Automated Software Engineering (2018) 25:917-960
https://doi.org/10.1007/s10515-018-0240-y

@ CrossMark

How verified (or tested) is my code? Falsification-driven
verification and testing

Alex Groce' . Iftekhar Ahmed? . Carlos Jensen? - Paul E. McKenney? .
Josie Holmes'

Received: 11 December 2017 / Accepted: 27 June 2018 / Published online: 11 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Formal verification has advanced to the point that developers can verify the correctness
of small, critical modules. Unfortunately, despite considerable efforts, determining if a
“verification” verifies what the author intends is still difficult. Previous approaches are
difficult to understand and often limited in applicability. Developers need verification
coverage in terms of the software they are verifying, not model checking diagnostics.
We propose a methodology to allow developers to determine (and correct) what it is
that they have verified, and tools to support that methodology. Our basic approach is
based on a novel variation of mutation analysis and the idea of verification driven by
falsification. We use the CBMC model checker to show that this approach is applicable
not only to simple data structures and sorting routines, and verification of a routine in
Mozilla’s JavaScript engine, but to understanding an ongoing effort to verify the Linux
kernel read-copy-update mechanism. Moreover, we show that despite the probabilistic
nature of random testing and the tendency to incompleteness of testing as opposed to
verification, the same techniques, with suitable modifications, apply to automated test
generation as well as to formal verification. In essence, it is the number of surviving
mutants that drives the scalability of our methods, not the underlying method for
detecting faults in a program. From the point of view of a Popperian analysis where
an unkilled mutant is a weakness (in terms of its falsifiability) in a “scientific theory”
of program behavior, it is only the number of weaknesses to be examined by a user
that is important.

Keywords Formal verification - Random testing - Mutation testing - Philosophy of
science - Falsification - Oracles

B Alex Groce
agroce @gmail.com

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-018-0240-y&domain=pdf

918 Automated Software Engineering (2018) 25:917-960

1 Introduction

Every ‘good’ scientific theory is a prohibition: it forbids certain things to happen.
The more a theory forbids, the better it is.

-Popper, Conjectures and Refutations: The Growth of Scientific Knowledge (Pop-
per 1963)

Software model checking (Clarke et al. 2000) has recently, thanks to improvements
in model checking tools (and advanced SAT/SMT solvers), become a potentially valu-
able tool for developers of critical software modules who want to either perform a very
aggressive search for bugs or, ideally, prove correctness of their code. Tools such as
CBMC (Kroening et al. 2004) (the C Bounded Model Checker) allow a software engi-
neer to model check code by writing what is essentially a generalized test harness
(Groce and Erwig 2012; Groce and Joshi 2008)! in the language of the Software
Under Test (SUT). Figure 1 shows an example CBMC harness for sorting routines.
Only a few aspects differ from normal testing. First, nondet_int in CBMC can
return any value. It is not equivalent to a “random” choice but true nondeterminism:
CBMC will explore all values of the type. The __ CPROVER_assume statement has
the usual assume semantics (Dijkstra 1976; Groce and Joshi 2006): CBMC ignores
all executions that violate assumptions.

CBMC compiles a harness and the SUT (here a quicksort implementation) into
a goto-program, instruments this program with property checks for assertions, array
bounds violations, etc., and then unrolls loops based on a user-provided unwinding
bound to produce a SAT problem or SMT constraint such that satisfying assignments
are representations of a trace demonstrating a property violation, known as a coun-
terexample (Clarke et al. 1995). For CBMC, this means that if any possible execution
allowed by the harness violates any properties checked, a counterexample will be pro-
duced. This includes user-specified assertions and automatically generated properties
such as array bounds and pointer validity checks. One generated property is that no
loop in the program executes more than the unwinding bound times. For example,
if we run CBMC on the harness shown and set the unwinding bound to 3 and add
-DSIZE=2, we will check the correctness of the SUT over all possible arrays of size
2 or less, including checking that sorting never requires passing through any loop more
than 3 times.

When a model checker produces a counterexample, a developer’s task is straightfor-
ward, if sometimes difficult: either the SUT has a fault, or the harness itself is flawed.
In both cases, the output of the verification effort is the counterexample trace, which
is full of evidence as to the reason for the failure to verify the SUT. Moreover, any
solution (fix to SUT or harness) is easily checked: if it is correct, the model checker
stops reporting the previous counterexample. This is essentially a normal debugging
problem, but with the advantage that solutions are easily checked.

Unfortunately, model checkers do not invariably report counterexamples: eventu-
ally the SUT is likely to satisfy the properties encoded in the harness! It is in this case
that problems arise: what, precisely, has been verified? Is the SUT actually correct?

1 By a harness we mean a program that defines an environment and the form of valid tests, and provides
correctness properties.

@ Springer

Automated Software Engineering (2018) 25:917-960 919

Fig.1 CBMC harness to check a #include "sort.h"

sorting routine int a[SIZE];
int ref[SIZE];
int nondet_int();
int main () {
int i, v, prev;
int s = nondet_int();
__CPROVER_assume((s > 0) && (s <=SIZE));
for (i = 0; i < s; i++) {
v = nondet_int();
printf ("LOG: ref[%d] = %d\n", i, v);
ref[i] = v; ali] = v;

sort(a, s);

prev = a[0];

for (i = 0; i < s; i++) {
printf ("LOG: al[%d] = %d\n", i, alil);
assert (a[i]l >= prev);
prev = alil;

}

}

Formal verification is not only subject to the problems that make “no faults detected”
results dubious in testing (Groce 2009; Groce et al. 2014), but also to more subtle
problems. For example, an incorrect assume statement may constrain a system so
that not only are there no counterexamples, there are no (interesting) executions of the
system at all. Moreover, formal verification tools are themselves extremely complex
software artifacts, and, like production compilers (Yang et al. 2011), may themselves
have serious bugs that produce wrong results (Cuoq et al. 2012). In the course of this
research, we have ourselves encountered several tool-induced incorrect verifications.

