those algorithms is mostly not statistically 

significant. However, this ceiling effect is reported to disappear when focusing only on 
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maximizing detection and minimizing false alarm rates [151]. The practicability of 

lines of code (LOC) to predict defects was demonstrated in [214]. An extensive 

empirical study with 38 different metrics and multivariate models to predict the fault-

prone modules of the Apache web-server is presented in [217]. 

Liang et al. used a combination of Object-Oriented metrics, statistics for warnings of 

each tool (e.g., number of warnings reported for the same location by each tool, and 

number of warnings reported for the same file by each tool) as their feature set [134]. 

Gyimothy et al. showed that object oriented metrics are useful predictors of faults [86]. 

Brun et al. used the Daikon dynamic invariant detector to generate runtime properties 

and used them as the feature set [30]. Kim et al. used Change Metadata such as length 

of change log, changed LOC (added delta LOC + deleted delta LOC) along with a 

combination of Object-oriented metrics as their feature set [120] showing that they had 

the highest level of accuracy compared to Gyimothy et al. and Brun et al. 

1.1.2.2.3 Technical networks 

Technical networks have been used in previous work to build prediction models for 

failures. Zimmermann et al. [217, 218] constructed networks from dependency 

information for binaries and subsystems in Windows Server 2003. This study used 

social network analysis on dependency information to build prediction models for post-

release failures. Their results indicated that models built on social network metrics were 

better indicators of future failures than models based on standard source code metrics. 

Their approach leveraged SNA metrics to capture both local and global effects of 

network connectivity on defect-proneness. 

1.1.2.2.4 Social networks 

Prior work has also shown that software artifact properties are directly influenced by 

social network properties of teams, such as the email interactions, and their contribution 

history of developers. In earlier work, Bird et al. [24] constructed email social networks 

from open source project mailing lists and found that social network analysis measures 
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were highly correlated with development activity. Pinzger et al. [181] used contribution 

history to construct the networks of binaries and the developers that contributed to 

them. They found that measures such as degree centrality, closeness centrality, and 

Bonacich power in contribution networks also had very good predictive power in 

determining failure-prone binaries. Meneeley et al. [148] created networks that 

consisted solely of developers where edges between developers were based on 

collaboration on common files. They used social network analysis to assign values of 

metrics such as betweenness, degree, and closeness to developers. They found that a 

model using these metrics explained 60% of the variance of failures during the testing 

phase, but only 2.6% of the post-release failures. 

1.1.2.2.5 Combination of metrics 

These metrics are rarely used in isolation but instead are often combined for building 

bug prediction models [16, 195].  Although a general consensus has not been achieved, 

several studies showed that change metrics potentially outperform code metrics [114, 

125, 154]. Hall et al. noted that models using a combination of static code metrics, 

process metrics and source code text performs better [87]. Combining social and 

technical networks has recently become a subject of study. Socio-technical networks 

encode connections between people, connections between technical artifacts and 

connections between people and artifacts. Amrit et al. [7] first proposed use of socio-

technical networks. Cataldo et al.  [38, 39] looked at time to resolution for modification 

requests and found that developers take 32% less time to complete tasks when there is 

“congruence” in the socio-technical network. 

1.2 Research Goals 

Philosophically, at a higher-level this thesis has the following high-level goals: 

1. Investigating whether statement coverage or mutation coverage is a better 

measurement of test suite quality using a novel evaluation criteria of future bug 

proneness of a program element.  
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2. Investigating if mutation analysis can be applied to the real world complex systems 

within reasonable time and resource constraints, and if doing so could uncover bugs 

in well-tested software. To this end, we propose to investigate how we can quickly 

and efficiently triage all the mutants that are generated. 

3. Investigating the applicability of fault prediction models built using socio-technical 

factors. 

1.3 Structure 

This thesis is based on the following papers: 

Chapter 2 presents our paper “Can Testedness be Effectively Measured?” which was 

published at FSE 2016. This paper answers the first high level research goal of 

comparing the effectiveness of two testedness measurement criteria (statement 

coverage and mutation score). 

Chapter 3 presents our paper “Applying mutation analysis on kernel test suites an 

experience report” which was published at ICST Workshop on Mutation Analysis in 

2017. This paper answers the second research goal of investigating the applicability of 

mutation analysis in real world complex software system adapting existing techniques 

to constrain the complexity and computation requirements.  

Chapter 4 presents our paper “An Empirical Examination of the Relationship 

Between Code Smells and Merge Conflicts” which was published at ESEM 2017. This 

paper investigates the third research goal pertaining to applicability of socio-technical 

factors for fault prediction model building.  

Chapter 5 concludes this dissertation and presents our ideas on how to take our 

research forward. 
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1.4 Contributions 

The contributions of this dissertation are: 

1. Proposing a novel approach of future bug-proneness as a criterion of measuring and 

comparing effectiveness of various testedness measurements (Chapter 2). 

2. Empirical evaluation of effectiveness of testedness measurements such as statement 

coverage and mutation score and identifying mutation score as a better criterion 

between the two (Chapter 2). 

3. Investigating the applicability of mutation analysis in real world complex software 

system adapting existing techniques and showing its effectiveness (Chapter 3). 

4. Investigating the applicability of socio-technical factors for building fault 

prediction models (Chapter 4). 
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Chapter 2 CAN TESTEDNESS BE EFFECTIVELY MEASURED? 

2.1 Introduction 

The quality of software artifacts is one of the key concerns for software practitioners 

and is typically measured through effective testing. While it is widely held that “you 

cannot test quality into a product,” you can use testing to detect that the Software Under 

Test (SUT) has faults, and to estimate its likely overall quality. Moreover, while testing 

itself does not produce quality, it leads to the discovery of faults. When these faults are 

corrected, software quality improves. 

Testing software poses questions. First, how much testing is needed? Has “enough” 

testing been done? Second, where should future test efforts be applied in a partially 

tested program? The typical approach to answering these questions is to measure the 

quality of the test suite, not the SUT. Numerous measures, primarily focused on code 

coverage [72,82,76] have been proposed, and numerous organizations set testing 

requirements in terms of coverage levels [185]. Both code coverage and mutation score 

measure the “testedness” of an SUT, using the dynamic results of executing a test 

suite1. However, it is not established that using such testing requirements, or suite 

quality measures in general, translates into an effective practice for producing better 

software. 

While test driven development, in particular, has pushed testing to new prominence, 

practicing software programmers often balk at having to satisfy what they see as 

arbitrary coverage requirements. Some go so far as to suggest that “code coverage is a 

                                                
1 Most studies consider coverage as measuring the testedness of the entire SUT for a 
given suite, but it is also obviously reasonable to project this concept onto individual 
program elements and measure how well tested each is, and most practical applications 
of coverage assume this usage as well. 
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useless target measure”2. Some studies seem to support this conclusion, at least in part 

[100]. The utility of testing itself has even come under attack3. 

Our aim in this paper is to place the evaluation of test suites (and thus decision making 

in testing) on a firmer footing, using a measure that translates directly into practical 

terms. There is, of course, no end to studies measuring the effectiveness of test suite 

evaluation techniques. However, these studies tend to either cover only a few subject 

programs or faults, not use real faults, not measure what developers directly care about, 

or assume the validity of mutation testing, which is itself a relatively unproven method 

for evaluating a test suite. The methodology of such studies also often involves using 

tool-generated or randomly-chosen subset-based test suites to measure correlation. 

Such suites may not resemble real-world test suites, and thus be of little relevance to 

most developer practice. 

We propose a simpler and more direct method of evaluation that eliminates some of 

the concerns mentioned above. It can be argued that a correlation between measure of 

suite quality and fault detection is meaningless if the faults detected are unimportant, 

trivial, or artificial. As a recent paper evaluating the ability of automated unit test 

generators to detect real faults phrased it “Just because a test suite... [is effective] does 

not necessarily mean that it will find the faults that matter” [193]. It is very hard to 

argue that a bug that has been discovered and fixed did not matter. However, fixing 

bugs is di cult and resource-intensive, requiring developers (and possibly testers) to 

devote time to implementing a correction (and, hopefully, validating it). In many cases, 

the bug was detected because it caused problems for users. There is evidence that 

problems in code, such as those identified by code smells, that do not have significant 

immediate consequences are often never corrected, even at the price of design 

degradation [3]. Bug-fixes usually indicate important defects as developers thought 

                                                
2 For examples, see http://martinfowler.com/bliki/ TestCoverage.html and 
http://blog.ploeh.dk/2015/11/16/ code-coverage-is-a-useless-target-measure/ 
 
3 For examples, see https://pragprog.com/magazines/2012-10/its-not-about-the-unit-
tests and http://www.rbcs-us.com/documents/Why-Most unit-Testing-is-Waste.pdf 
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these problems worth addressing. The most practical goal of testing therefore, is to 

prevent future bug-fixes, by detecting faults before release, avoiding impact on users, 

and usually lowering development cost. 

We should then evaluate test suite quality measures by a simple process: does a 

higher measure of testedness for a program element (in our work, a statement, block, 

method or class) correlate with a smaller number of future bug-fixes? By avoiding 

whole-project measures and focusing on individual program elements, we avoid the 

confounding effects of test suite size [100]. While a large test suite can produce higher 

coverage and detect more faults, even if coverage and fault detection are not themselves 

directly related, it cannot (at least in any way we can imagine) cause statements that 

are covered to have fewer faults than those that are not covered, unless coverage itself 

is meaningful. Similarly, using individual program entities as the basis of analysis 

mitigates some of the possible effects of, e.g., test suites with good assertions also 

having better coverage. This can cause a test suite with high coverage to perform better 

than a test suite without high coverage, on average, but it cannot, so far as we can see, 

plausibly result in covered entities having fewer bug-fixes than entities not covered, 

unless coverage itself matters. 

The core argument for our analysis is as follows: if a particular program element is 

fully tested to conform to its specification, then that program element should have no 

bug-fixes applied (until the element ceases to exist as a result of a non bug-fix 

modification, e.g. adding new functionality potentially invalidating the old 

specification). Similarly, a program element that is not tested at all should on average 

have a higher chance of seeing future bug-fixes applied for the simple reason that a 

fault had no chance of being caught through testing. This, on its own, should result in 

a strong negative correlation between testedness and future bug-fixes, if our 

fundamental assumption about the utility of testing is correct and our measure of 

testedness is effective. 
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In general, a well-tested program element should require fewer bug fixes than a less 

well-tested program element. 

In this paper we assume (and later, based on empirical data, argue) that testing itself 

is beneficial. We therefore primarily aim to evaluate the measurement of test suite 

quality/testedness. We focus on two important, widely studied, measures of suite 

quality. First, statement coverage is the simplest, most widely used, and easiest to 

understand coverage measure, and has some support as an effective measure of test 

suite quality in recent work [76]. Second, mutation score is not only commonly 

advocated as the best method for evaluating suite quality but is essential to most other 

studies of coverage method effectiveness [82, 110]. 

We evaluate these test suite evaluation methods empirically using a large 

representative set of real world programs, real world test suites, and bug-fixes, and find 

that while there is a small (but statistically significant) negative correlation between 

our testedness measures and future bug-fixes for program elements, the effect is so 

small as to be practically insignificant. There is very little useful continuous 

relationship between measures of testedness and actual tendency to not have bugs 

detected and fixed, and while it is reasonable to bet that a more-tested element will 

have fewer faults, the size of the effect is very small. 

However, we do find that there is a consistent and practically (as well as statistically) 

significant difference in the mean number of bug-fixes for code, if we apply selected 

binary measures of “well-testedness” based on coverage or mutation score. For 

example, program elements with at least a 75% mutation score see, on average, only 

about half as many future big-fixes (normalized4) as program elements with a lower 

mutation score. 

                                                
4 By normalized bug-fixes, we mean bug-fixes per statement/line for elements larger 

than a single statement or line; unless we indicate otherwise, we always normalize bug-
fixes when required. 
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One intuitively appealing explanation for the low correlation of testedness to bug-

fixes is that, even if “poorly” tested, unimportant pieces of code are likely to see few 

future bug fixes. If very few users execute a program element, or if its effects have very 

limited impact, then the bug will likely not be fixed (even if reported). However, the 

problem of varying program element importance is unlikely to be the root cause for the 

lack of a useful continuous correlation for suite evaluation measures. If it were, we 

would expect the effects of importance to also prevent binary testedness criteria based 

on mere coverage from predicting future bug-fixes (since no one will bother to test 

program elements that are unlikely to ever exhibit important bugs). However, like 

program elements with < 75% mutation score, program elements that are not covered 

are also likely to see nearly twice as many future bug-fixes5. 

Nonetheless, perhaps a suite quality measure should reflect the importance of 

program elements. However, forcing developers to annotate code by its importance is 

impractical; we need a static measure of importance. One approach is to say that 

complex elements are more likely to be important, since developing complex code with 

many operators and conditionals, but low importance, is an unwise use of development 

resources. In this case, in addition to its other advantages, mutation testing may help 

take importance of code into account, in that complex program elements produce more 

mutants than simple elements (e.g., a simple logging statement will seldom perform 

any calculations, and so often only produce a single statement-deletion mutant). We 

therefore also measure whether the number of mutants (as a measure of code 

complexity) predicts the number of bug-fixes applied to a program element, and 

whether the number of mutants predicts the mutation score for an element. Both effects 

are significant but small. Surprisingly, more complex code sees slightly fewer bug-

fixes than simple code. As might be expected if complexity is associated with 

importance, more complex code is also slightly more tested, according to mutation 

score. Both effects are too weak to be of much practical value, however. 

                                                
5 We only demonstrate this result for statements and methods; there were too few 
classes that were not covered by any tests in our data to show a significant relationship. 
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Our findings with respect to correlation of testedness measures and bug-fixes are 

potentially troubling for the research community. Software testing researchers often 

use a difference of a few percentage points in mutation score or a coverage measure as 

a means to assert that one test generation or selection technique is superior to another. 

However, our data shows that relying on a few percentage points is dangerous, as such 

small differences may not indicate real impact in terms of defects that are worth fixing. 

On the other hand, our data seems to support the types of “arbitrary” adequacy criteria 

often imposed by managers or governments (if not the precise values used). Indeed, 

our data suggests that while a continuous ranking of testedness for program elements 

is not currently possible, using various empirically validated “strata” of testedness (not 

covered, covered but with poor mutation score, covered with high mutation score) may 

provide a simple, practical way to direct testing efforts. 

The contributions of this paper are: 

• A novel approach to examining the utility of test suite quality measures that is based 

on direct practical consequences of testing. 

• Analysis of relationships between bug-fixes, test suite quality (testedness) 

measures, and code complexity and importance metrics for 49 sampled projects 

from Github and Apache. 

• Evidence that there is small negative correlation between the number of mutants 

(normalized) and the number of future bug-fixes to a program element, indicating 

that complexity alone does not predict importance well; in fact, more complex 

program elements seem to be changed less often than simple ones. However, this 

may partly be due to the fact that more complex elements are also somewhat more 

well tested (in terms of mutation score). 

• Evidence that the negative correlation between testedness (by our measures) and 

number of future normalized bug-fixes is statistically significant, but far too small 

to have much practical impact. 
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• Evidence that well-chosen adequacy criteria (e.g.,is the mutation score above 75%) 

can be used to predict future normalized bug-fixes in a practical way (leading to 

differences of a factor of two in expected future bugs), and can serve to distinguish 

untested, poorly tested, and well-tested elements of an SUT. 

2.2 Related work 

Ours is not the first study to attempt to evaluate measures of testedness [82]. 