The problem of checking verification results has concerned the model checking
community for some time, and resulted in efforts to define coverage metrics for model
checking (Hoskote etal. 1999; Chockler et al. 2001). While such metrics are interesting
and useful, they have typically been aimed at hardware verification, and most useful
to experts in formal verification. In this paper, we adapt traditional mutation testing
(Budd et al. 1979; Lipton 1971) to the problem of software verification. A mutant of
a program is a version of the program with a small syntactic change. The idea behind
mutation testing is that a good test suite will be able to detect when (as is usually
the case) such a change introduces a bug in the SUT. In the case of bounded model
checking, since we aim at (bounded) verification rather than merely good testing,
surviving mutants are likely to indicate a real problem.

In software engineering research, mutation is often used only as a way to com-
pare competing test suites by comparing kill rates (Gligoric et al. 2013, 35). This
is not enough for verification. The typically small scope of the code to be verified,
and the presumed importance of verified code suggests an approach in which indi-
vidual mutants are examined by the developer. Without additional assistance, such

@ Springer

920 Automated Software Engineering (2018) 25:917-960

an approach cannot scale. This paper aims to describe how to make this seemingly
too-demanding approach practical for real verification tasks.

Our basic idea is to use mutants throughout the verification effort, even in choosing a
bound for bounded model checking. At each stage the developer examines the currently
surviving mutants, either by inspecting the mutated code or (when this does not make
the reason the mutant is not detected clear) looking at successful executions covering
the mutant but satisfying the specification given in the harness. For critical verification
tasks, we suggest that developers not only examine the passing executions of surviving
mutants, but the passing executions of killed mutants. While examining test cases that
do not kill a given mutant could be useful in traditional testing, the model checker
makes a much more potent investigation possible, where a developer can constrain the
behavior to force the mutant’s behavior to matter, if that is possible, and automatically
find passing executions that maximize coverage (including the mutated code). We also
propose that a developer should use mutants of the test harness itself to ensure that
no similar harness has a better mutant kill rate, and that most mutants of the harness
reject the SUT itself.

1.1 Contributions

This paper is an extension of a paper presented at the 30th IEEE/ACM International
Conference on Automated Software Engineering in 2015 (Groce et al. 2015). The core
contribution of that earlier paper was a falsification-driven verification methodology
using mutants to aid developers in understanding “successful” verification results,
determining when a harness is flawed, and correcting the harness. It showed how to
use mutation testing to choose a problem size in bounded model checking, how to
mutate a harness to determine if any similar harnesses have an equal (or better) muta-
tion kill rate, and most importantly, how to modify CBMC, a harness, and mutants
to automatically produce successful high-coverage executions covering mutated code
in order to understand mutant (and thus harness) behavior. This approach, unlike a
simpler method of searching for cases where the mutated and original code behave
differently for identical inputs, in principle applied to verification of reactive and con-
current systems, where there is no simple notion of identical inputs. It also proposed the
use of mutation analysis to gain limited confidence in program correctness even past
model checker scalability limits. At a more general level, the original paper discussed
the fundamental nature of “verification” in a real-world context where specifications
are never known to be complete. The central concept of that paper, and this extension,
is that falsification, as in Karl Popper’s famous philosophy of scientific discovery
(Popper 1959), is the critical element of efforts to understand systems, efforts that
are always provisional by nature: e.g., most program verification (and even more so,
testing) efforts. Popper’s approach therefore forms a useful conceptual framework
for verification efforts: rather than focusing on what can be proven about a program,
we propose that correctness-determination efforts focus on how a verification dis-
tinguishes the “real” program from similar alternative programs that do not match
the theory of program behavior. Such an approach still aims at verification as a final

@ Springer

Automated Software Engineering (2018) 25:917-960 921

outcome, but continually evaluates and refines that verification effort by its ability to
falsify rather than to verify.

In this paper, we extend the contributions of the previous work by further elaborat-
ing the approach to bounded model checking presented there, but, most significantly,
we extend the same ideas to automated software testing, where there are new chal-
lenges and it is less clear that the underlying concepts are sound. In our previous work,
we dismissed the possibility of using our approach for testing, because when a typical
test generation approach fails to find a failing test (that is, testing’s version of a coun-
terexample), it does not mean the property is insufficient, or even that the generation
is weak. Testing is usually essentially probabilistic. Here we show that this limitation
is not fundamental, and the same principles can apply to serious automated test gener-
ation efforts as well. The general ideas are analogous, including the modification of a
test generation tool to generate high-coverage tests that (1) fail to kill a mutant but (2)
cover the mutated code, in order to facilitate understanding of the limits of a harness,
but the details require considerable modification in order to adapt to the probabilistic
context of test generation. For example, the equivalent of a problem size for bounded
model checking is a test budget for automated test generation. By a test budget, we
mean a certain amount of computing time, e.g., 1 min of test generation, or 10h of test
generation. This time may be different than wall-clock time when tests are generated
in parallel; however, the basic relationship of computing time to some cost, either
in terms of waiting time for humans or of additional required computing resources,
remains the same; the details of how the budget is expressed are not relevant to our
purposes. The important difference with model checking is that, rather than a fixed
outcome the results are probabilistic. Rather than present a single fixed unwinding
depth or problem size, we therefore need to describe a likelihood curve to users, and
allow them to make tradeoffs based on that curve.