Researchers have often attempted to prove that mutation score is well correlated with 

real world faults. DeMillo et al. [55] empirically investigated the representativeness of 

mutations as proxies for real faults. They examined the 296 errors in TEX and found 

that 21% were simple faults, while the rest were complex errors. Daran et al. [48] 

investigated the representativeness of mutations empirically using error traces. They 

studied the 12 real faults found in a program developed by a student, and 24 first-order 

mutants. They found that 85% of the mutants were similar to real faults. 

Another important study by Andrews et al. [9], investigated the ease of detecting a 

fault (both real faults and hand seeded faults), and compared it to the ease of detecting 

faults introduced by mutation operators. The ease was calculated as the percentage of 

test cases that killed each mutant. Their conclusion was that the ease of detection of 

mutants was similar to that of real faults. However, they based this conclusion on the 

result from a single program, which makes it unconvincing. Further, their entire test set 

was eight C programs, which makes the statistical inference drawn liable to type I 

errors. We also note that the programs and seeded faults were originally from Hutchins 

et al. [97] who chose programs that were subject to certain specifications of 

understandability, and the seeded faults were selected such that they were neither too 

easy nor too difficult to detect. In fact, the study eliminated 168 faults for being either 

too easy or too hard to detect, ending up with just 130 faults. This is clearly not an 

unbiased selection and cannot really tell us anything about the ease of detection of hand 

seeded faults in general (because the criteria of selection itself is confounding). A 

follow up study [10] using a large number of test suites from a single program, space.c, 

found that the mutation detection ratio and fault detection ratio are related linearly, with 



 
 

 

22 

similar results for other coverage criteria (0.83 to 0.9). Linear regression on the 

mutation kill ratio and fault detection ratio showed a high correlation (0.9). 

The problems with some of these studies were highlighted in the work of Namin et 

al. [160] who used the same set of C programs as Andrews et al. [9], but combined 

them with analysis of four more Java classes from the JDK. This study used a different 

set of mutation operators and fault seeding by student programmers for the Java 

programs. Their analysis concluded that we have to be careful when using mutation 

analysis as a stand-in for real faults. The programming language, the kind of mutation 

operators used, and even the test suite size all have an impact on the relation between 

mutations introduced by mutation analysis and real faults. In fact, using a different 

mutation operator set, they found that there is only a weak correlation between real 

faults and mutations. However, their study was constrained by the paucity of real faults, 

which were only available for a single C program (also used in Andrews et al. [9]). 

Thus, they were unable to judge the ease of detection of real faults in Java programs. 

Moreover, the students who seeded the faults had knowledge of mutation analysis 

which may have biased the seeded faults (thus resulting in high correlation between 

seeded faults and mutants). Finally, the manually seeded faults in C programs, 

originally introduced by Hutchins et al. [97], were again confounded by a selection 

criteria which eliminated the majority of faults as being either too easy or too hard to 

detect. 

Just et al. [110], using 357 real faults from 5 projects, showed that 1) adding more 

fault-detecting tests to a test suite led to the mutation score increasing more often (73%) 

than either branch (50%) or statement coverage (30%) and 2) mutation score was more 

positively correlated with fault detection than either of the other measures. Multiple 

studies provide evidence that mutation analysis subsumes different coverage measures 

[34,143,167], and it is on this basis that mutation score is often regarded as the “gold 

standard” for test suite quality measures. 
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One metric that is commonly used to measure the adequacy of testing is code 

coverage, that is, a measure of the set of program elements or code paths that are 

executed by a set of tests. A large body of work considers the relationship between 

coverage criteria and fault detection. Mockus et al. [152] found that increased coverage 

leads to a reduction in the number of post-release defects but increases the amount of 

test effort. Gligoric et al. [72,73] used the same statistical approach as our paper, 

measuring both Kendall t and R2 to examine correlations, for realistically non-adequate 

suites. Gligoric et al. found that branch coverage does the best job, overall, of predicting 

the best suite for a given SUT, but that acyclic intra-procedural path coverage is highly 

competitive and may better address the issue of ties, which is important in their 

research/method comparison context. Inozemtseva et al. [100] investigated the 

relationship of various coverage measures and mutation score for different random 

subsets of test suites. They found that when test suite size is controlled for, only low to 

moderate correlation is present between coverage and effectiveness. This conclusion 

held for all the coverage measures used. Frankl and Weiss [69] performed a comparison 

of branch coverage and def-use coverage, showing that def-use is more effective than 

branch coverage for fault detection and there is stronger correlation to fault detection 

for def-use than branch coverage. Namin and Andrews [159] showed that fault 

detection ratio (non-linearly) correlated well with block coverage, decision coverage, 

and two different data-flow criteria. Their research suggested that test suite size was a 

significant factor in the model. Wei et al. [206] examined branch coverage as a quality 

measure for suites for 14 Eiffel classes, showing that for randomly generated suites, 

branch coverage behavior was consistent across many runs, while fault detection varied 

widely. In their experiments, early in random testing, when branch coverage rose 

rapidly, current branch coverage had high correlation to fault detection, but branch 

coverage eventually saturated while fault detection continued to increase; the 

correlation at this point became very weak. 

Offut et al. [167] showed that mutation coverage subsumes many other coverage 

criteria, including the basic six proposed by Myers [155]. Gupta et al. [85] compared 



 
 

 

24 

the effectiveness and efficiency of block coverage, branch coverage, and condition 

coverage, with mutation kill of adequate test suites as their evaluation metric. They 

found that branch coverage adequacy was more effective (killed more mutants) than 

block coverage in all cases, and condition coverage was better than branch coverage 

for methods having composite conditional statements. The reverse, however, was true 

when considering the efficiency of suites (average number of test cases required to 

detect a fault). Li et al. [132] compared four different criteria (mutation, edge pair, all 

uses, and prime path), and showed that mutation adequate testing was able to detect the 

most hand seeded faults (85%), while other criteria performed similarly to each other 

(in the range of 65% detection). Similarly, mutation coverage required the fewest test 

cases to satisfy the adequacy criteria, while prime path coverage required the most. 

Therefore, while there are no compellingly large-scale studies of many SUTs selected 

in a non-biased way to support the effective-ness of mutation testing, it is at least highly 

plausible as a better standard than other criteria. 

Cai et al. [35] investigated correlations between coverage criteria under different 

testing pro les: whole test set, functional test, random test, normal test, and exceptional 

test. They investigated block coverage, decision coverage, C-use and P-use criteria. 

Curiously, they found that the relationship between block coverage and mutant kills 

was not always positive. Block coverage and mutant kills had a correlation of R2 = 

0.781 when considering the whole test suite, but as low as 0.045 for normal testing and 

as high as 0.944 for exceptional testing. The correlation between decision coverage and 

mutation kills was higher than statement coverage, for the whole test suite (0.832), 

ranging from normal test (0.368) to exceptional test (0.952). Frankl et al. [70] compared 

the effectiveness of mutation testing with all-uses coverage, and found that at the 

highest coverage levels, mutation testing was more effective. Kakarla et al. [113] and 

Inozemtseva et al. [99] demonstrated a linear relationship between mutation detection 

ratio and coverage for individual programs. Inozemtseva's study used machine learning 

techniques to come up with a regression relation and found that effectiveness is 

dependent on the number of methods in a test suite, with a correlation coefficient in the 
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range 0.81 £ r £ 0.93. The study also found a moderate to high correlation, in the range 

0.61£ t £ 0.81, between effectiveness and block coverage when test suite size was 

ignored, which reduced when test suite size was accounted for. Kakarla found that 

statement coverage was correlated to mutation coverage in the range of 0.73 £ r £ 0.99 

and 0.57£ t £ 0.94. Gopinath et al. [76] found that statement, out of branch, and path 

coverages, best correlated with mutation score, and hence may best predict defect 

density, in a study that compared suites and mutation scores across projects, rather than 

using multiple suites for the same project. 

The study by Tengeri et al. [201] provided a simple (essentially non-statistical) 

assessment of how statement coverage, mutation score, and reducibility predicted 

project defect densities for four open source projects, using a limited set of mutation 

operators. 

None of these studies, to our knowledge, adopted the method used in this paper, 

where rather than investigate faults and their detection, we look at whether being “well 

tested” has predictive power with respect to future defects6. Most also consider a 

smaller, less representative (at least of open source projects) set of programs, and the 

majority are based on programs chosen opportunistically, rather than by our more 

principled sampling approach. The programs used are often small but well-studied 

benchmarks such as the Siemens/SIR [197] suite, partly for purposes of comparison to 

earlier papers, and partly due to the lack of easily available realistic projects with test 

suites and defects, before the advent of very large open source repositories. 

Unfortunately, as noted by Arcuri and Briand, not at least attempting to randomize 

selection of programs to study can greatly reduce the generalizability of results [15]. 

                                                
6 It is remotely possible that Tengeri et al. [201] are using a similar method, but this is 
not clear from their description, and the reasoning behind our approach is not 
elaborated in their work. 
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2.3 Methodology 

Our goal was to evaluate various approaches to assessing the testedness of a program 

or program element using test suite quality measures. 

2.3.1 Collecting the Subjects 

For our empirical evaluation, we tried to ensure that the programs chosen offered a 

reasonably unbiased representation of modern software. We also tried to reduce the 

number of variables that can contribute to random noise during evaluation. With these 

goals in mind, we chose a sample7 of Java projects from Github [71] and the Apache 

Software Foundation [11]. All projects selected used the popular maven [12] build 

system. We randomly selected 1,800 projects. From these, we eliminated aggregate 

projects that were di cult to analyze, leaving 1,321 projects, of which only 796 had test 

suites. Out of these, 326 remained after eliminating projects that did not compile (for 

reasons such as unavailable dependencies, or compilation errors due to syntax or bad 

configurations). Next, the projects that did not pass their own test suites were 

eliminated as mutation analysis requires a passing test suite. Finally, we eliminated 

projects our AST walker could not handle. This resulted in 49 projects selected. The 

distribution of project size vs. test suite size, and the corresponding mutation score is 

given in Figure 2.1. 

                                                
 
7 Github allows us to access only a subset of projects using their search API. We believe 
that the results returned by Github search would not be dependent on their test suites, 
and hence should not confound our results. 
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Figure 2.1: CLOC vs. tests for our projects. 

2.3.2 Mutant Generation 

In the next phase of our analysis, we used PIT [42] for our mutation analysis. PIT has 

been used in multiple previous studies [52, 76, 100, 194]. We extended PIT to provide 

the full matrix of test failures over mutants and tests. Mutants can basically be divided 

into three groups based on their runtime behavior: not covered, killed, and live mutants. 

We used this basic categorization in our analysis. 

2.3.3 Tracking Program Elements 

We started our investigation from an arbitrarily determined recent, but not too recent, 

point in time deemed the “epoch” - December 1, 2014. This was done to provide a point 

from which testedness (mutation score and statement coverage) could be calculated, 

and with respect to which bug-fixes could be considered to be “in the future”. For the 

source code and test suite at epoch, we computed mutation score and statement 

coverage for each statement, block, method, and class in each project. 

In order to determine when a program element (statement, block, method, or class) 

was changed, and track its history, we used the GumTree Differencing Algorithm [63]. 

For each element of interest, we considered it changed if the corresponding AST node 
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was changed, or had any children that were added, deleted or modified. The algorithm 

maps the correspondence between nodes in two different trees, which allowed us to 

accurately track the history of the program elements. 

Using AST differencing gives us three advantages over simple line-based 

differencing. The first is that the algorithm ignores any whitespace changes. Second, 

we are able to track a node even if its position in the file changes (e.g. because lines 

have been added or deleted before our node of interest). Third, we are able to track 

nodes across refactorings, as long as the node stays in the same file. For example, we 

can track a node that has been moved because of an extract method refactoring. 

When considering which statements to track, we used the version of the source code 

at epoch to determine which AST node resided at that particular line. We filtered only 

the commits that touch the le of interest. We then tracked that AST node forward in 

time, taking note of the commits that changed that particular node. For Java, it is 

possible for multiple statements to be in the same line (for example, a local variable 

declaration statement inside an if statement). In this case, we considered the innermost 

statement, as this gives the most precise results. 

2.3.4 Classifying Commits 

In order to answer our research questions, we needed to categorize the code commits. 

For each program element, we computed the number of commits that touched that 

element starting from the epoch. For our purpose, code commits can be broadly 

grouped into one of two categories: (1) bug-fixes and improvements (modifying 

existing code), and (2) Other - commits that introduced new features or functionality 

(adding new code) or commits that were related to documentation, test code, or other 

concerns. Two key problems are that it is not always trivial to determine which category 

a commit falls under, and that larger projects see a huge amount of activity. Manual 

classification of all commits was therefore not an option, and we decided to use 

machine learning techniques for this purpose, rather than limit the statistical power of 
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our study (especially as arbitrarily dropping the most active subjects would clearly 

potentially introduce a large bias into our results). 

2.3.4.1 Manual Classification of Fix-inducing Changes 

In order to build a classifier for bug-fixing commits, we randomly sampled commits 

and manually labeled fix-inducing commits. Some keywords indicating bug-fixes were 

Fix, Bug, and Resolves, along with their derivatives. We should mention that not all 

bug-fixing commit messages include the words bug or fix; indeed, commit messages 

are written by the initial contributor of a patch, and there are few guidelines as to their 

contents. A similar observation was made by Bird et al. [23], who performed an 

empirical study showing that bias could be introduced due to missing linkages between 

commits and bugs. Improvements were manually identified based on the following 

keywords: Cleanup, Optimize, and Simplify or their derivatives. Commits were placed 

into the Other category if they had the keywords Add or Introduce. The number of lines 

modified was also compared with the lines added. Those commits with more lines 

added than modified were considered more likely to be associated with new features 

and were placed in the Other category. Anything that did not fit into this pattern was 

also marked as Other. We manually classified a set of 1,500 commits. 

2.3.4.2 Training the Commit Classifier 

We used the set of manually classified commits as the training data for the machine 

learning classifiers. Two evaluators worked independently to classify the commits. 

Their datasets had a 33% overlap, which we used to calculate the inter-rater reliability. 

This gave us a Cohen's Kappa of 0.90. In our training dataset the portion of bug-fixes 

was 46.30%, with 53.70% of the commits assigned to the Other category. 

We trained a Naive-Bayes (NB) classifier and a Support Vector Machine (SVM) for 

automatically classifying the commits, using the scikit [180] platform. We applied the 

classifiers to the training data with 12-fold cross-validation. Our goal was to achieve 

high precision and recall, so we used the F1-score to measure and compare the 
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performance of the models. The F1-score considers precision and recall by taking their 

harmonic mean. The NB classifier outperformed the SVM. Tian et al. [202] suggested 

that for keyword based classification the F1 score is usually around 0.55 which also 

happened in our case. We used the classification identified by the NB classifier to 

classify 11,566 commits. Table 2.1 has the quality indicator characteristics of the NB 

classifier. While our classifier is far from perfect, it is comparable to “good” classifiers 

for this purpose in the literature (over a larger set of projects), and we believe it is likely 

that any biases do not have confounding interactions with the goals of our project. That 

is, while we may only analyze about 43% of bug-fixes, it would be surprising if the 

missed bug-fixes relate in some systematic way to the dynamic testedness measures of 

program elements, given that the classifier only sees code commits. Since our analysis 

only relies on relative counts of bug-fixes for elements, so long as we do not 

systematically undercount bug-fixes for only some elements, our results should be 

valid. 

Table 2.1:Naive Bayes classifier details 

 
Precision Recall F1 score Support 

Bug-fix 0.63 0.43 0.51 75.00 
Other 0.74 0.86 0.80 140.00 

 

The bug-fixes associated with each program element in our analysis are based on the 

classifier results in a simple way. For each element, we count commits that affect that 

element that are classified as Bug-fix up to the first commit that is classified as Other. 

This is because once an element has had a change that is not a bug-fix, it is often no 

longer valid to assume tests at the epoch apply to that element, or that it even still exists 

with the same functionality. However, so long as only bug-fixes are applied, we assume 

the tests still apply to the program element, so all bug-fixes count as missed by the tests 

at epoch. Note that our classifier for Other commits is highly effective. 
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2.4 Analysis 

We analyze the impact of testedness on program element bug-fixes using two 

measurements: mutation score and statement coverage. For mutation score, we analyze 

the score of each statement, block, method, and class, in increasing lexical scope. Since 

statement coverage is already at the statement level, we investigate the statement 

coverage of each block, method, and class in increasing lexical scope. 

2.4.1 Correlation Results 

We answer this question in increasing scope from statement, smallest block, method, 

and then class. In each scope, we evaluate how the degree of adequacy in both mutation 

score and statement coverage affects the total number of bug-fix commits. 

2.4.2 Mutation Score (µ) 

The correlation between number of bug-fixes per statement and mutation score is given 

in Table 2.2. For statements and methods, there is a statistically significant small 

negative linear correlation between number of bug-fixes per statement and mutation 

score. A similar effect is observed with Kendall tb correlation, where a small but 

statistically significant negative correlation is observed for statements, blocks, and 

methods but not for classes, where the correlation was, surprisingly, a very weak, but 

significant, positive correlation. The plot of mutation score vs. normalized bug-fixes 

for statements is given in Figure 2.2, for blocks in Figure 2.3, for methods in Figure 

2.4, and for classes in Figure 2.5. 

Table 2.2: Correlation between total number of bug-fixes per line and mutation score 

(a) R2 (b) Kendall  tb 
 Mean Low High p Mean P 
Statements -0.12 -0.13 -0.11 0.00 -0.13 0.00 
Blocks -0.14 -0.15 -0.12 0.00 -0.19 0.00 
Methods -0.16 -0.18 -0.14 0.00 -0.14 0.00 
Classes -0.13 -0.18 -0.08 0.00 -0.10 0.00 
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Figure 2.2: Mutation score vs. bug-fix commits for covered lines 

 
 

Figure 2.3: Mutation score vs. bug-fix commits for covered blocks 

 
 

Figure 2.4: Mutation score vs. bug-fix commits for covered methods 
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Figure 2.5: Mutation score vs. bug-fix commits for covered classes 

2.4.3 Statement Coverage (l ) 

The correlation between number of bug-fixes per statement and statement coverage is 

given in Table 2.3. 

Table 2.3: Correlation between total number of bug-fixes per line and statement 
coverage 

 
(a) R2 (b) Kendall  tb 

 Mean Low High p Mean p 
Statements -0.11 -0.12 -0.10 0.00 -0.13 0.00 
Blocks -0.13 -0.14 -0.12 0.00 -0.21 0.00 
Methods -0.14 -0.16 -0.12 0.00 -0.13 0.00 
Classes  0.09  0.04  0.13 0.00 -0.04 0.00 

 

For statements, blocks, methods, and classes, there was a small but statistically 

significant negative linear correlation between coverage and bug-fixing commits. A 

similar small but statistically significant negative correlation is also observed using 

Kendall tb. 

These correlations (for mutant score and for statement coverage) are much lower than 

those seen in recent studies showing good correlation between coverage metrics and 

mutation scores [73, 76] (these studies are measuring a different property, but in some 

sense aiming for similarly strong correlations). These correlations are not so small as 
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to be completely devoid of value, but they do make the use of these measures dubious 

when comparing program elements or test suites with only small testedness differences. 

Unfortunately, this is a common practice in the evaluation of software testing 

experiments. Worse still, these results might be thought to suggest that testedness 

cannot be effectively measured, leaving the practicing tester without useful guidance. 

2.4.4 Binary Testedness: Is It Covered? 

However, using testedness as a continuous valuation, where we expect slightly more 

tested program elements to have fewer bug-fixes, is not the only way to make use of 

testedness. Instead of trying to separate very similarly tested elements, we could simply 

draw a line between tested and not-tested program elements. For example, common 

sense suggests that if testing is useful at all, then code that is not covered should 

probably have more bug-fixes than code that has at least some test covering it. This 

rationale is the intuition behind ideas like “getting to 80% code coverage,” though it 

does not justify any particular target value. Code that isn't executed in tests is surely 

less tested than code that executes in even very poor tests (since even very badly 

designed tests with a weak oracle may catch crashes, uncaught exceptions, and infinite 

loops, for example). 

We compared the mean number of bug-fixes for covered vs. uncovered program 

elements using a t-test. The results are shown in Table 2.4. By covered element we 

mean a program element which has at least a single statement exercised by some test 

case. While this is a reasonable binary distinction up the method level, a class with only 

a single statement covered may not be much more tested than a class that does not have 

any statements covered. This may account for the difference seen for classes in Table 

2.4. We also note that there is insufficient data for statistical significance in classes 

(most classes are covered by at least some test). 
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Table 2.4: Difference in bug-fixes between covered and uncovered program elements 

 Covered Uncovered p 
Statements 0.68 1.20 0.00 
Blocks 0.42 0.83 0.00 
Methods 0.40 0.87 0.00 
Classes 0.45 0.32 0.00 

 

2.4.5 Binary Testedness: Mutation Score and Coverage Thresholds 

While measuring testedness based on mutation score or statement coverage as a 

continuous value of limited value, we can do much better than just drawing a 

meaningful dividing line between covered and not-covered program elements. 

We can instead evaluate whether the mean number of bug-fixes differs significantly 

when the tests reach a given adequacy threshold. Table 2.5,2.6 and Table 2.7,2.8 

tabulate the mean number of normalized bug-fix commits per line for both above and 

below the thresholds µ= {0.25, 0.5, 0.75, 1.0} and l= {0.25, 0.5, 0.75, 1.0}. We find 

that there is a statistically and practically significant difference between the mean 

number of bug-fixes for both measures at all thresholds selected (though with classes 

perfect statement coverage strangely becomes a predictor of more faults). Note that for 

individual statements, all thresholds based on statement coverage are equivalent 

(coverage is always 0 or 1).  

Table 2.5: Mutation score thresholds 

(a) 0.25 (b) 0.5 
 µ ³ 

0.25 
µ< 
0.25 

p µ ³ 
0.50 

µ< 
0.50 

p 

Statements 0.60 1.20 0.00 0.60 1.19 0.00 
Blocks 0.39 0.83 0.00 0.39 0.79 0.00 
Methods 0.32 0.87 0.00 0.33 0.85 0.00 
Classes 0.11 0.55 0.00 0.12 0.51 0.00 
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Table 2.6: Mutation score thresholds 

 (c) 0.75 (d) 1.0 
 µ ³ 0.75 µ< 0.75 p µ ³ 1 µ< 1 p 
Statements 0.58 1.16 0.00 0.58 1.14 0.00 
Blocks 0.39 0.71 0.00 0.39 0.67 0.00 
Methods 0.34 0.81 0.00 0.41 0.75 0.00 
Classes 0.13 0.46 0.00 0.20 0.40 0.00 

 
Table 2.7:Statement coverage score thresholds 

(a) 0.25 (b) 0.5 
 µ ³ 

0.25 
µ< 
0.25 

p µ ³ 
0.50 

µ< 
0.50 

p 

Statements 0.68 1.20 0.00 0.68 1.20 0.00 
Blocks 0.42 0.83 0.00 0.42 0.83 0.00 
Methods 0.40 0.87 0.00 0.41 0.86 0.00 
Classes 0.48 0.31 0.04 0.51 0.30 0.01 

 
Table 2.8: Statement coverage score thresholds 

 (c) 0.75 (d) 1.0 
 µ ³ 

0.75 
µ< 
0.75 

p µ ³ 1 µ< 1 p 

Statements 0.68 1.20 0.00 0.68 1.20 0.00 
Blocks 0.42 0.82 0.00 0.42 0.82 0.00 
Methods 0.42 0.84 0.00 0.46 0.80 0.00 
Classes 0.59 0.28 0.00 0.90 0.24 0.00 

 
Table 2.9 and 2.10 shows mutant threshold results if we first remove all program 

entities that are not covered. This has little impact on the ability of thresholds to 

predict bug-fixes. 

Table 2.9: Mutation score thresholds with uncovered program elements filtered out 

(a) 0.25 (b) 0.5 
 µ ³ 

0.25 
µ< 
0.25 

p µ ³ 
0.50 

µ< 
0.50 

p 

Statements 0.60 1.16 0.00 0.60 1.11 0.00 
Blocks 0.39 0.72 0.00 0.39 0.64 0.00 
Methods 0.32 0.90 0.00 0.33 0.71 0.00 
Classes 0.11 1.66 0.00 0.12 1.13 0.00 
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Table 2.10: Mutation score thresholds with uncovered program elements filtered out 

(c) 0.75 (d) 1.0 
 µ ³ 

0.75 
µ< 
0.75 

p µ ³ 
1 

µ< 1 p 

Statements 0.58 0.95 0.00 0.58 0.89 0.00 
Blocks 0.39 0.50 0.00 0.39 0.47 0.00 
Methods 0.34 0.53 0.00 0.41 0.39 0.00 
Classes 0.13 0.75 0.00 0.20 0.50 0.00 

 

2.4.6 Complexity and Change 

We also compare the number of mutants, normalized by the size of the program element 

(dividing by the number of lines), to the number of post-epoch bug-fixes for that 

element. 

Statements: Comparing the number of bug-fixes to the number of mutants per 

statement, we find that the 95% confidence interval is given by {-0.004697, 0.013204} 

at p > 0.01. 

Methods: Comparing the number of bug-fixes to the number of mutants per method, 

we find that the 95% confidence interval is given by {-0.087117, -0.048715} at p < 

0.01. 

Classes: Comparing the number of bug-fixes to the number of mutants per class, we 

find that the 95% confidence interval is given by {-0.096285, -0.000863} at p > 0.01. 

Summary: Most of the results are statistically significant. We also observe that there 

is a weak correlation between the number of mutants (normalized) and the number of 

bug-fixes. More “complex” code as measured by number of mutations has slightly 

fewer bug-fixes, but the correlation is even weaker than between testedness measures 

and bug-fixes. However, the difference in correlation is not very large, so another way 

to interpret this is that as a continuous measure, simple number of mutants, normalized, 

is only slightly worse as a predictor of bug-fixes than “testedness”. However, unlike 

testedness measures, the number of mutants does not provide a useful binary predictor 
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for bug-fixes. Binary splits based on a threshold using the mean number of normalized 

mutants (2.79) do not produce significantly different populations. Setting a threshold 

of 5 or more normalized mutants does produce significant differences (p-value < 

0.0001), but the means are very similar, e.g., 1.1 bug-fixes for less complex statements 

vs. 0.95 bug-fixes for statements with more mutants. 

2.4.7 Complexity and Testedness 

Statements: Comparing the normalized number of mutants to the mutation score per 

statement, we find that the 95% confidence interval is given by {0.008016, 0.025912} 

at p < 0.01. 

Methods: Comparing the normalized number of mutants to the mutation score per 

method, we find that the 95% confidence interval is given by {0.005755, 0.044311} at 

p > 0.01. 

Classes: Comparing the normalized number of mutants to the mutation score per 

class, we find that the 95% confidence interval is given by {-0.049426, 0.046223} at p 

> 0.01. 

Summary: We found that at the statement level (only) there is a statistically 

significant but very weak correlation between the number of mutants (normalized) and 

the mutation score. More complex statements are (very slightly) more well-tested. 

2.5 Discussion 

This paper presents a novel approach to determining if what we call testedness 

measures actually help predict how many defects that escaped testing will be found 

(and fixed) in parts of a program. Our empirical results have some potentially important 

consequences for testing research and practice. 

 

 



 
 

 

39 

2.5.1 The Danger of Relying on Small Testedness Differences 

First, there is only a weak correlation between either statement coverage or mutation 

score and future bug-fixes. This indirectly suggests that research efforts using coverage 

or mutants to evaluate test suite selection, generation, or reduction algorithms may 

draw unwarranted conclusions from small, significant differences in these measures. In 

particular, it may suggest that using mutation to evaluate testing experiments can 

potentially fail to reflect the ability of systems to detect the types of faults that are 

detected by practitioners and worth correcting in real-life. Given that the literature 

supporting the value of code coverage as a predictor of fault detection mostly relies on 

the ability of mutation testing to reflect real fault detection, and that mutation testing's 

effectiveness is validated by only a small number of studies, none of which present 

overwhelming evidence over a large number of programs, we strongly suggest that 

testing experiments, whenever possible, should rely on the use of some real faults in 

addition to coverage or mutation-score based evaluations. In some contexts, where 

detecting all possible faults is the goal (e.g., safety critical systems) and the oracle for 

correctness is known to be extremely good, mutation-based analyses may be justified, 

but even in those cases data based on real faults would be ideal. 

2.5.2 Practical Application of Thresholds 

On the other hand, our results show that numerous simple percentage thresholds for 

statement coverage and mutation score can, in a statistically significant way, predict 

the number of bug-fixes (with mean differences between populations of about 2x). This 

suggests a simple method for prioritizing testing targets in a program. The entities with 

the highest bug-fix counts were, unsurprisingly, those not even covered by any tests. 

As a first priority, covering uncovered program elements is likely to be the most 

rewarding way to improve testedness, since these elements can be expected to have the 

most potential undetected bugs that will be revealed in the near future. Surviving 

mutants of entities with low mutation scores can then be used to guide further testing. 

One obvious question is, which threshold should be used, since many thresholds seem 
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effective? Our data shows that it really does not matter much - the significance and 

even average bug-fixes are not radically different for different thresholds. The simplest 

answer is to start with low thresholds, keep improving testing until there are no 

remaining interesting elements below the current threshold, then move on to a higher 

threshold. Setting a particular threshold for project-level testing is not supported by our 

data, however, as there is no clearly “best” dividing line, only a number of ways to 

define “less tested” and “more tested” elements, most of which equate to more bug-

fixes for less tested elements. 

2.5.3 Complexity, Bug-Fixes, and Testedness 

There does not seem to be any very strong or interesting relationship between 

complexity (as measured by number of mutants) and bug-fixes, or between complexity 

and testedness. More complex code is (very slightly) less fixed, perhaps because it is 

(very slightly) more tested. The main take-away from the complexity analysis is that 

the number of mutants is almost as good a predictor of lack of bug-fixes as testedness, 

if used as a simple correlation, but it does not support useful binary distinctions in likely 

bug-fixes. 

2.5.4 Testing is Likely Effective 

One final point to note is that our data provides fairly strong support for the idea that 

testing is effective in forcing quality improvements in code. Our measures of testedness 

are, essentially, based purely on the dynamic properties of a test suite, not on static 

properties of program elements (the number of mutants for an entity depends on static 

properties, but all statements with any mutants can achieve or fail to achieve a score of 

any particular threshold). This means that, without using the static properties of code, 

the degree to which code is exercised in a test suite can often be used to predict which 

of two entities will turn out to require more bug-fixes. As far as we can determine, there 

are only a few potential causes for this ability to use the dynamics of a test suite to 

predict bug-fixes: 
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• Some unknown property not related to code quality results in both a tendency to 

write tests that cover code and in fewer bug-fixes for that code. 

• A known property results in both a tendency to write tests that cover code and in 

fewer bug-fixes for that code: namely, good developers write tests for their already 

more correct code. Testing itself is more a sign of good code than a cause of good 

code. 