We still initially present our approach in the context of formal verification, where it
is most obviously useful, and where there is a higher chance of killing enough mutants
to make manual analysis of un-killed mutants feasible.

2 A simple example verification

As an example of the proposed verification methodology, consider again the harness
shown in Fig. 1. If we take an early Google result for “quicksort in C” (Lawlor 2015),
shown in Fig. 2,> we can model check it using the harness, defining STZE=2 and
setting the unwinding bound to 3 (we need one more unwinding than the maximum
number of items in the array). CBMC reports VERIFICATION SUCCESSFUL in
less than a second. Have we verified what we want to verify?

2 In fact, that actual code is incorrect, with an access a[1] that does not properly use short circuiting
logical operators to protect array bounds; CBMC detected this, and we fixed it for this paper.

@ Springer

922 Automated Software Engineering (2018) 25:917-960

Fig.2 Quicksort code #include "sort.h"
void quickSort(int a[l, int 1, int r)

printf ("LOG: called with 1=%d, r=/d\n", 1, r);
int j;
9 1if(1l<r)

// divide and conquer
j = partition(a, 1, r);
quickSort(a, 1, j-1);
quickSort(a, j+1, r);
}
}
int partition(int a[l, int 1, int r) {
int pivot, i, j, t;
pivot = a[ll;
i=1; j=1r+l;
26 while(1)

{
28 do ++i; while(i <= r && al[i] <= pivot);
do --j; while(al[j] > pivot);
30 if(i >= j) break;
31 t = alil; alil = aljl; aljl = t;

t = alll; alll = aljl; aljl = t;
return j;

void sort(int a[], unsigned int size) {
quickSort(a, 0, size-1);

}

2.1 Finding a good problem size

The first question we face is whether 2 is a good maximum array size to examine.
The problem of determining a completeness threshold (an execution-length bound
sufficient to prove correctness in all cases for a given property) for bounded model
checking is fundamentally difficult (Kroening et al. 2003) and is, for real-world C
programs, more an art than a science at present.> Are there bugs for which 2 is too small
an array size? In order to find out, we generate a set of mutants for guicksort.c.
Using the mutation tool for C code developed by Andrews et al. (2005), we can
produce 81 mutants of this code in less than a second. We then run the harness with
unwinding bound 2 (and SIZE=1) on each of the 81 mutants. The process takes
less than a minute and a half (on a MacBook Pro with 16GB RAM and dual-core
3.1GHz Intel Core i7, using only one core). CBMC reports that 6 mutants do not
compile (these remove variable declarations, for the most part), 4 are detected by the
harness (a counterexample is produced: we say the mutant is killed), and 71 mutants
pass without detection (the verification is successful, in which case we say the mutant
survives). Clearly length 1 arrays are not sufficient to detect even the most glaring bugs
in a sort algorithm (no surprise: all size 1 arrays are sorted). What about our choice
of size 2?7 Re-checking the mutants with this bound (dropping those already killed by
the smaller bound) takes slightly over 13 min (due to one mutant requiring over 8§ min

3 Inourown practice, the most common way of setting it is to guess a bound and see if the resulting problem
is too large for the available resources.

@ Springer

Automated Software Engineering (2018) 25:917-960 923

9 : /*(rep-op)*/ if (1 <= 1)

26 : /*(rep_const)*/ while(-1)

26 : /*(rep_const)*/ while(((1)+1))

28 : /*(rep_op)*/ do ++i; while(i<r && alil<=pivot);
28 : /*(rep-op)*/ do ++i; while(i'!=r && a[il<=pivot);
28 : /*(rep_op)*/ do ++i; while(i<=r && al[il<pivot);
30 : /*(repop)*/ if(i > j) break;

31 @ /*(del_stmt)*/ t=alil; /* alil=aljl; */ aljl=t;

Fig.3 Surviving mutants at STZE=3

to model check) and reduces the number of surviving mutants to 26. We could inspect
these mutants by hand, but it seems highly unlikely that a complete verification over
all possible arrays with a good specification for sorting would produce such a poor
mutation kill rate. If we increase the size limit to 3 and unwinding 4 (now the analysis
takes just over 33 min), only 8 mutants survive. Note that each problem, due to the
harness’ assignment of s to any size smaller than the current size, includes all smaller
problem sizes. This makes the behavior of the verification problem size setting match
that of CBMC where an unwinding bound is a maximum, rather than a fixed size. We
assume inclusiveness in this paper.*

At this point, we can increase SIZE to 4 (which will kill one additional mutant),
but the time required to check the remaining mutants is growing rapidly. In fact,
completing the check for size 4, even though only the original program and 8 mutants
have to be checked, requires nearly 9 h. When the model checking difficulty grows
more slowly with problem size, we propose the simple (if highly imprecise) heuristic
of increasing size until the number of mutants killed does not increase with a step up
in size (we call such a size mutant-stable). However, in many cases, such as this one,
the time required to check mutants starts growing unacceptably. We propose a more
efficient algorithm for finding a mutant-stable size below (Fig. 7), and mutations can
be checked in parallel, but the fundamental problem for size 4 (and above) is that some
individual mutants require hours to model check. What is a developer to do?

2.2 Examining surviving mutants

The developer should turn to the surviving mutants. The 8 surviving mutants for
size 3 are shown in Fig. 3. The comment indicates the type of mutant, and the line
number in the quicksort file is also given for reference. The relevant lines are marked
in Fig. 2. Some of these mutants are easily seen to be equivalent to the original code.
For example, the two rep_const mutations simply change a while (1) into an
equivalent infinite loop with a different constant non-zero value. These two mutants
could in fact have been automatically removed from the set, like uncompilable mutants,
by checking their compiled code for equivalence with the original program (Papadakis
et al. 2015). We suggest always pruning mutants via Trivial Compiler Equivalence
(TCE). The remaining 6 mutants produce different binaries when compiled with an
optimizing compiler, so require manual analysis. The 5 rep_op mutations all alter
comparison operators by changing their value on one corner case, and we may suspect

4 There is one noted exception in Sect. 4.4.

@ Springer

924 Automated Software Engineering (2018) 25:917-960

Fig.4 Witness to the harness’ LOG: ref[0] = 2147414872
lgitt)‘ll:itty to kill the del_stmt LOG: ref[1] = 2147480408
LOG: ref[2] = -1073743560

LOG: called with 1=0, r=2
LOG: called with 1=0, r=-1
LOG: called with 1=1, r=2
LOG: called with 1=1, r=1
LOG: called with 1=3, r=2
LOG: a[0] = 2147414872
LOG: al1] = 2147480408
LOG: a[2] = 2147480408

that quicksort is robust to, for example, changing i <= rto i != r since i is
initially set to 1, which we know to be less than r.

The del_stmt mutant, however, is clearly problematic. How can quicksort be
correct if the inner loop’s swapping of a[1] and a[Jj] is changed to instead copy
a[i] toa[j]?The consequences of this mutant are clearly drastic, but why are they
not detected by our harness? We find out by asking CBMC to produce an execution
such that (1) the mutated code is covered (2) other coverage is maximized (to avoid
degenerate executions, e.g., over size 1 arrays) and (3) the execution is not a coun-
terexample. We have modified CBMC, and written instrumentation tools that produce
a modified mutant and harness, allowing us to pose such queries (see Sect. 3). Run-
ning CBMC in this mode, with the target of maximum branch coverage and statement
coverage of the del_stmt mutant (actually the statement after it, since it no longer
exists), we produce the witness in Fig. 4 in less than a minute.> Our harness checks that
the array a is sorted after the call to sort, but it does not check that it is a permutation
of the input!

We might have discovered this problem by a different method: if we remove the
call to sort in the harness, and replace it by a loop assigning nondet_int to
every element in array a (a kind of most-general any-order type-correct “mutant” of
sort), we can run the modified CBMC and see examples of executions our harness
allows, which should include any sorted array. The problem with this method is that,
while it sometimes works, CBMC is also free to set all elements in all arrays to 0,
and to generally provide an uninformative example of a successful execution. The
requirement to cover a mutant (and as much other code as possible) helps guide
CBMC to a successful execution that is likely to be incorrect, because a non-equivalent
mutant changes the original program’s behavior. Moreover, while the problem with the
harness in this case is simple, understanding arbitrary “passing” but wrong executions
can be very difficult without the ability to think about a specific bug the model checker
is missing. Moreover, basing the production of witnesses on mutants allows us to
compare harnesses even over killed mutants: if one harness reduces the set of passing
executions for a mutant, it is arguably a better verification of correctness than one
allowing more executions of the mutant, even if both produce a counterexample killing

5 We show the output of the print statements, not the full CBMC trace: this is what a developer will examine
first.

@ Springer

Automated Software Engineering (2018) 25:917-960 925

Fig.5 Modifying the harness to

ensure a is a permutation of int i, v, count, gcount, prev;
ref ..

sort(a, s);

// Pick a value to check

v = nondet_int();

count = 0;

qcount = 0;

for (i = 0; 1 < s; i++) {

if (ref[i] == v)
count++;

if (ali] == v)
qcount++;

assert (count == qcount);

the mutant. Unlike traditional mutation analysis, we can take the question “how killed
is this mutant?” seriously because we aim at exhaustive testing. A harness is most
effective with respect to a mutant if it allows no executions covering the mutant to pass.

The witness tells us that the sorting harness is too weak. We say that a harness is
weak if it fails to detect incorrect executions. One harness is stronger than another if
it detects more failures; we can indirectly estimate strength by determining how many
mutants a harness can kill at a given problem size, and how executions covering killed
mutants can still satisfy the harness. Figure 5 shows how to modify the sorting harness
to check for permutations.® Because CBMC is exhaustive, instead of performing a
complete check for permutation, we can detect violation of the property by letting v
be any value, and ensuring that both a and ref contain the same number of elements
equal to v. If a is not a permutation of ref, there exists a v such that this is not true,
and we can rely on CBMC to report it as part of a counterexample. While a CBMC
harness resembles a program to test the SUT, it can make use of unusual specifications
relying on exhaustiveness.

If we modify the harness as shown, we can re-check our mutants (including those
TCE would remove). With the revised harness, checking mutants at STZE=1 takes
slightly longer (8 more seconds) and kills the same number of mutants, since the prob-
lem is the size, not the harness. At STZE=2 mutant kill results are again unchanged, but
analysis now completes in about 5 min. Finally, at STZE=3, we kill the del_stmt
mutant that previously survived, after only 14 min, not much longer than at SIZE
2 with the weaker harness. The SIZE 3 verification is stable. Checking stability by
running SIZE 4 now only requires slightly more than an hour, nearly an order of
magnitude faster than before.