• Tests covering code often detect bugs, and developers fix the bugs, so the code has 

fewer bugs to fix. 

The first possibility is, in our opinion, unlikely - it is difficult to imagine such an 

unknown factor. Some obvious candidate factors do not really bear up on examination. 

For example, perhaps code with many bug-fixes is new code, and so has not yet had 

tests written for it. If the act of writing tests for the new code makes it less buggy, 

however, then testing is in fact effective. Moreover, the predictive power of mutation 

score being over a threshold is present even if we restrict our domain to entities that 

have at least one covering test. New code might be expected to be completely untested, 

removing most truly new (no tests) code from this population. 

The second possibility is more plausible, and may well be true to some extent. The 

third possibility seems most plausible, and we believe is likely to be the main cause of 

the observed effects. However, even if we assume that the second explanation is the 

primary cause for the relationships we observed, notice the peculiar consequences of 

this claim: developers who believe testing is worthwhile, and devote more time to it, 

are “wrong” in that testing itself is useless, but on the whole produce statistically better 

code than those who do not value testing. This may not be an appealing argument to 

those dubious about testing's value. 

2.6 Threats to validity 

While we have taken care to ensure that our results are unbiased and have tried to 

eliminate the effects of random noise, we cannot guarantee that our results are valid. In 

particular, our results are subject to the following threats.  
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Threats Due to Sampling Bias: To ensure representativeness of our samples, we opted 

to use search results from the Github repository of Java projects that use the Maven 

build system. We picked all projects that we could retrieve given the Github API, and 

selected from these only based on necessary constraints (e.g., the project must build, 

and tests at epoch must pass). However, our sample of programs could be biased by 

skew in the projects returned by Github. Github's selection mechanisms favoring 

projects based on some unknown criteria may be another source of error. We also 

handpicked some projects from Apache, such as commons-lang. As our samples only 

come from Github and Apache, this may be a source of bias, and our findings may be 

limited to open source programs. However, we believe that the large number of projects 

more than adequately addresses this concern. 

Bias Due to Tool Used: For our study, we relied on PIT. We have done our best to 

extend PIT to provide a reasonably sufficient set of mutation operators, ensuring also 

that the mutation operators were non-redundant (and have checked for redundancy in 

past work using PIT). 

Secondly, we used the Gumtree algorithm discussed earlier for tracking program 

elements across commits. However, the algorithm used is unable to track program 

elements across renames or movement to another folder. Further, refactoring that 

involves modification of scope, such as moving the code out of the current compilation 

unit also causes the algorithm to lose track of the program element after refactoring. 

Bias Due to Mutant Distribution: There is still a possibility that the kind of mutants 

produced may be skewed, which may impact our analysis. 

Bias Due to Equivalent Mutants: In this study we did not apply a systematic method 

for the detection of equivalent mutants and also did not remove equivalent mutants. 

This might have impacted the mutation score of some projects where a large portion of 

the mutants were equivalent and were not killed. 
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Bias Due to Commit Classification: Our determination of commits as bug-fixes or 

not and of commits that “end the history” of a program element both depend on a 

learned classifier. While our results do not require those results to be anywhere near 

perfect, it may be that some unknown bias in the failures unduly influences our results, 

or gives rise to the weakness of observed correlations. 

Bias Due to Lack of High Coverage: Some researchers have found that a strong 

relationship between coverage and effectiveness does not show up until very high 

coverage levels are achieved [68, 70, 97]. Since the coverage for most projects rarely 

reached very high values, it is possible that we missed the existence of such a dependent 

strong relationship. 

2.7 Conclusion 

This paper uses a novel method to evaluate the effectiveness of test suite quality 

measurements, which, we suggest essentially aim to capture the “testedness” of a 

program or program elements. Much of previous research attempting to evaluate such 

measures operates by a procedure that, at a suitably high level of abstraction, can be 

described as first collecting a large set of tuples of the form (testedness measure for 

suite, # faults found by suite), then applying some kind of statistical analysis. Details 

vary, in that suites may all be for one SUT, or for multiple SUTs (though seldom for 

more than 5-10 SUTs), and in most cases “actual faults” are either hand-seeded or 

“faults” produced by mutation testing (which is assumed to measure real fault detection 

on a largely recently established and still limited empirical basis [110]). These studies 

have produced a variety of results, sometimes almost contradictory [82]. Is coverage 

useful? Is mutation score (more) useful? 

We propose a different approach. Measuring fault detection for a suite can be 

extremely labor-intensive; worse, depending on the definition of faults, we may give 

too much credit for detecting faults that are of little interest to most developers. Instead, 

our evaluation chooses a point in time, collects testedness measures (statement 

coverage and mutation score) for a passing test suite from that date, and then examines 
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whether these measures predict actual future bug-fixes for program elements. If “well 

tested” elements of a program require no less effort to correct, then either we are not 

measuring testedness effectively, or testing itself is not effective. 

We assume that testing is effective. Under this assumption, we show that there is the 

expected negative correlation between testedness and number of future bug-fixes. 

How-ever, this correlation is so weak that it makes using it to compare testedness values 

in the continuous fashion, where slightly more tested code is assumed to be slightly 

better, or slightly higher scoring test suites are assumed to be better than slightly lower 

scoring test suite, a dubious enterprise. This suggests that the evaluation method in 

many software testing publications may be of questionable value. On the other hand, 

when we use testedness measures to split program elements into simple “more tested” 

and “less tested” groups, the population differences are typically significant and the 

mean bug-fixes are sufficiently different (usually about a factor of 2x) to provide 

practical guidance in testing. 

So, is (statement) coverage useful? Is mutation score relevant? Is mutation score 

(more) useful? The answers, we believe, may be that it depends on what you expect to 

achieve using these methods. Testing is an inherently noisy and idiosyncratic process, 

and whether a suite detects a fault depends on a large number of complex variables. It 

would, given this complexity of process, be very surprising if any simple dynamic 

measure computable without human e ort for any test suite produced strong correlations 

like those often shown between code coverage and mutation score (0.6-0.9). The 

correlations between these measures are often high because both result from regular, 

even-handed, automated analysis of the dynamics of a test suite. Actual faults are 

apparently (unsurprisingly) produced and detected by a much more complex and 

irregular process. However, when used to draw the line between less tested and more 

tested program elements, testedness measures can provide a simple automated way to 

prioritize testing effort, and recognize when all the elements of an SUT have passed 

beyond a high threshold of testedness, and are thus likely to have fewer future faults. 

In short, while we cannot (at present) measure testedness as precisely as we (software 
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engineering researchers) would like, we can measure testedness in such a way as to 

provide some practical assistance to the humble working tester. Our data is available 

for inspection and further analysis at http://eecs.osuosl.org/rahul/fse2016/. 
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Chapter 3 APPLYING MUTATION ANALYSIS ON KERNEL TEST SUITES AN 

EXPERIENCE REPORT 

3.1 Introduction 

Quality is important for software systems. Unfortunately evaluating quality, especially 

the presence of bugs, becomes more difficult as the complexity of that software 

increases. The best way to ensure software meets quality requirements is to engage in 

extensive and thorough testing. The goal of testing is to discover faults in the System 

Under Test (SUT) by executing tests that create conditions that lead to failure, and 

detect these.  

Two important “problems” with testing are knowing when you have performed 

sufficient testing and determining whether your testing is biased. A well-respected 

technique for evaluating test suites and test coverage is mutation analysis. Unlike code 

coverage and other benchmarking techniques, mutation analysis addresses the oracle 

problem as well as determining the degree to which SUT behaviors are explored. By 

inserting random but realistic bugs [9, 48, 110] in the SUT, known as mutants, we can 

determine a tests ability to uncover faults, not just its ability to explore behavior. The 

ratio of mutants found over all mutants, is used as the test suite’s effectiveness 

(mutation score). Mutation analysis thus identifies gaps in the test suites and subsumes 

almost every other test adequacy criteria [18, 70, 169, 198]. 

One of the primary reasons mutation analysis is rarely used on large and complex 

programs is that mutation analysis generates large numbers of mutants, which must be 

analyzed, though mutant sampling [176, 209, 215] and mutant execution optimizations 

[109, 177, 216] can help to mitigate the problem. Another reason is the lack of proof 

of mutation analysis’ applicability to complex real world projects. Thus, mutation 

analysis has been more widely adopted by academia than industry, and the technique 

mostly evaluated using relatively simple programs and test suites.  
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The Linux kernel is one of today’s more complex software systems, evolving so 

rapidly that maintaining quality assurance is hard [64, 174]. Applying techniques such 

as code analysis and model checking on the kernel and its modules is difficult because 

of their size and the complexity of the code. Source code analysis generates a large 

number of false positives and warnings [106] which need to be screened by domain 

experts, which is expensive in terms of both time and resources. 

Although mutation analysis can be applied to the kernel, it is not trivial to do so. First, 

one has to generate an enormous set of mutants. Second, one needs to compile and run 

each mutated version of the code and put it through the test harness. As with many 

complex systems, execution is probabilistic, meaning that the amount of time needed 

to “kill” a mutant (detecting it with the test suite) cannot be determined a priori. Not 

finding a fault at time j could be due to inefficient tests, or insufficient run time. 

Therefore, to avoid false positives, a test suite would need infinite run-time on each 

mutant. This is clearly not feasible, and a probabilistic approach must be adopted. 

This paper describes our experience using mutation testing on the Linux-kernel’s 

RCU [183]. Our goal was to determine whether: (1) mutation testing RCU is feasible, 

and (2) whether it can uncover bugs in RCU. Locating bugs in RCU is hard because 

RCU is well tested and heavily used: About one in 2,000 lines of kernel code uses RCU 

[146], and it has been a favorite target for model checkers [4, 81, 135, 138]. If mutation 

testing can locate new bugs, these are likely deep, and the technique can be useful for 

locating bugs in other complex software. 

3.2 Background 

3.2.1 Limitations of Mutation Analysis 

It is infeasible to exhaustively test a test suite, as this would mean running it on all 

possible programs. Even running it on all mutation operators applied to all statements 

of a program is non-trivial. This only gets worse as the size and complexity of a code-

base grows, leading to a combinatorial explosion [105]. Mutation testing is even 
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costlier for concurrent code because it must be tested against thread schedules and 

memory reordering.  

One way to tackle complexity is reducing the mutants used. Kintis et al. [124] defined 

the notion of disjoint mutants, i.e., a set of mutants that subsumes all the others. 

Ammann et al. showed that minimal mutants [6] reduce the count. Kaminski et al. [115, 

116] and Just et al. [111] used fault-based predicate testing to reduce redundancy of 

relational and logical operators. Sampling [176] and searching higher order mutants 

[90, 103, 129] also helps.  

Mutation can leave semantics unchanged. These “equivalent mutants” skew results, 

and full detection is undecidable [33]. Manual equivalence inspection [212] requires 

significant effort and provides an identification rate of only 8% [1]. Automated 

equivalence heuristics are thus attractive, and useful solutions have been proposed 

[164]. One approach is to use the compiler to detect equivalent mutants [20]. If the 

original program and a mutant compile to the same object code, no test could reveal a 

difference. Mothra [164] showed that this identifies about 45% of equivalent mutants. 

Recently Papadakis et al. proposed Trivial Compiler Equivalence (TCE) which groups 

mutants with identical object code into equivalence classes [178], addressing the 

“duplicate mutant” problem. We used TCE to identify both equivalent and duplicate 

mutants.  

3.2.2 Read Copy Update (RCU) 

The RCU module of the Linux kernel is a synchronization mechanism that allows 

lightweight readers [144]. RCU read-side critical section entry/exit overhead can be 

exactly zero [144], excellent for read-mostly workloads [84, 144, 147]. However, RCU 

updaters cannot exclude readers, and must take care to avoid disrupting readers. 

Updaters typically maintain versions of the part of the structure being updated, 

reclaiming old versions only when safe.  
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RCU use in the Linux kernel has gone from 0 in 2002 to over 6,500 calls in 2013 

[146]. RCU pervades the kernel, with one in every 2,000 lines using an RCU primitive 

[146]. Given the complexity of the code, and its importance, researchers have applied 

model checking techniques to RCU [4, 81, 126, 138], and the RCU test harness 

(rcutorture) is very well developed.  

The bulk of RCU is in 4 files (srcu.c, tiny.c, update.c and tree.c). Together, these only 

total to 5,542 lines of code (LOC), with the largest being 3,771 LOC. The RCU is 

therefore not the largest program examined using mutation analysis (Apache Commons 

Math, with 202,000 lines of code, was analyzed by Gopinath et al. [78]), but it has the 

highest complexity, as Apache commons is a large but shallow set of library calls. 

RCU’s primary test system, rcutorture, is an automated stress-testing mechanism 

composed of 1,800 lines of code. rcutorture can simulate 12 different RCU scheduling 

variations and test on 16 hardware configurations. These configurations are specified 

using parameters such as CONFIG_NR_CPUS, CONFIG_HOTPLUG_CPU, 

CONFIG_SMP, etc. rcutorture uses Qemu to load kernels built using these parameters 

and monitors their performance for a user specified period. The test periodically outputs 

status messages via printk(), which can be examined via the dmesg command.  Qemu 

uses KVM, essentially running a virtualizer (Qemu) on top of another virtual machine, 

a practice referred to as nested virtualization [161]. Interest in rcutorture has grown, 

with the number of contributors growing from 5 to 9 between 2006 and 2014. 

Time dependent and stochastic testing systems such as rcutorture are common for 

critical systems code [173]. The longer you run rcutorture, the higher the chances of 

finding a bug, if present. This means that non-trivial mutants need to be run for very 

long periods of time. Because RCU is used on large clusters and has been extensively 

tested, most remaining bugs are likely to be in difficult-to-reach parts of the code. 
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3.3 Methodology 

3.3.1 Mutation Generation 

We used the tool developed by Andrews et al. [9] to generate mutants. We decided to 

use this tool as it was evaluated on a set of eight well-known subject programs, part of 

a Siemens suite [9].  The tool is also simple in design and implementation; a 350 LOC 

Prolog program and a shell script. This tool generates mutants from a source file, 

treating each line of code in sequence and applying four classes of “mutation 

operators”. Every valid application of a mutation operator to a line of code results in a 

mutant being generated in a separate file. The four classes of mutation operators are 

given in Table 3.1. 

Table 3.1: Mutation operators 

Mutation 
operators Name 

Description 

rep_const Replace integer constant C by 0, 1, -1, ((C) +1), or ((C)-1) 

rep_op 
Replace an arithmetic, relational, logical, bitwise logical, 
increment/decrement, or arithmetic-assignment operator by 
another operator from the same class 

Negate Negate the decision in an “if” or “while” statement 

del_stmt Delete a statement 

 

The first three classes are considered “sufficient" mutation operators (i.e., a set S of 

operators such that test suites that kill mutants in S tends to kill mutants formed by a 

broader set) [168]. The fourth operator handles pointer-manipulation and field-

assignment statements that are not vulnerable to any of the sufficient mutation 

operators [8]. Table 3.2 contains some sample mutants from RCU and Table 3.3 

contains the details of mutants for each mutation operator category. 
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Table 3.2: Mutation examples from RCU 

Name Original Version Mutated Version 
rep_const if (rnp->qsmask ==1) if(rnp->qsmask !=1) 

rep_op 
for (i = 0; i >= RCU_NEXT_SIZE;  
i++) 

for (i = 0; i== 
RCU_NEXT_SIZE; i++) 

Negate if (rcu_batch_empty(b)) if(!(rcu_batch_empty(b))) 

del_stmt struct rcu_head *head;  

 

After applying the mutation generator to each of RCU’s files (less than 5 minutes for 

all files), the next step was to compile the 3,169 resulting mutated versions of RCU. 

For scalability reasons, we did this and all stress testing on virtual machines built on 

the ESXi 5.5 platform [62].  

After compilation, we had to test each of the mutants. Running this testing serially 

would take excessive amounts of time. The kernel cannot run as a thread, so we could 

not use threads to parallelize the testing. The logical step was therefore to use virtual 

machines. We used 4 virtual machines running in parallel, each of which had 2x 

2.7GHz CPUs (x86_64 architecture), with 2 threads per CPU, and 4 GB memory. We 

used with RCU in Linux kernel version 3.18.5.  

3.3.2 Reducing The Test Space 

We had to reduce the number of mutants as much as possible and as early as possible. 

We trivially discarded the 354 (11.1%) which failed to build (mutation tools sometimes 

produce code which is syntactically nonsensical, e.g. changing parameters to a function 

call). Next we compared each mutants object code against that of the original code (to 

identify equivalent mutants) and to that of every other mutant (to identify duplicate 

mutants).  

  



 
 

 

53 

3.3.3 Running rcutorture On Mutants 

The next step was to run the mutated RCU’s to determine if rcutorture would flag 

them. Because execution and detection of faults is probabilistic, we allocated relatively 

short timeouts (2 minutes). We hypothesized that most faults would be trivially 

detected, while a handful of faults require very long runtimes. Our goal was to narrow 

the set as quickly as possible to then allocate more time and resources to the hard 

mutants.  

Each virtual machine was assigned to handle one specific mutant. rcutorture uses 

Qemu to load different versions of the kernel, built using permutations of a set of 

parameters On each virtual machine, 14 parallel processes were set up to compile 14 

different kernel images using these parameters. This helped us to cut the setup time 

down by 1/14. Next, a single sequential process would load the images on Qemu and 

monitor the thread for 2 minutes. We used a single process because all Qemu processes 

were killed after 2 minutes, which would kill all instances of Qemu. If we had run 14 

Qemu instances in parallel, all would be killed when the first finished.  

3.4 Analysis 

Once the 2 minutes were up we parsed the logs generated by rcutorture for strings 

like “Assertion failure”, “Badness”, “WARNING:”, “BUG”, “!!!,” etc. These are coded 

into the Linux kernel and rcutorture to indicate a failure. We treated mutants triggering 

such warnings as killed, and mutants that did not generate any warnings as surviving. 

The only exception was when a mutant caused the kernel to fail to execute.  

While we expected to run the surviving mutants with longer and longer test durations, 

the list of surviving mutants was so small that manual inspection could be performed, 

which suggests that given a good testing framework like rcutorture, inspecting and 

checking surviving mutants (and determining true survivors) may be less onerous than 

expected.  
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We compiled the list of mutants and sent them to a human “oracle” (a maintainer of 

RCU and co-author of this paper) for inspection. The oracle examined each surviving 

mutant to determine if there was a test that would eventually catch the mutant, or 

whether there was a gap in the test harness. When deficiencies were identified, new 

tests were built, and the RCU was tested to determine if the gap was masking a bug. 

3.5 Result 

3.5.1 Mutant Attrition 

Table 3.3: Mutants in mutation operator category 

File  del_stmt negate rep_const rep_op 
srcu.c 116 17 72 45 
tiny.c 86 12 47 37 
update.c 126 25 131 61 
tree.c 858 173 732 631 
Total 1,186 227 982 774 

 

Figure 3.1 shows the percentage of mutants that survived the build process by file. 
We see that invalid mutants were relatively evenly distributed across the 4 files. 

 

Figure 3.1: % of mutants failing/surviving build process (Fail: top of bars) 

Applying the TCE, we found that about 70% of buildable mutants were unique 

(Figure 3.2). Surprisingly we found a disproportionate number of equivalent in 

update.c. Of the 2,815 total buildable mutants, 2,150 were unique.  
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Figure 3.2: % of equivalent, duplicate and unique mutants in build surviving mutants 
(Top: unique, middle: equivalent, bottom: duplicate) 

Next we ran our 2-minute test runs of rcutorture on all unique mutants. We found that 

only 380 mutants (17.7% of unique buildable mutants, 12.0% of generated mutants), 

survived (not identified as bugs by the test harness). Figure 3.3 shows the attrition of 

mutants for each process stage. These were passed on to our human oracle for manual 

inspection. After manual inspection, our oracle identified 3 weaknesses in rcutorture. 

Of the 3 failures, 2 were determined to conceal bugs in RCU itself (see Section V).  

3.5.2 Time investment 

Generating mutants was trivial, and took on the order of ~150 seconds. It took ~30 

minutes to compile each mutated version of the Linux kernel on the machine we used. 

This process can be parallelized (up to one kernel build per machine/VM). We used the 

diff command to identify duplicates, which took ~1 second to calculate each diff.  

𝑁 +∑ 	𝑛BCD
BEF                             (1) 

Equation (1) calculates the number of diffs performed, where N is the number of 

mutants and 𝑛B is the number of mutants in each file (each mutant has to be compared 

to the gold standard, then to each other mutant).  

Each of the 2-minute rcutorture test runs had to go through a setup phase, generating 

a set of scripts and building an image of the kernel with a specific configuration to load 
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in Qemu. This one-time setup took ~30 minutes, which preceded each of the 2 minute 

runs. These images can be reused for longer runs.  

Finally, there is the human time investment. Estimating this is harder, since the 

analysis was performed on a catch-as-catch-can basis as new results arrived. A good 

approximation is 5 minutes per-mutant, but with very large variance. Some mutants 

were automatically understood as of no interest, while others required much more effort 

to analyze (but these also included the most beneficial, the ones resulting in patches). 

A good estimate for overall human effort is 25 hours. 

 

Figure 3.3: Percentage of mutant surviving after every stage of processing 

3.6 Resulting Patches To RCU 

In this section we list the patches that resulted from our application of mutation 

analysis on RCU along with a brief description. All patches can be accessed using the 

provided footnotes. 

3.6.1 Patch 1: rcutorture: Test SRCU cleanup code path. 

Details: An rcutorture memory leak of the dynamically allocated ->per_cpu_ref per-

CPU variables was identified via our mutation analysis. This commit adds a second 

form of srcu (called srcud) that dynamically allocates and frees the associated per-CPU 

variables. This commit also adds a cleanup() member to rcu_torture_ops that is invoked 
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at the end of the test, after ->cb_barriers(). After the patch, the SRCU-P torture-test 

configuration selects scrud instead of srcu, with SRCU-N continuing to use srcu, 

thereby testing both static and dynamic srcu_struct structures8. 

3.6.2 Patch 2: rcutorture: Test both RCU-sched and RCU-bh for Tiny RCU 

Tiny RCU provides both RCU-sched and RCU-bh configurations, but only RCU-

sched was tested by the rcutorture previously. This gap was identified via mutation 

analysis on tiny.c. This commit changed the TINY02 configuration to test RCU-bh, 

with TINY01 continuing to test RCU-sched9. 

3.6.3 Patch 3: rcu: Correctly handle non-empty Tiny RCU callback list with none 

ready 

This fixes an RCU bug. This bug is most likely to occur if there is a new callback 

between the time rcu_sched_qs() or rcu_bh_qs() is called before 

__rcu_process_callbacks() is invoked. This bug was detected by the addition of RCU-

bh to rcutorture10. 

3.6.4 Patch 4: rcu: Don't redundantly disable irqs in rcu_irq {enter,exit}() 

This replaces a local_irq_save() and local_irq_restore() pair with a lockdep assertion 

which removes the corresponding overhead from the interrupt entry/exit fast paths. 

This change was introduced because mutation testing showed that removing 

rcu_irq_enter()'s call to local_irq_restore() had no effect, indicating interrupts were 

always disabled11. 

                                                
8http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=ca1d51ed9809a99d71

c23a343b3acd3fd4ad8cbe 
9http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=f13bad9042dcf9b60b

48a0137951b614a2ee24b 
10http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=6e91f8cb138625be9

6070b778d9ba71ce520ea7e 
11http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=7c9906ca5e582a773

fff696975e312cef58a7386 
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3.6.5 Patch 5: rcu: Make rcu_gp_init() bool rather than int 

Mutation testing showed that the return value from rcu_gp_init() is always used as a 

boolean, so this commit makes it a Boolean12. 

3.7 Discussion 

Following the above process, we were able to narrow 3,169 mutants to only 380 

potentially interesting mutants with little or no human intervention, using modest 

compute resources (3,499 hours of runtime on a normal machine, a load which is very 

parallelizable). While 380 may seem like a large number, it is very likely that this could 

be further reduced by giving rcutorture more run-time to try to kill these mutants. We 

look at our process as a kind of mutation analysis pre-processing, where we, as quickly 

as possible, with maximum automation, narrow the field of mutants to the set of 

interesting mutants.  

We found that code that calculates heuristics and error-recovery timeouts can be 

surprisingly robust to mutations, and adding tests that kill these mutants would lead to 

more false positives under heavy load or other extreme conditions.  Similarly, mutants 

that cause small degradations in throughput or real-time response may prove difficult 

to kill.  Finally, test suites for algorithms with some degree of redundancy may find it 

difficult to kill mutants that disable only a subset of the redundant code paths.  For 

example, RCU has a number of quiescent states, including the context switch, the idle 

loop, usermode execution, and offline CPUs.  A mutant that disables detection of any 

one type of quiescent state will likely survive testing because one of the other types of 

quiescent states will likely be encountered sooner rather than later. 

Bugs found using rcutorture are often non-deterministic. Some may occur only after 

extremely long runtimes (~1,000 hours). To obtain perfect confidence, rcutorture needs 

to run for a very long time, which is impractical. Instead, the approach we advocate is 

                                                
12http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=45fed3e7cfb4001c80

cd4bd25249d194a52bfed3 
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to narrow the field of candidates so that either enough machine resources are available, 

or a human oracle can reasonably inspect and evaluate each case. Our goal is to 

determine how the set of mutants is further narrowed by longer and longer runtime 

windows. Because rcutorture and kernel testing is a non-deterministic process, it is 

likely the case that a set of short runs is more efficient for killing mutants than longer 

runs. We will investigate this in our future work. 

Given the complexity of RCU, one could expect to see most mutants fail during 

compilation. However, only 11% of generated mutants failed to build. Most of these 

failing mutants came as a result of mutating function or other parameters in a way that 

causes a conflict, which the compiler will catch. This is an indication that the mutation 

framework is doing a reasonably good job of only creating plausible mutants rather 

than randomly changing tokens in the code. For a simpler application, we’d expect to 

see an even lower failure rate. 

One might hope that a perfect test suite would kill all mutants, but that is unlikely. 

First is the issue of equivalent mutants. Though we tried to factor most of these out, 

some cannot be caught by any automated method. For instance, it is common in C to 

use an integer as a boolean, where 0=false and any non-zero value =true.  Mutating one 

non-zero value to another non-zero value will result in an equivalent program which 

cannot be detected using diff, depending on how the value is used, and which cannot 

be killed by a valid test case (due to no semantic difference).   

We found that about 10% of our mutants were equivalent, which is close to the 

findings of Papadakis et al. [178] when they looked at 18 programs. We found that 

about 20% of the mutants were duplicate mutants, which is also close to their findings. 

When we look at unique mutants in each file we see that tree.c has the highest percent 

of unique mutants (74%). This is the biggest file, with 101 functions. tree.c implements 

a large part of RCU’s synchronization.  

Any mutant affecting a portion of the program that is conditionally compiled out will 

“survive,” as it is not present in the object code.  This usually indicates that the test 
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suite needs to be expanded to include a configuration that compiles and tests the code 

affected by such a mutant. Similarly, a mutant affecting dead code will survive, but 

also indicates that the test suite's coverage needs to increase, for example, by including 

a greater variety of inputs, or, that the code should be removed.  In the case where a 

greater variety of input is required, some sort of randomized testing (e.g., as provided 

by American Fuzzy Lop (AFL) [5]) can be useful.  These last categories of mutants are 

normally the most productive in terms of improving the test suite. For example, the 

rcutorture tests for Tiny RCU failed to test callback handling.  Fixing rcutorture to 

cover callback handling by applying patch 2 located a bug in callback handling which 

was later fixed by applying patch 3. 

3.8 Threats to validity 

We used the tool by Andrews et al. [9] to generate mutants. Using different mutation 

operators or tools could lead to different results. Our study looked at a program written 

in C, so additional studies on large projects in other programming languages would be 

needed to verify the same benefits there. 

Other threats are due to the use of potentially faulty software. We used gcc to identify 

equivalent mutants, but the gcc compiler and diff utility may have defects. However, 

these systems are heavily tested and deployed, so it is unlikely that they would have 

such grave defects as to influence our results. We used nested virtualization and that 

might impact the performance of the guest kernels, but not rcutorture. 

3.9 Conclusion and Future work 

The main contribution of the paper is an investigation of how to apply mutation 

analysis on a complex software system, as well as demonstrating the value of doing so, 

even on well-tested systems. While mutation testing can generate a lot of random 

results, this randomness can be quickly and efficiently triaged, and a human oracle can 

concentrate on a small number of interesting cases. We found that mutation analysis 

can uncover interesting instances of weak testing, even in a robust system like 
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rcutorture. While a fairly large number of mutants were left alive after our initial run, 

subsequent runs should further reduce the surviving mutants. 
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Chapter 4 AN EMPIRICAL EXAMINATION OF THE RELATIONSHIP BETWEEN CODE 

SMELLS AND MERGE CONFLICTS 

4.1 Introduction 

Modern software systems are becoming more and more complex and requires a large 

development team to develop and maintain. Modern Version Control Systems (VCS) 

have made parallel development easier by streamlining and coordinating code 

management, branching, and merging. This enables large teams to work together 

efficiently. But it has been shown that this process is sometimes halted when isolated 

private development lines are synchronized and the developer runs into merge 

conflicts. Conflicts distract the developers as they have to interrupt their workflow to 

resolve them. Developers have to reason about the conflicting changes and find an 

acceptable merging solution. This process of conflict resolution can itself introduce 

bugs. Prior work has found that in complex merges, developers may not have the 

expertise or knowledge to make the right decisions [49, 162] which might degrade the 

quality of the merged code. 

Researchers have looked at many ways of preventing merge conflicts, and make 

developer’s lives easier when they do occur. Researchers have proposed workspace 

awareness tools [22, 47, 92, 188, 192] that help prevent merge conflicts by making the 

developers aware of each other’s changes. Also, new merge techniques [13, 14, 117] 

have been proposed that would reduce the number of merge conflicts. However, little 

research has been devoted to the causes of merge conflicts. Are there any endemic 

issues that arise from the design itself? We are interested in knowing whether the design 

of the codebase has an effect on the merge conflicts and what is its impact on the overall 

quality.  

Just like merge conflicts, bad design can inflict pain on developers. Bad design makes 

maintenance and future changes difficult and error prone. Code smells, an indication 

of bad design, imply that the structure of the code is badly organized. This can lead to 
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developers stepping on each other’s toes as they make their changes. This, in turn, can 

lead to merge conflicts. 

If there are “fundamental flaws” in the design itself, as the project grows, and the 

codebase grows in size and complexity, understanding and working around these 

“rough spots” becomes more challenging. Thus, the chances of creating a conflict 

increases because of the need to generate workarounds. This means that as projects 

grow, merge conflicts should be more likely to occur, especially around the smelly 

parts of the code. We aim to examine whether there is a correlation between the two, 

to examine whether such a link is credible.  