As briefly mentioned in the introduction, it is also possible to understand a mutant
by modifying the harness to call both the mutated code and the original code on the
same inputs, and search for witnesses where (1) the execution is passing but (2) the

6 In fact, if we choose a val to check before we assign to ref, we could completely dispense with storing
ref atall.

@ Springer

926 Automated Software Engineering (2018) 25:917-960

return value(s) for the mutant differ(s) from the original. However, this increases the
complexity of the model checking problem (checking equivalence of two functions is
often harder than specifying valid executions) and does not easily apply to any verifi-
cations other than simple function calls. For example, forcing the same interleavings
in threaded programs, or detecting all differences in state-modification for reactive
code is often infeasible or requires significant human intervention. While we do apply
differential checks in some cases below, we do not propose this as a core technique
suitable for general-purpose falsification-driven verification.

2.3 Mutating the harness

Previous efforts to understand model checking results have also considered mutants
to the property, usually given as a temporal logic formula (Black et al. 2000). Once a
developer is satisfied with a harness, has a mutant-stable bound for verification, and
is convinced all surviving mutants are semantically equivalent to the original program
(or, if not equivalent, also satisfy the same correct specification), we, following this line
of thought, propose the developer mutate the fest harness itself. The idea is to check
that (1) most mutants of the harness reject the SUT and (2) the remaining mutants have
amutant kill rate no greater than that of the harness. For the fixed sort harness, there are
61 mutants, of which 2 do not compile. Of these, 40 produce a counterexample for the
original, correct, quicksort: they either make the specification too strong or (usually)
simply incorrect. An additional 10 have mutant kill rates worse than the original
harness (from as low as 5% of mutants killed to only a few percent worse than the
fixed harness). The remaining 9 harness mutants have the same ability to kill mutants
as the original harness. Most of these involve modifying a relational operator in a loop
or an assumption in a way that preserves semantics. The only interesting surviving
harness mutant is one that removes the assignment of a fresh non-deterministic value to
v after the call to sort. This means the check for permutation difference will always
be performed on the last element of ref. On reflection, it seems plausible that this is
sufficient to produce a counterexample for all the quicksort mutants, but it is clearly
not an improvement to the harness, in terms of either verification strength or clarity.
In addition to showing the current harness is at least a “local minima” with respect
to mutants, mutation analysis of the harness also provides some evidence of our tech-
nique’s ability to detect subtle specification and environment flaws. In particular, it
shows the value of inspecting all surviving mutants. One mutant modifies the assump-
tionon s tobe s < SIZE rather than s <= SIZE, which is the same as lowering
the SIZE by one; this is a fairly easy mistake to make in a harness (or any code). This
reduces the effectiveness of the verification by 19 mutants, so is likely not to escape
notice, and would also (in our framework) simply result in a higher size being cho-
sen as mutant-stable. Deleting the assignment prev = a[i], however, only kills 4
fewer mutants than the original harness. Traditional coverage and some model check-
ing coverages cannot detect this problem: because of the assignment to prev outside
the loop, the variable is used in the specification, and in fact used to detect many faults
(it eliminates any mutants that can cause a [0] to not be the least element). The har-
ness “covers” all behavior of quicksort in general, since the permutation requirement

@ Springer

Automated Software Engineering (2018) 25:917-960 927

remains in place. However, it cannot detect versions of quicksort that (1) preserve
permutation and (2) make the first element correct, but (3) don’t always sort the array
correctly. In particular, the call to quickSort with j + 1 can be removed or mod-
ified to j + 2. Examining the deleted/removed recursive calls shows the developer
the problem in this case. Our modified CBMC easily produces a witness showing a
permuted array with correct a [0] but with out-of-order later elements.

Of course, like program mutation, harness mutation does not provide any absolute
guarantees that it will detect problems with a harness. However, we do believe that, like
program mutation, it will sometimes provide a simple concrete example of a weakness
in a verification or testing approach. In our experimental results, the most complex
completed verification was substantially improved by a harness mutant showing that
our initial approach was inadequate (see Sect. 4.2). Even though the mutant that
improved the harness was not equivalent to the final version of the harness, it pointed
the way to improving our specification effort, and when the final, modified harness
had no mutants with improved ability to kill program mutants, it provided increased
confidence in the harness and the verification effort.

More practically, certain mutants (changes in equalities and inequalities in loops,
assumptions, and assertions) are fairly likely, we believe, to correspond to common
harness mistakes. In particular, not checking inputs of size zero, or of the maximum
input size, is likely to be as common as off-by-one bugs are in general. Because these
errors usually do not produce actual logical vacuity, they are likely to be hard to detect
using traditional methods for checking specifications. Now, in principle, the problem
could in these cases usually be detected by examining some program mutant. However,
itis easy to make a mistake in determining whether a mutant is equivalent to the original
program or not, perhaps especially when the mutant only matters to “degenerate”
inputs (e.g., lists of size zero). Moreover, the tools our approach provides for help
with detection of non-equivalent mutants may be weaker in these circumstances. If the
harness itself precludes the generation of size zero inputs, then CBMC cannot produce
such an example as an example of an execution of the surviving mutant! Moreover, if
the bug is in the specification, not the generation of inputs, CBMC may still not produce
such inputs, precisely because our approach tries to produce a complex, high-coverage
witness to how a mutant can satisfy the specification. This is usually a good idea, but
not helpful when the example of interest is degenerate. In contrast, a harness mutant
with a higher kill rate provides solid evidence that such mutations are not equivalent
to the original program, evidence that cannot easily be ignored or misinterpreted. That
is, because there is a concrete example of a harness that could detect a difference
between the mutation and the original program, and that harness is very similar to the
proposed verification harness, it is clear that the mutant is highly unlikely to actually
be equivalent with respect to the “real” specification of the program.

2.4 Summary of proposed approach

The basic flow of our approach, for bounded model checking, can be summarized as
follows:

1. Generate mutant set M = m ...m, for the program P.

@ Springer

928 Automated Software Engineering (2018) 25:917-960

2. Prune M into M’ by equivalence classes based on optimizing compiler output,
removing mutants that fail to compile or are equal to the original code.

3. Set unwinding depth/problem size U to O.

Setr =0,r = 1.

5. While r # r':

(a) SetU =U + 1.

(b) Setr =7’

(¢c) Set K =@, S = 0.

(d) Check each mutantm; € M using H and size U: if m; iskilled, K = K U{m;},
otherwise S = S U {m;}.

(e) Setr’ = |K|/|IM]|.

&

6. Examine each mutant in S. Remove those that are, by inspection, semantically
equivalent to P.

7. Modify harness H for mutants in S that indicate a clear violation of the specifi-
cation, easily understood, until A kills all such mutants. Remove them from §
and add them to K.

8. Forremaining mutantsin S, generate a successful execution that covers the mutant
but satisfied H. If the execution is degenerate, add constraints removing that class
of execution until a witness to an incorrect, mutant-covering behavior is produced.
Use this to modify A and move newly killed mutants from S to K.

9. Take mutants in m; € K, and check whether there exists a successful execu-
tion of m; satisfying H. Examine and constrain each such execution to remove
degenerate solutions, modifying H as needed.

10. Compute mutants My of the harness, and check that all mutants either: produce
a counterexample for the original program P or have a kill rate < the kill rate for
H.

3 Algorithms and techniques

Falsification-driven verification is a semi-automated approach that relies heavily on
algorithmic and tool support. While the typically smaller scope of code targeted for
verification (vs. testing) makes the work easier, it is not likely to be feasible without
automation of many subtasks. Existing tools make producing a set of mutants and
checking them using a harness relatively easy, but other tasks require new algorithms
and tools. Figure 6 shows the basic flow, which is directed not by a fixed algorithm but
by the intelligence (guided by experience) (Stout 1957) of the developer. Novel tools
or techniques are on the right side of the diagram (mutation analysis itself is not novel,
but our tool for integrating this with the model checker and recording results for use
by other parts of the tool-chain is non-standard), other than the model checker itself.

Figures 7, 8 and 9 show core algorithms (implemented as prototype tools in our
framework). In these algorithms O(S)is a function mapping an abstract size into
particular options, e.g. -DSIZE. The uses of these algorithms are described at a
high level in the introductory example, and in the case studies below. One additional
requirement is a version of CBMC capable of converting built-in assertions checks

@ Springer

Automated Software Engineering (2018) 25:917-960 929

Model Harness
checker . analysis
v _ Mlitat;on (check-harness)
? 00
\ SUT Mutant
Counterexamples Txplanahor;
ificati maxcover,
and verifications Wy

Problem sizer
(find-size)

rviving mutants

'q-_!
T \ Basic mutation

Surviving mutants analysis

Developer/verification
engineer

Fig.6 Basic flow of falsification-driven verification

Fig.7 Algorithm I: finding (int, survivors) find-size (H, M, Sp: int,
size/unwinding bound and O: int — options,
surviving mutants U: int — int)

S = Sp-1

r’ = {} : mutant — result

TOP:

S=8+1

r=r’

r = {}

for m € M:
if m ¢ domain(r):
r[m] = check(H,m,U(S),0(S))
if r[m] == VERIFICATION FAILED:
//once killed, assume always killed
M= M\ {m}
if r[m] == VERIFICATION SUCCESSFUL:
r’[m] = check(H,m,U(S+1),0(S+1))
if r’[m] == VERIFICATION FAILED:
M = M \ {m}
goto TOP
// No result changed, so S is mutant-stable
return (S-1, M)

(e.g, bounds checks, pointer dereference, division by zero) to assumptions. For har-
ness assumptions, this is done by automatic source-to-source transformation (Fig. 8,
procedure cover-harness), but CBMC'’s internal constraints have to be handled
inside the model checker. We implemented a new CBMC command-line option,
—-find-success that provides this functionality. In all algorithms, check means

@ Springer

930 Automated Software Engineering (2018) 25:917-960

Fig.8 Algorithm 2: find a harness cover-harness (H, TARGET)
maximally covering execution
trace that covers a mutant H =H
for stmt € H':
if stmt == assert(P):
stmt = assume(P);
cover = [

assume (total_coverage >= TARGET);
assert(!mutant_covered) ;]
insert cover at end of H’.main()
return H’

mutant cover-mutant (m)

n=0

m' =m

for if_stmt c in m':

if ¢ has no else:

add [else {}] to c

for basic_block b in m/:

b = [if !covered[n] {
covered[n] = 1;
total_covered += 1;