In order to evaluate the design we look at the code smells [130]. We investigate if 

there is a connection between entities that contain code smells, the code smells they 

contain, and the merge conflicts that surround the smelly entities. 

It is important to note that not all smells are created equal. Some might be more 

associated with a merge conflict than others. For example, a class is considered a God 

Class if it contains an oversized part of the entire functionality of the final product. 

Therefore, any changes have a high likelihood of involving changes in the God Class. 

When multiple developers are working, they all have a high likelihood of touching the 

God class. This can easily lead to merge conflicts down the road. If the changes 

involved are not trivial then the task of merging them will be not trivial as well. 

In this paper, we investigate the following questions: 

RQ1: Do program elements that are involved in merge conflicts contain more code 

smells? 

RQ2: Which code smells are more associated with merge conflicts? 

RQ3: Do code smells associated with merge conflicts affect the quality of the 

resulting code? 
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To answer these questions, we investigated 143 projects. Across them, we had 36,122 

merge commits, out of which 6,979 were conflicting. We identified 7,467 code smells 

instances across our whole corpus. We found that merge conflicts involved more 

“smelly” program elements than merges that did not conflict.  Our results also show 

that not all code smells are created equal. Some are more likely to cause problems than 

others. When we looked at the difficulty of merge conflicts, we found that some of the 

smells are more likely to be involved in semantic merge conflicts than others. Finally, 

we found that code smells have a negative impact on code quality.  

4.2 Related Work 

4.2.1 Code smells and their impact 

Various measures of software quality have been proposed. Boehm et al. [27], and 

Gorton et al. [79], to mention a few, have explored measures including completeness, 

usability, testability, maintainability, reliability, efficiency etc. Some of these metrics 

are difficult to measure, especially in the absence of requirement documents or other 

supporting information. Researchers have also used code smells as a measurement of 

software quality [140, 141], though smells are often focused on future maintainability 

issues. The concept of code smells was first introduced by Fowler [67]. Code smells 

are symptoms of poor design and implementation choices [67] in code base which 

eventually affect the maintainability of a software system [128]. Studies also showed 

that there is an association between code smells and bugs [133, 170] and code 

maintainability problems [67]. Code smells also leads to design debt. Zazworka et al. 

[213] found that the God Class smell is related to technical debt. Ahmed et al. [3] found 

how software gets worse over time in terms of design degradation. They analyzed 220 

open source projects in their study and confirmed that ignoring the smells leads to 

“software decay”. 

Researchers have proposed many different approaches for detecting code smell, such 

as metric based [53, 54, 130, 133, 140] and meta-model based [153]. Researchers used 

different techniques for identifying code smells. Fontana et al. [65] used machine 
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learning techniques for detecting code smells. Researchers also used both static 

analysis [53, 54, 133] and techniques that rely on the evaluation of successive versions 

of a software system [112, 130, 175]. 

4.2.2 Work related to code smells and bugs 

Researchers have also considered the relationship between the presence of code 

smells and bug appearance in the code base.  Khomh et al. [119] showed that classes 

affected by design problems (“code smells”) are more likely to contain bugs in the 

future. Hall et al. [88] also found relationships between code smells and fault-

proneness. According to their study some code smells indicate fault-proneness in the 

code base but the effect size is small (under 10%). Zazworka et al. [213] found that 

God Classes are fault-prone in some cases. Li et al. [133] also studied the relationship 

between code smells and the probability of faults in industrial systems, and found that 

the Shotgun Surgery smell was correlated with a higher probability of faults. To the 

best of our knowledge no work has tried to research on the relationship between code 

smells and how it impacts collaborative work flow, specifically merging individual 

works. 

4.2.3 Merge conflicts 

Several studies have been done on identification of conflicts and developers’ 

awareness about potential conflicts. Awareness is frequently defined as an 

understanding of the activities of others to give a context for one’s activities [60], which 

is a very important issue in Global Software Engineering (GSE) [187]. Researchers 

have looked at different techniques of avoiding merge conflicts by increasing the 

developer’s awareness of the changes others made to the source code. Biehl et al. [22] 

proposed FastDash, which sends notifications about potential conflicts when two or 

more developers are modifying the same file. Another awareness tool called Syde by 

Hatori et al. [92] consider the source code changes at Abstract Syntax Tree (AST) level 

operations to detect conflicts by comparing tree operations. Da Silva et al. [47] 

introduced Lighthouse, which is another tool for increasing awareness among 
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developers about the conflict. Palantír by Sarma et al. [188] detects the changes made 

by other developers and show them in a graphical, non-intrusive manner. Servant et al. 

[192] also presented a tool and visualization that can be used to understand the impact 

of developers’ changes to prevent indirect conflicts.  

Guimaraes et al. [83] introduce WeCode which continuously merges uncommitted 

and committed changes in the IDE to detect merge conflicts as soon as possible. Brun 

et al. [31] used the similar approach in Crystal, to detect both direct and indirect 

conflicts. A software development model presented by Dewan et al. [58] aims to reduce 

conflicts by notifying developers who are working on the same file. 

4.2.4 Work related to merge conflict resolution 

Researchers have also studied different ways of managing the merge of developers' 

changes to efficiently resolve conflicts. This resolution could be either in an automated 

way or by preserving and presenting a useful context for the developer trying to resolve 

the conflict. A comprehensive survey of merge approaches was done by Mens [149]. 

Apel et al. [13, 14] presented a merging technique called semistructured merge. This 

considers the structure of the code which is being merged. Operation based merging by 

Lippe et al. [136] considers all the changes performed during development, in addition 

to the result, when merging. 

Kasi and Sarma [117] present a technique of avoiding merge conflicts by scheduling 

tasks in a way that the probability of a conflict is minimized. SafeCommit by Wloka et 

al. [208] uses a static analysis approach to identify changes in a commit with no test 

failure. They proposed to use this approach when detecting indirect conflicts. 

4.2.5 Conflict categorization 

Researchers have come up with different ways of categorizing conflicts. Sarma et al. 

[188] grouped conflicts into two categories. One is direct conflicts, where the changes 

conflict directly. The other is indirect conflicts, where the files don’t conflict directly, 

but integrating the changes cause build or test failures. Similarly, Brun et al. [31], 



 
 

 

68 

categorized conflicts as first level (textual) conflicts and second level (build and test 

failure) conflicts. Buckley et al. [32] proposed a taxonomy of changes based on 

properties like time of change, change history, artifact granularity etc. Their taxonomy 

deals with software changes in general or conflicts at a coarser level.  

4.2.6 Tracking code changes and conflicts 

Researchers have proposed various algorithms for tracking individual lines of code 

across versions of software. Canfora et al. [36] proposed an algorithm that uses 

Levenstein edit distance to compute similarity of lines, matching “chunks” of changed 

code. Zimmerman et al. [219] proposed annotation graphs which works at the region 

level for tracking lines. Godfrey et al. [75] described “origin analysis”, a technique for 

tracking entities across multiple revisions of a code base by storing inexpensively 

computed and easily comparable “fingerprints” of interesting software entities in each 

revision of a file. These fingerprints can then be used to identify areas of the code that 

are likely to match before applying more expensive techniques to track code entities. 

Finally, Kim et al. [122] propose an algorithm, SZZ, for tracking the origin of lines 

across changes. 

4.3 Methodology 

Our goal was to identify the effect of design issues on merge conflicts and the quality 

of the resulting code (whether these changes are associated with bug fixes or other 

improvements.)  

Here we discuss the various steps of collecting data: (1) selecting the sample of 

projects for the study, (2) identifying which merge commits lead to merge conflicts, (3) 

tracking the lines of code through different versions and merges to investigate how the 

code evolved and which lines were associated with conflicts, (4) identifying code 

smells at the time of the conflicting merge commit. Next, we determine the nature of 

the code updates (e.g. was the commit a result of a bug fix or a new feature etc.) taking 

place on those lines. In order to do this, we manually classify a subset of the commits 
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as bug-fix related or other. We train a machine learning classifier to classify the rest. 

Finally, we build a model to predict the total number of bug fixes that would occur on 

a conflicting line that also contained a code smell. The following subsections describe 

each of these steps in detail. 

4.3.1 Project Selection Criteria 

We wanted to make sure that our findings would be representative of the code 

developed in real world, thus we selected active, open source projects hosted in GitHub. 

We decided to use Java as the language of focus. This decision was influenced by 2 

factors: First, Java is one of the most popular languages (according to the number of 

projects hosted on Github and the Tiobe index [203]). The second was the availability 

of code smell detection tools for Java, as compared to other programming languages. 

Further, for ease of building and analyzing the code, we select projects using the Maven 

[12] build system.  

We started by randomly selecting 900 projects, the first to show up when using the 

GitHub search mechanism. From these, we eliminated aggregate projects (which could 

skew our results), leaving 500 projects. After eliminating projects that did not compile 

(for reasons such as unavailable dependencies, or compilation errors due to syntax or 

bad configurations), 312 projects remained. Finally, we eliminated projects our AST 

walker, implemented using the GumTree algorithm [63], could not handle. This left us 

with a total of 200 projects.   

Next, we removed projects that were too small, that is, having fewer than 10 files, or 

fewer than 500 lines of code. We also removed projects that had no merge conflicts. 

These selection criteria were used, since we are interested in the effect of design issues 

and merge conflicts in moderately large, collaborative projects. Our final data set 

contained 143 projects. Table 4.1 provides a summary of features and other descriptive 

information of the projects in our study. 
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We also manually categorized the domain of the projects by looking at the project 

description and using the categories used by Souza et al. [50]. Table 4.2 has the 

summary of the domains of the projects. 

Table 4.1: Project statistics 

Dimension Max Min Average Std. dev. 
Line count 542,571 751 75,795 105,280.1 
Duration (Days) 6,386 42 1,674.54 1,112.11 
# Developers 105 4 72.76 83.19 
Total Commits 30,519 16 3,894.48 5,070.73 
Total Merges 4,916 1 252.60 522.73 
Total Conflicts 227 1 25.86 39.49 

 
Table 4.2: Distribution of Projects by domain 

Domain Percentage 
Development 61.98% 
System Administration 12.66% 
Communications 6.42% 
Business & Enterprise 8.10% 
Home & Education 3.11% 
Security & Utilities 2.61% 
Games 3.08% 
Audio & Video 2.04% 

4.3.2 Code smell detection tool selection 

We chose to use InFusion [98] to identify code smells because it has been found to 

identify the broadest set of smells [66]. Researchers have found that the metric-based 

approach identified by Marinescu [141] has the highest recall and precision (precision: 

0.71, recall: 1.00) for finding most code smells [191].  InFusion uses this same principle 

and set of thresholds for identifying code smell, which was another reason for using 

InFusion. Researchers [3] have evaluated the smell detection performance of InFusion 

where they found it to have precision of 0.84, recall of 1.00 and an F-measure of 0.91. 
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4.3.3 Conflict Identification 

Since Git does not record information about merge conflicts, we had to recreate each 

merge in the corpus in order to determine if a conflict had occurred. We used Git’s 

default algorithm, the recursive merge strategy, as this is the most likely to used by the 

average Git project. From our sample of 143 projects we extracted 556,911 commits.  

This included 36,122 merge commits. The average number of merge commits was 253. 

Out of all the merges, 6,979 (19.32%) were identified as leading to a conflict. The 

distribution of merge conflicts is shown in Figure 4.1. We see that projects experience 

an average of 25 merge conflicts, or 19.32% of all merges. Merge conflicts, therefore, 

are a common part of the developer experience. 

 

 

 

 

 

Figure 4.1: Distribution of merge conflicts. The vertical line represents the mean 
(25.86) 

We then collected statistics regarding each file involved in a conflict. We tracked the 

size of the changes being merged, the difference between the two branches (in terms of 

LOC, AST difference, and the number of methods and classes involved). To determine 

the AST difference, we used the Gumtree algorithm [63]. We also tracked the number 

of authors involved in the merge. 

4.3.4 Conflict Type Classification 

To answer our second research question, we needed to categorize the conflicts based 

on the type of changes (e.g., whitespace or comment added vs. variable name changed). 
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We identified two categories of conflicts. The first one being semantic conflicts 

which requires understanding the program logic of the changes in order to successfully 

resolve the conflict. The other type of conflict is non-semantic which easier and less 

risky to resolve since they do not affect the programs’ functionality. We manually 

classify 606 randomly sampled commits. We classify each conflict based on the type 

of changes causing the merge conflict (e.g., whitespace or comment added vs. variable 

name changed). Two of the authors coded 300 of these commits using qualitative 

thematic coding [63]. They achieved an interrater agreement of over 80% on 20% of 

the data: we obtained a Cohen’s Kappa of 0.84. Having reached an agreement, one of 

the authors classified the remaining 306 commits. The codes and their definitions are 

given in Table 4.3. 

Table 4.3: Conflict Categories 

Category Definition Example 
Semantic Conflicts involving 

semantic changes 

A refactoring and a bug fix involving the 
same lines. 

Non-
Semantic 

Conflicting changes  

in formatting/comments 

One of the branches contains only formatting 
changes (whitespace). 

 
To train the classifier (to differentiate between semantic and non-semantic commits) 

we use a set of 24 features, including: the total size of the versions (LOC) involved in 

a conflict, the number of statements, methods and classes involved in the conflict. 

Details of the features are in the accompanying website [43]. We use the set of 606 

(10%) commits as training data for a machine learning classifier. We used Adaptive 

Boost (AdaBoost) ensemble classifier that can only be used for binary classes. We 

categorized the 6,979 conflicting commits. We use 10-fold cross-validation to test the 

performance of our classifier. The precision of predicting the semantic conflicts is high 

at 0.75. 
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4.3.5 Measuring Code Smells and Tracking Lines 

For each of the 6,979 conflicting commits we collected the code smells that were 

associated with a conflict. We needed to track them to measure the effect of having the 

smell and being involved in a conflict on the quality of the resulting code. 

We use GumTree [63] for our analysis, as it allows us to track elements at an AST 

level. This way we can track only the elements that we are interested in (statements), 

and ignore other changes that do not actually change the code. The GumTree algorithm 

works by determining if any AST node was changed, or had any children added, deleted 

or modified. The algorithm maps the correspondence between nodes in two different 

trees, which allows it to accurately track the history of the program elements. This 

algorithm has unique advantages over other line tracking algorithms, such as SZZ 

[122]. These advantages include: ignoring whitespace changes, tracking a node even if 

its position in the file changes (e.g. because lines have been added or deleted before the 

node of interest), and tracking nodes across refactorings, as long as the node stays 

within the same file. Using this technique, we can track a node even when it has been 

moved, for example, because of an extract method refactoring. 

For each node (in the AST) involved in a conflict and having a smell, we identify all 

future commits that touched the file containing said node and tracked the AST node 

forward in time. For Java, it is possible for multiple statements to be expressed in the 

same line (e.g., a local variable declaration inside an if statement). In this case, we 

considered the innermost statement, as this gives the most precise results. 

4.3.6 Commit Classification 

In order to answer our third research question, we needed to categorize the type of 

change for a code commit. For our purpose, code commits can be broadly grouped into 

one of two categories: (1) bug-fixes and improvements (modifying existing code), and 

(2) Other — commits that introduced new features or functionality (adding new code) 

or commits that were related to documentation, test code, or other concerns. Two key 
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problems with this classification are: (1) it is not always trivial to determine which 

category a commit falls under, and (2) larger projects see a huge amount of activity.  

Manual classification of all commits was not an option, and we decided to use machine 

learning techniques for this purpose, rather than limiting the statistical power of our 

study (especially as arbitrarily dropping the most active subjects would clearly 

potentially introduce a large bias into our results). 