}
b]

n=n-+1

for stmt s in m’:

if MUTANT(s):

s = [{mutant_covered = 1;
s}]

m’/ = [int total_covered = 0;
int mutant_covered = 0;
int covered[n];

m']

return m’

trace maxcover (m, H, S, O, U)

m’ = cover-mutant (m)
T=20
trace =)
failed = False
while (not failed)
H'’ = cover-harness(H, T)
r = scheck(H,m’,U(S),0(S))
if r == VERIFICATION SUCCESSFUL:
failed = True
else if r == VERIFICATION FAILED:
trace = r.trace
T = trace.read(total_covered) + 1
return trace

@ Springer

Automated Software Engineering (2018) 25:917-960 931

report check-harness (SUT, M, H, M(H), S, O, U)

Ky = killed(M, H, S)
Hkills = (); Hequal = @); Hbetter = (); N =
for H; in M(H):
original = check(H;, SUT, U(S), O(S))
if original == VERIFICATION FAILED:
Hkills += H;
else: // check if this kills fewer mutants
Kpr, = killed(M, H, S)
for k € Ky, :
if k € Kig: N += (sz k)
if IKHiI > |Kgl:
Hbetter += (H;, Kg,)
if |KH1| == |KH|:
Hequal += (H;, Kg,)
else:
Hkills += (H;, Kgu,)
return (Hkills, Hequal, Hbetter, N)

Fig.9 Algorithm 3: analyze a harness

running CBMC as usual, with any needed automatic property checks, while scheck
indicates running CBMC with find-success enabled. In Fig. 6 we assume the use
of a modified version of CBMC.

The £ind-size algorithm (Fig. 7) finds a suitable problem size and returns the set
of surviving mutants for a harness and program, performing as few model checker calls
as possible (once we know a bound is not stable, we move on to the next bound). This
algorithm can be easily parallelized by running mutants in the for loop at the same
time, with any goto TOP killing all CBMC runs not terminated. The maxcover
algorithm (Fig. 8) returns for a given mutant and harness, a witness program trace that
(1) covers the mutant and (2) covers as much other code as possible (in terms of branch
coverage), using the cover-harness and cover-mutant procedures to instru-
ment harness and mutant; it proceeds by starting with a minimal constraint on coverage
(the trace must cover the mutated code) and increases this bound by incrementing it to
one more than the actual coverage of the last witness found, until the model checker
can prove the coverage is impossible. Other strategies for maximal coverage are pos-
sible (trying maximal coverage first, and decreasing the required coverage as attempts
fail) but this approach minimizes the number of model checker runs that will fail to
produce a witness, which is critical for performance reasons (see Sect. 4.4).

The check-harness algorithm (Fig. 9) analyzes harness mutants, producing a
report of (1) harness mutants that are killed (either they do not verify the SUT or they
have worse kill rates than the original harness), that are equal to the original harness
in strength, and that are stronger than the original harness. It also returns information
on all mutants killed by any harness mutant (except those that reject the SUT) that
are not killed by the original harness. The algorithm killed, not shown, simply
returns the set of mutants killed by a given harness. In our implementations, these
tools perform additional record-keeping. For example, harness analysis records killing
counterexamples and execution times for each run. We also make use of convenience
scripts such as a tool to automatically call maxcover on all mutants, which provides a

@ Springer

932 Automated Software Engineering (2018) 25:917-960

measure of harness strength that is more fine-grained than a simple kill rate: harnesses
can be compared by the maximum coverage of all mutants, even if they have the same
kill rate. If one harness produces executions with lower coverage (or no executions at
all) for some killed mutants, it is stronger. For some mutants, any passing executions
show a harness flaw. While not polished enough for release, these tools (implemented
as Python scripts) have proven robust in our experiments and are available, along with
our experimental data and CBMC patch, at https://github.com/agroce/cbmcmutate.

3.1 Adapting falsification-based approaches to automated test generation
3.1.1 Mutants and manual versus automatically generated tests

In this paper, we do not propose the idea of using mutants to improve manually con-
structed test cases; that concept is essentially as old as the idea of mutation testing
itself. Instead we focus on the testing equivalent of a verification harness: an automated
test generation harness and the tests it produces. We believe that, despite superficial
similarity, the two ideas are fundamentally different. In the first case, there is static,
concrete, existing test suite. Mutation analysis is performed on this suite, and a devel-
oper writes concrete, specific, tests to kill mutants that are not equivalent. This may
be a useful exercise, and may indeed somewhat improve the future defect detection
powers of the suite (Just et al. 2014; Ahmed et al. 2016) to some extent. We suspect,
however, that this method seldom immediately results in detection of an existing fault
in the SUT. The developer of the test to kill the mutant is not, really, looking for a
new way to test the system, but looking for a specific input that causes the mutant to
behave incorrectly. Again, this may improve the suite, but seems unlikely to detect
other, lurking, incorrect behaviors. To our knowledge, there are no human studies
showing that such changes result in immediate fault detection.

However, the story is quite different with an automated test generation system based
on a harness defining tests to be generated, for instance a sophisticated random test
generator for a specific domain (Groce et al. 2007; Yang et al. 2011; Holmes et al.
2016, 69). In that setting, modifying the harness so that a test is generated that kills
the mutant does more than kill a specific mutant: it, as in model checking, extends the
generative range of the testing itself, and (likely) requires a more abstract approach to
each mutant than is possible with specific, manually written tests. In short, modifying
a test harness that generates an essentially unbounded number of different tests is
not, at a high level, very different than modifying a verification harness to detect a
mutant. Both operations require not just an analysis of a specific faulty behavior, but
an improvement to the testing process. The only major difference is that with test
generation, the goal is to achieve high probability of detection, since the certainty of
verification is lost. In compensation, however, one receives scalability, ease-of-use,
and availability in languages without formal verification tools.