In order to build a classifier, we randomly selected and manually labeled a set of 

1,500 commits. The first two authors worked independently to classify the commits. 

Their datasets had a 33% overlap, which we used to calculate the inter-rater reliability. 

This gave us a Cohen's Kappa of 0.90. In our training dataset, the portion of bug-fixes 

was 46.30%, with 53.70% of the commits assigned to the Other category. Some 

keywords indicating bug-fixes or improvements were Fix, Bug, Resolves, Cleanup, 

Optimize, and Simplify, and their derivatives.  Anything that did not fit into this pattern 

was marked as Other. 

Not all bug-fixing commits include these keywords or direct reference to the issue-

id; commit messages are written by the initial contributor, and there are few guidelines. 

A similar observation was made by Bird et al. [23], who performed an empirical study 

showing that bias could be introduced due to missing linkages between commits and 

bugs. This means that we are conservative in identifying commits as bug-fixes. 

We trained a Naive-Bayes (NB) classifier and a Support Vector Machine (SVM) by 

using the SciKit toolset [180]. We used 10% of the data to train the classifier. We 

applied the classifiers to the training data using a 10-fold cross-validation. As before, 

we used the F1-score to measure and compare the performance of the models. The NB 

classifier outperformed the SVM. Therefore, we used the NB classifier to classify our 

full corpus. 

Table 4.4 has the quality indicator characteristics of the NB classifier. Tian et al. 

[202], suggest that for keyword-based classification the F1 score is usually around 0.55, 

which also occurs in our case. While our classifier is far from perfect, it is comparable 
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to “good” classifiers in the literature, and we believe it is unlikely for the biases to have 

a confounding effect on our analysis. Since our analysis only relies on relative counts 

of bug-fixes for statements, so long as we do not systematically undercount bug-fixes 

for only some statements, our results should be valid. 

Table 4.4: Naive Bayes classifier details 

 Precision Recall F1-measure 
Bug-fix 0.63 0.43 0.51 
Other 0.74 0.86 0.80 

For each line of code resulting from a merge conflict, we count the number of (future) 

commits in which it appears, as long as those commits are identified as bug-fixes. We 

stop the tracking when we encounter a commit that is classified as Other. Our reasoning 

is that once an element has seen a change that is not a bug-fix, it is no longer fair to 

assume that subsequent bug fixes are associated with the original merge conflict. 

4.3.7 Regression analysis 

In order to answer our third research question that is related to the effect of code smells 

on quality of the resulting code, we needed to build a regression model to identify the 

impact of code smell on the number of bug-fixes that occur on lines of code that are 

associated with a code smell and a merge conflict. We use Generalized Linear 

Regression [41]. The dependent variable (count of bug fixes occurring on smelly and 

conflicting lines) follows a Poisson distribution. Therefore, we use a Poisson regression 

model with a log linking function. 

In order to build our model, we collect information about the smells and the conflicts. 

We use Understand [204] to count the number of references to, and from other files to 

the files that are involved in a conflict. We collect this information as a proxy for the 

importance of the file. We assume that the more a file is referenced by other files, the 

more central that file is, and hence more important. Any change in these central files 

can increase the chance of a change being required in other files, and therefore lead to 
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multiple developers making changes to these files, which can in turn lead to conflicting 

changes. 

We also collect the following factors for each commit such as the difference between 

the two merged branches in terms of LOC, AST difference, and the number of methods 

and classes being affected. Our intuition is that larger “chunks” of changes should have 

a higher chance of causing a conflict. We also calculate the number of authors who 

made commits to the branches that were merged, since there is a higher likelihood of 

conflicts if multiple developers are involved. 

We also determine the experience level of each developer by splitting them into two 

categories: core and non-core. To calculate the category for each developer, we split 

the development history into quarters. For each commit a developer is classified as core 

if he is in the top 20% of the developers in that quarter (calculated by the number of 

commits). Otherwise he is noncore. We use this process because, in open source 

projects, authors come and go. Also, an author can be classified as core and non-core 

in different quarters, depending on his contribution to the project.  

After collecting these metrics, we checked for multi-collinearity using the Variance 

Inflation Factor (VIF) of each predictor in our model [41]. VIF describes the level of 

multicollinearity (correlation between predictors). A VIF score between 1 and 5 

indicates moderate correlation with other factors, so we selected the predictors with 

VIF score threshold of 5. This step was necessary since the presence of highly 

correlated factors forces the estimated regression coefficient of one variable to depend 

on other predictor variables that are included in the model. 

4.4 Results 

4.4.1 RQ1: Do program elements that are involved in merge conflicts contain more 

code smells? 

As a first step, we collect the total number of code smells for each of the 6,979 

conflicting commits in our dataset. Table 4.5 contains the percentage of each smell and 
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the percentage of projects that have a particular smell. We find that external and internal 

duplication have a much higher instance than others when considering the percentage 

of smells in the dataset. However, about 50% of projects have Data Class and SAP 

Breakers smells. 

Table 4.5: Percentage of code smell 

Smell 
% of smells in the  

full dataset % of projects w/ smell 
External Duplication 42.79 22.53 
Internal Duplication 34.05 23.80 
Feature Envy 4.04 28.42 
Data Clumps 3.71 20.36 
Intensive Coupling 3.50 14.30 
Data Class 3.18 48.05 
Blob Operation 2.58 30.05 
Sibling Duplication 2.35 10.86 
SAP Breakers 1.52 52.76 
God Class 0.89 19.10 
Schizophrenic Class 0.58 20.00 
Message Chains 0.33 5.34 
Tradition Breaker 0.17 6.33 
Refused Parent Bequest 0.19 5.25 
Shotgun Surgery 0.01 1.72 
Distorted Hierarchy 0.003 0.36 

 

We next compare the mean number of code smells associated with each merge 

commit, for cases when they conflict and for cases when they do not conflict. Note that 

a commit can involve multiple files, and a file can contain multiple smells. We calculate 

the total number of smells for each file. For example, a conflicting merge commit in 

the commandhelper project (with the SHA1 of a91faa) contains one conflicting file, 

and that conflicting files contains a total of 8 smells. 

The mean number of smells in conflicting program elements is 6.54, whereas the 

mean for non-conflicting program elements is 1.92. The results are statistically 

significant (Mann-Whitney test, U=6.24e6, p<4.77e-10.); we use the non-parametric 

Mann-Whitney test since our population is not normally distributed. Therefore, we find 
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that program elements that are involved in merge conflicts are, on average, more smelly 

than entities that are not involved in a merge conflict. 

4.4.2 RQ2: Which code smells are more associated with merge conflicts? 

Next, we compare the occurrence of each individual smell across conflicting and non-

conflicting commits. Since we are performing multiple tests, we have to adjust the 

significance value accordingly to account for multiple hypothesis correction. We use 

the Bonferroni correction, which gives us an adjusted p-value of 0.0031.  

For 12 out of 16 total smells, we find significant differences (Mann-Whitney test, 

a<0.0031) between the means of conflicting and non-conflicting commits. The 

conflicting commits have a higher incidence of smells. Table 4.6 presents the results 

for code smells where the difference was significant along with the p-values of 

individual comparisons. 

Table 4.6: Mean number of Smells in Conflicts vs. Non-conflict Commits Calculated 
per Commit 

Smell Smells in  
conflicts 

Smells in non conflict p-value 

God Class 1.23 0.25 0.0001 
Data Clump 0.65 0.27 0.0001 
Sibling Duplication 0.58 0.10 0.000001 
Data Class 0.47 0.12 0.000001 
Distorted Hierarchy 0.45 0.05 0.000001 
Unnecessary Coupling 0.33 0.10 0.0001 
Internal Duplication 0.24 0.08 0.000001 
SAP Breaker 0.12 0.07 0.000001 
Tradition Breaker 0.10 0.05 0.00007 
Blob Operation 0.07 0.06 0.0001 
Message Chain 0.04 0.03 0.00062 
Shotgun Surgery 0.01 0.00769 0.00021 

 

The following are the top 5 smells in terms of their (mean) numbers per conflict: God 

Class, Data Clump, Sibling Duplication, Data Class and Distorted Hierarchy. It is worth 

noting that the distribution of smells per conflict (Table 4.6) is different from Table 
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4.5. This is because in Table 4.6 we are looking only at the smells that affect the entities 

involved in merge conflicts, whereas Table 4.5 shows all the smells in the project. This 

discrepancy is an effect of the fact that merge conflicts exhibit a different smell pattern 

compared to the overall project. 

Next, we perform two steps. First, we investigate the correlation between each smell 

and the merge conflicts to identify which of the above smells are more strongly 

associated with conflicts. Then, we categorize merge conflicts into semantic and non-

semantic conflicts to further explore the associations of smells to these types of 

conflicts. 

Code smells and conflicts: We perform a correlation analysis between the count of 

smells and merge conflicts to distill which of the smells from Table 4.6 are more closely 

associated with conflicts, and should be attended to. We use the Kendall correlation 

test because it is a non-parametric test and it is more accurate with a smaller sample 

size. As we perform the tests for each smell, we are splitting out data into smaller 

chunks. Therefore, the Kendall correlation test is more appropriate. 

We find that, except for External Duplication, Schizophrenic Class, SAP Breaker and 

Data Class all smells are correlated with merge conflicts (Kendall correlation test, 

a<0.0031). We report the statistically significant results in Table 4.7.  

The three strongest correlation to conflicts are with the following smells: God Class, 

Internal Duplication and Distorted Hierarchy. These smells all relate to cases where 

object-oriented design principles of encapsulation and structuring is not well used, 

leading to problems with developers making conflicting parallel changes. We discuss 

these reasons further in Section 5. 
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Table 4.7: Correlation between conflict and smell count 

Smell Correlation p-value 
God class 0.18 <0.0001 
Internal Duplication 0.17 <0.0001 
Distorted Hierarchy 0.13 <0.0001 
Refused Parent Bequest 0.10 <0.0001 
Message Chain 0.10 <0.0001 
Data clump 0.09 <0.0001 
Feature Envy 0.09 <0.0001 
Tradition Breaker 0.09 <0.0001 
Blob Operation 0.08 <0.0001 
Shotgun Surgery 0.07 <0.0001 
Unnecessary Coupling 0.05 0.00007 
Sibling Duplication 0.04 0.00021 

 
Types of conflicts and their classification: Not all conflicts are the same, some 

involve changes to the actual code structure and require the developer to understand 

the logic behind the changes before they can be integrated (semantic conflicts), whereas 

others can be formatting or cosmetic changes (non-semantic). Semantic conflicts are 

inherently harder to resolve. Therefore, we investigate whether specific types of code 

smells are more likely to occur with semantic conflicts. We use the conflict 

classification methodology in Section III-D. 

Recall, we manually labeled 606 conflicts to classify them into semantic or non-

semantic, which we then use for the automated classification of 6,979 commits. We 

present the distribution between the manual and automatic classification in Table 4.8. 

The distributions of semantic and non-semantic conflicts in the automatically classified 

data match the distribution of our manual labeling (training data), which shows the 

efficacy of the automated classifier. 

Table 4.8: Conflict types based on their frequency of occurrence 

  
 
 
 

Category # of Conflicts % of total 
(classifier) 

% of total 
(training) 

Semantic 5,250 75.23% 76.12% 
Non-Semantic 1,729 24.77% 23.88% 
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Semantic conflicts are more common (76.12% in the manually labeled data and 

75.23% in the automated classified data), as compared to the non-semantic conflicts 

(23.88% in manually labeled and 24.77% in automated classified data). 

Semantic conflicts and code smells: To understand if there is any correlation between 

semantic conflicts and the types of code smells we perform the Kendall correlation test 

for each smell in the presence of semantic merge conflicts (in our total dataset). We use 

the Kendall correlation test and found significant correlation (a<0.0031) only for 

Internal Duplication and Blob Operation. Table 4.9 contains all correlations, where the 

cells marked with ** are significant.  

Since the correlation for both Blob Operation and Internal Duplication are small, we 

perform an odds-ratio test to understand which of these smells are more likely to be 

involved in a Semantic merge conflict, as compared to entities that do not have these 

smells, but were involved in a conflict. Since we are performing two comparisons, we 

have to adjust the significance value to adjust for multiple hypothesis testing. Like in 

the previous sections, we performed a Bonferroni correction, which gives us 

significance value of a=0.0025 to test at. 

We performed an odds ratio test (Fisher’s exact test) for the Blob Operations and 

find that they are 1.7 times more likely to be involved in a Semantic merge conflict 

(odds ratio: 1.77, p=0.0024). Blob Operations are methods that are very complex and 

have many responsibilities. Therefore, any change to the method will likely impact 

multiple lines, which may intersect with logical changes made by another developer to 

the same method. This explains the high likelihood of their involvement in Non-

Semantic conflicts.  

For Internal Duplication, we found that they are 1.55 times more likely to be involved 

in merge conflict (odds ratio: 1.55, p=0.0001.) We attribute this to the fact that, because 

of duplication, a change has to be repeated in multiple locations. This increases the 

chances of developers making overlapping changes. 



 
 

 

82 

Table 4.9: Smell Categories for Semantic Conflicts (significance level a=0.0031) 

Smell Correlation p-value 
Blob Operation ** 0.05 0.0030  
Internal Duplication ** 0.07 0.0002 
Message Chain 0.01 0.4970 
Refused Parent Bequest 0.03 0.0492 
SAP Breaker -0.02 0.2652 
Schizophrenic Class -0.03 0.0832 
Shotgun Surgery -0.008 0.6597 
Sibling Duplication 0.031 0.1029 
Tradition Breaker 0.018 0.3291 
Unnecessary Coupling -0.01 0.5681 
Data Class -0.02 0.1524 
Data Clumps 0.030 0.1103 
Distorted Hierarchy 0.034 0.0670 
Feature Envy 0.009 0.6206 
God Class 0.050 0.0072 

 

4.4.3 RQ3: Do code smells associated with merge conflicts affect the quality of the 

resulting code? 

We aim to model the effects of code smells on the bugginess of a line of code 

involved in a merge conflict. As defect prediction literature has already identified 

several factors (e.g., the size of the module under investigation [61], number of 

committers [207], centrality of files [37]) that affect bugginess, we include them in our 

model also. Table 4.10 lists the final set of factors that we use, which include metrics 

that are code-based (F1, F2), change-related (F5-F8), author-related (F3, F4), and code-

smells. We compute whether a developer is core or non-core based on our methodology 

in Section III-G.   

To answer our third research question, we build two Generalized Linear Models 

(GLM). The first contains the number of code smells as a factor, and the second does 

not. The first (Poisson regression) model is built with a log linking function as 

explained in Section III-G. After filtering the factors with VIF £ 5, we had a set of 8 

factors out of 43 factors. All eight factors were statistically significant (see Table 4.10). 
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The predicted value is the total number of bug fixes occurring on a line of code that 

was involved in a merge conflict. Note that smell count was a significant factor in the 

model (p<0.05), with an estimate of 0.427. 

The McFadden Adjusted R2 [95] of this model is 0.47. We calculated McFadden’s 

Adjusted R2 as a quality indicator of the model because there is no direct equivalent of 

R2 metric for Poisson regression. The ordinary least square (OLS) regression approach 

to goodness-of-fit does not apply for Poisson regression. Moreover, adjusted R2 values 

like McFadden’s cannot be interpreted as one would interpret OLS R2 values. 

McFadden’s Adjusted R2 values tend to be considerably lower than those of the R2. 

Values of 0.2 to 0.4 represent an excellent fit [95] 

Table 4.10: Poisson regression model predicting bug-fix occurrence on Lines of Code 
involved in a merge conflict 

Factor# Factor Estimate  p-value 
F1 In Deps 3.195 <0.0001 
F2 Out Deps -0.053 <0.0001 
F3 Noncore author -3.799 <0.0001 
F4 No. Authors 0.129 <0.0001 
F5 No. Classes -0.373 <0.0001 
F6 No. Methods 0.244 <0.0001 
F7 AST diff 0.001 <0.0001 
F8 LOC diff 0.00002571 <0.0001 
F9 Number of Smells 0.427 <0.0001 

 
To understand the impact that code smells have, we built the same model by 

removing the total number of smells as a factor. This decreased the adjusted-R2 from 

0.47 to 0.44. We can therefore conclude that code smells have a significant impact on 

the final quality of the code. Since McFadden’s adjusted R2 penalizes a model for 

including too many predictors, had the code smells not mattered, removing it could 

have increased the adjusted-R2 instead of reducing it. 
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4.5 Discussion 

To the best of our knowledge, we are the first to investigate the association of code 

smells with that of merge conflicts, and their impact on the bugginess of the merged 

results (line of code). We find that program elements that are involved in merge 

conflicts contain, on average, 3 times more code smells than program elements that are 

not involved in a merge conflict. 

Not all code smells are equally correlated to merge conflicts. 12 out of the 16 code 

smells that co-occur with conflicts are significant associated with merge conflicts. The 

top five code smells from this list are:  God class, Message Chain, Internal Duplication, 

Distorted Hierarchy and Refused Parent Bequest. Interestingly, the only (significant) 

code smells associated with Semantic conflicts are Blob Operation and Internal 

Duplication.  

All the above code smells arise when developers do not fully exploit the advantages 

of object-oriented design, leading to high coupling, duplication, or large containers. 

These factors lay the groundwork for parallel conflicting efforts, where developers step 

on each other’s toes. For example, the Blob Operation is a large and complex method 

that grows over time becoming hard to maintain. In such a situation, multiple 

developers may need to make changes to the same method and, therefore, collide when 

merging. Similarly, Internal Duplication arises when code is duplicated, which bloats 

methods and makes it hard to ensure all clones evolve in the same way. In such a 

situation, developers might have to “touch” multiple parts of the method to ensure all 

clones are being updated, causing situations of parallel, conflicting edits. 

It is interesting to observe that Semantic merge conflicts are associated with smells 

at the method level. For example, the Blob Operation and Internal Duplication smells 

are 1.77 times and 1.55 times, respectively, more likely to be present in a semantic 

conflict as compared to a non-semantic conflict. This indicates that bloated methods or 

duplicated code in methods increase the spread of the change a developer is likely to 

make, which in turn increases the likelihood of two or more changes conflicting during 
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a merge. Prior work has associated code duplication with negative consequences such 

as increased maintenance cost [127, 184] and faults [19, 107]. Our findings indicate 

that duplication also negatively impacts the collaborative workflow by making it 

difficult to merge changes.  

It is worth noting that while smells, such as God Class have a significant correlation 

with overall merge conflicts, they do not have a significant correlation with semantic 

merge conflicts. We posit that a large container (class) with cohesive logical units 

(methods) can lead to multiple developers making parallel changes that are localized 

to specific areas (methods) and do not intersect. In these cases, when changes are 

merged conflicts can arise because of the movement of code or formatting changes 

(non-semantic conflicts). The same reasoning is also applicable for Distorted 

Hierarchy, Refused Parent Bequest and Message Chain. In contrast, as discussed earlier 

method-level smells seem are correlated with semantic conflicts. 

 To the best of our knowledge, ours is the first empirical study to investigate the 

effects of merge conflicts and code smells on the bugginess of code. We found that the 

presence of code smells on the lines of code involved in a merge conflict has a 

significant impact on its bugginess (see Table 4.10). Including code smells as a factor 

increases the McFadden’s adjusted R2 value from 0.44 to 0.47. Since McFadden’s 

adjusted R2 penalizes a model for including too many predictors, an increase in the 

value signifies that adding code smells as a factor was valuable. We find that factors 

such as incoming-dependencies and the number of code smells have the highest 

correlation estimate, indicating their importance to the model.  

We find that some factors, such as non-core author, number of classes, and outward 

dependencies have a negative effect on bugginess. This is counter intuitive. We had 

assumed that changes from multiple non-core authors are more likely to be buggy. We 

believe that the following reasons lead to this surprising outcome. It might be the case 

that non-core contributors are more thorough and put more effort towards submitting 

code that is less bug prone. Or it might be the process via which newcomers’ 
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contributions are accepted. For example, core developers might pay more attention to 

changes coming from non-core contributors. Further empirical studies on the 

differences in review processes for core vs. non-core developers will be interesting. We 

also found that the number of classes involved in a conflict has a negative correlation 

to its bugginess. This might be because changes that involve multiple classes are more 

likely to be refactoring or licensing changes, and therefore, less likely to introduce 

bugs.  

Implications: Our findings have a number of implications for software practitioners, 

tool builders and researchers. 

Code smells have been historically associated with maintenance issues, which are 

known to be a problem in the long term. However, developers are often unaware of 

code smells. Yamashita et al. found that a considerable portion (32%) of developers 

did not know about code smells [211]. Our findings shed a different light on the impact 

of code smells and on the importance of addressing them. Our results show that code 

smells are an immediate concern for day-to-day activity such as merging changes.  

Merge conflicts delay the project by requiring an examination of the conflict, and 

disrupting the developers’ workflow. Anecdotal evidence shows that developers hate 

resolving conflicts. Developers are known to follow informal processes (e.g., check in 

partial code, email the team about impending changes etc.) or rush to commit their 

work in an effort to avoid having to resolve conflicts [49]. A developer may also choose 

to delay the incorporation of others’ work, fearing that a conflict may be hard to resolve 

[49]. Such processes can have a detrimental effect on team productivity and morale. 

This situation can only become worse as the project evolves on two fronts. First, the 

number of code smells is likely to increase as the project ages [3]. Second, there is a 

likelihood of increase in merge conflicts as more developers start to contribute. Our 

results indicate that practitioners should pay more attention to code smells, as it will 

not only make the code quality better, but will also help them minimize the number of 

merge conflicts they need to resolve. 
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Practitioners, when investigating the root cause of a merge conflict can start by 

looking for smelly program elements in the code. Moreover, since changes that involve 

entities containing code smells are more likely to lead to semantic merge conflicts, 

integrators (or code reviewers) should pay particular attention to and attempt to remove 

code smells when reviewing commits. Practitioners should also pay attention to “good” 

software engineering processes when they deal with smelly program elements. For 

example, when changes are being made to smelly parts of the code base developers 

should merge more frequently and perform more thorough code reviews. 

Our results show that code smells are a good predictor of merge conflict and the level 

of difficulty of that conflict. Therefore, tool builders can use the information of 

incidence of code smells to support distributed work – either in predicting likelihood 

of conflicts or their difficulty. Code smells can also be used as a factor to schedule tasks 

(e.g., program elements that have code smells should not be edited in parallel) or assign 

tasks (e.g., developers with higher experience should work on smelly program 

elements). 

Our results have implications for researchers. Since code smells together with merge 

conflicts can predict bugginess, researchers can use this information in bug prediction 

models to increase their effectiveness. To the best of our knowledge, no merge conflict 

prediction tool exists. Our results show that code smells have a strong association with 

merge conflicts, therefore, researchers can use this information to predict impending 

merge conflicts. Our results also have implications in testing. For example, increasing 

the test coverage of smelly lines that were involved in a merge conflict can be used as 

an objective/fitness function in the field of search-based software engineering. 

4.6 Threats to validity 

Our research findings may be subject to the concerns that we list below. We have taken 

all possible steps to neutralize the impacts of these possible threats, but some couldn’t 

be mitigated and it’s possible that our mitigation strategies may not have been effective.  
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Bias due to sampling: Our samples have been from a single source - Github. This 

may be a source of bias, and our findings may be limited to open source programs from 

Github and not generalizable to commercial programs. However, the threat is minimal 

since we analyze a large number of projects spanning eight different domains. 

Bias due to tools used: The smell detection tool we used uses static code analysis to 

identify smells and research shows that code smells that are “intrinsically historical” 

such as Divergent Change, Shotgun Surgery and Parallel Inheritance are difficult to 

detect by just exploiting static source code analysis [175]. So the number occurrence 

of such “intrinsically historical” smells should be different when historical information 

based smell detection technique is used. 

Secondly, we used the Gumtree algorithm [63] for tracking program elements across 

commits. However, the algorithm used is unable to track program elements across 

renames or movement to another folder. Further, refactoring that involves modification 

of scope, such as moving the code out of the current compilation unit also causes the 

algorithm to lose track of the program element after refactoring. 

Bias Due to using classifiers: We use machine learning to group conflicts into the 

two categories, and to determine whether a commit was a bug-fix. As with any 

classifier, we have some mislabeling. While our results do not require those results to 

be anywhere near perfect, this threat is low as our classifiers have good F1-measure 

and high precision.  

Regarding the bug-fix classifier, our recall and precision measures are on par with 

past work [23]. Since our analysis relies on relative count of bug fixes, as long as we 

do not systematically undercount bug fixes, our results are valid. 

Finally, we have assumed that all bugs were found and fixed by developers when we 

use it as a metric of bugginess of merged lines of code. This may not always be true, 

and hence our results are conservative. 
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4.7  Conclusions 

In this paper, we study the history of 143 open source projects, from which we extract 

6,979 merge conflicts to see if there is any correlation between code smells and merge 

conflicts. We found that entities involved in merge conflicts contain almost 3 times 

more code smells than non-conflicting entities.   

To have a better understanding of the effect of code smells on merge conflicts, we 

categorized conflicts into semantic conflicts – changes to the AST and hard to resolve 

– and non-semantic – changes that are cosmetic. We found two method-level code 

smells (Blob Operation and Internal Duplication) to be significantly correlated with 

semantic conflicts. More specifically, methods that contained the Blob Operation and 

Internal Duplication smells were more likely to be involved in a semantic merge 

conflict, by 1.77 times and 1.55 times respectively. We also found that code smells 

have a significant impact on the final quality of the code. Count of code smells was a 

significant factor when we modeled the bugginess of lines of code involved in a merge 

conflict. 

Our results show that code smells, thought to be a maintenance issue and often 

neglected by practitioners, have an immediate impact in how distributed development 

is managed. Their presence is not only associated with difficult merge conflicts 

(semantic), but also with the likelihood of bugs getting introduced in the code base. 
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Chapter 5 CONCLUSION AND FUTURE WORK 

This dissertation focused on how testing and fault prediction can be used to improve 

the quality of software by uncovering software errors in large, complex, real world 

systems. 

In the first part of this thesis, we investigated the notions of testedness and illustrated 

how that is associated with widely-used measures of test suite quality measured using 

the actual criteria of interest “future bug-fixes”. We show that both statement coverage 

and mutation score have only a weak negative correlation with future bug-fixes, 

mutation score having slightly stronger correlation between the two. In the second part, 

we investigate the applicability of mutation analysis in a real world complex software 

system (RCU). Here we adapt existing techniques to constrain the complexity and 

computation requirements associated with mutation analysis and show that mutation 

analysis can be a useful tool, uncovering gaps in even well-tested module like RCU. 

We also show that some of the problems identified by researchers are not that 

significant when you try to apply mutation analysis on real world software. In the third 

part, we investigate fault prediction models and showed that using a combination of 

socio-technical factors, merge conflict and code smells, we can build fault prediction 

models that can help to achieve significant improvement in fault prediction. 

Although we have barely scratched the surface of using mutation analysis on real 

world complex software for bug-finding, we believe that the results presented in this 

dissertation speak clearly and significantly regarding the potential of using mutation 

analysis for this purpose using existing techniques and minimal human intervention. In 

tandem with creating new and more efficient testing techniques, we need to come up 

with better ways to integrate existing techniques like mutation testing into the actual 

development workflow of developers. One such way is to help developers in manual 

inspection of surviving mutants. As manual inspection step of mutation analysis is an 

expensive part in terms of required human time when the number of surviving mutant 

is high. One of the future research direction is to find ways of prioritizing the surviving 
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mutants so that developers can first inspect important mutants within their budgeted 

time. 

On the fault prediction side, despite of decades of research on predicting failures 

usually concentrating either on the technical, or the social side of software 

development, researchers haven’t focused much on using combination of socio-

technical factors. One of the future research direction is to analyze the complex 

interactions between socio-technical factors for identifying new features which can be 

used in fault prediction models to improve the fault prediction accuracy. 
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Luck favors the prepared mind 
Louis Pasteur 
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APPENDIX 
 

Here we list all statistical tests reported in the dissertation. 

Pearson Correlation tests 

In Table 2.2 we checked the correlation between total number of bug-fixes per line 

and mutation score using Pearson Correlation test. In Table 2.3 we investigated the 

correlation between total number of bug-fixes per line and statement coverage using 

Pearson Correlation test. In Table 4.7 we investigated the correlation between conflict 

and smell count using Pearson Correlation test. All these tests were performed with a 

significance level of 0.05. 

Kendall tb tests 

In Table 2.2 we investigated the correlation between total number of bug-fixes per 

line and mutation score using Kendall tb test. In Table 2.3 we investigated the 

correlation between total number of bug-fixes per line and statement coverage using 

Kendall tb. In Table 4.9 we investigated the correlation between code smell and count 

of merge conflicts in semantic conflict category using Kendall tb test. All these tests 

were performed with a significance level of 0.05. 

Two-sample t-test 

In Table 2.4 we investigated the difference between mean number of bug-fixes for 

covered vs. uncovered program elements using a two-sample t-test. In Table 2.5 we 

investigated the difference between mean number of normalized bug-fix commits per 

line for both above and below mutation score thresholds of 0.25 and 0.5 using a two-

sample t-test. In Table 2.6 we investigated the difference between mean number of 

normalized bug-fix commits per line for both above and below mutation score 

thresholds of 0.75 and 1.0 using a two-sample t-test. In Table 2.7 we investigated the 

difference between mean number of normalized bug-fix commits per line for both 

above and below statement coverage score thresholds of 0.25 and 0.5 using a two-
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sample t-test. In Table 2.8 we investigated the difference between mean number of 

normalized bug-fix commits per line for both above and below statement coverage 

score thresholds of 0.75 and 1.0 using a two-sample t-test. In Table 2.9 we investigated 

the difference between mean number of normalized bug-fix commits per line for both 

above and below mutation score thresholds with uncovered program elements filtered 

out with the thresholds of 0.25 and 0.5 using a two-sample t-test. In Table 2.10 we 

investigated the difference between mean number of normalized bug-fix commits per 

line for both above and below mutation score thresholds with uncovered program 

elements filtered out with the thresholds of 0.75 and 1.0 using a two-sample t-test. All 

these tests were performed with a significance level of 0.05. 

Mann-Whitney test: 

In Table 4.6 we investigated the difference in mean number of smells in conflicts vs. 

non-conflict commits using Mann-Whitney test with an adjusted significance level of 

0.0031 obtained using Bonferroni correction due to multiple tests. 

Regression model: 

In Table 4.10 we report the Poisson regression model for predicting bug-fix 

occurrence on lines of code involved in a merge conflict. Below is the model 

Number of bug-fixes= b0 + 3.195 * Inward Dependencies - 0.053 * Outward 

Dependencies  - 3.799 * Noncore author  + 0.129 * Number of Authors  - 0.373 * 

Number of Classes + 0.244 * Number of Methods + 0.001 * AST diff  +  0.00002571 

* LOC diff  +  0.427 * Number of Smells 