Note that we propose mutation testing as a way to extend the insight into a test
generation effort provided by code coverage (Groce et al. 2014). When the generator
never produces tests covering a line of code, this can be detected without the expense
or difficulty of producing mutants, and interpretation is straightforward: if you are

@ Springer

https://github.com/agroce/cbmcmutate

Automated Software Engineering (2018) 25:917-960 933

interested in testing the un-covered code, you must modify the generator to cover it.
Coverage is good at predicting overall mutation scores (Gligoric et al. 2013; Gopinath
et al. 2014), but there is a gap between coverage’s information and that provided
by some surviving mutants. This gap is our interest. Mutants provide insight on the
strength of the oracle used to assess generated tests, and the degree to which generated
inputs stress it (a line of code can be covered but not thoroughly stressed, since coverage
does not consider subtle aspects of, e.g., expression evaluation).

3.1.2 Falsification-driven testing

This section explains the adaptations required to apply our approach in the context of
automated test generation, rather than formal verification. One aspect of the approach
outlined above requires no modifications: examining mutants that are not killed is the
same basic process, whether those mutants are not killed by a verification harness or a
test generation harness. Similarly, mutating a test harness is not essentially different,
though it is less useful in testing than in verification (because of the probabilistic nature
of most aggressive testing). Two aspects, however, require some modification.

First, and simplest, the method for generating passing executions is slightly dif-
ferent. Rather than simply negating the specification and adding constraints for code
coverage, we modify the testing tool (in our case the TSTL tool for Python (Holmes
et al. 2016; Groce and Pinto 2015) by adding options to (1) search for a passing test
with maximum code coverage and (2) constrain the search to only tests that cover a
given statement or branch. These options are: —trackMaxCoverage <file>,
-maxMustHitBranch <branch> and -maxMustHitStatement <stmt>.

With this addition to TSTL, finding passing executions to examine is trivial, simply
a matter of identifying the location of the mutant. Adding a similar feature to most
widely used test generation tools should be relatively easy, given that they work by first
generating a test, then executing it and determining its coverage and other properties,
such as whether it passes (or generating a test on the fly while determining these
properties).

The second change is that the notion of mutant stability changes in two ways. First,
the parameter to be optimized is different: while test generation usually requires a max-
imum test length (Andrews et al. 2008), that parameter is not one with a corresponding
computational cost, like a bounded model checking depth. The same test budget can
support multiple lengths, and there is no simple correspondence between depth and
mutants killed. Mutants killed is monotonic (stable or increasing) in bounded model
checking depth; mutants killed is not monotonic in maximum test length (Andrews
et al. 2008). However, there is an analogous parameter in test generation: actual test
budget, in terms of computing resources, or, more simply time, spent generating and
executing tests. This parameter, however, only produces probabilistically (Arcuri and
Briand 2014) monotonic behavior: one run with budget X > Y may kill fewer mutants
than a run with budget Y'; however, over a large number of runs, statistically, X-budget
tests must outperform, or perform the same as, Y -budget tests.

A key insight is that when estimating how hard a mutant is, a single run that either
takes a long time to kill the mutant or a run that fails to kill a (known-killable) mutant
is sufficient evidence to assume the mutant is difficult, and helps establish a lower

@ Springer

934 Automated Software Engineering (2018) 25:917-960

bound on test budget needed to reduce risk of missing faults; in contrast, a single run
that quickly kills a mutant does not establish that the mutant is in fact easy: even hard
mutants can sometimes be easy to detect. In part we base this idea on empirical evidence
(see below), but it can also be justified by a simple theoretical model of test generation.

Unfortunately, the change to a stochastic setting makes determining stability more
difficult. It is highly inefficient, once budgets become larger (which is often required in
testing), to run each mutant enough times to obtain a good estimate of how long it takes
to kill, and doing so requires running already killed mutants, or equivalent mutants,
many times. On the other hand, in another sense the problem becomes easier: with
bounded model checking, for each mutant m, we have to query whether unwinding
depth U is sufficient to kill the mutant, for each U until stability is achieved. Many test
generation systems, such as TSTL, support a mode where the tool simply runs until a
faultis detected. If we set a large timeout (larger than the largest test budget we are inter-
ested in), we can simply run the tool with each mutant and discover how long it takes to
killit (or if it cannot be killed within our maximum possible budget). Finding “stability”
then, becomes simply a matter of finding the mutant(s) with the largest time-to-kill (the
“hardest” mutant), and inspecting those never killed to determine if they are equivalent.

Unfortunately, again due to the stochastic setting, this is not quite sufficient. A hard-
to-kill mutant may, infrequently, be detected very quickly; an easy-to-kill mutant may,
in some particular runs, not be detected quickly. What, then, does “hard-to-kill” or
“easy-to-kill” mean in such a setting, where there is no fixed computational difficulty,
such as a required unwinding depth, associated with each mutant? The definition shifts
to one of probability. A hard-to-kill mutant, relative to a given maximum test budget,
is one where, over all possible runs of the stochastic test generation process, the mean
time required to kill the mutant is at least a standard deviation higher than the mean
time required to kill a randomly selected mutant. Alternatively, in some cases, the
mean time required to kill a mutant is very close to the test budget, so we also say
that any mutant whose mean time-to-kill is larger than the test budget is hard-to-kill.
An easy-to-kill mutant is one whose mean time to kill is one standard deviation lower
than the mean time to kill over all mutants. The difficulty of a mutant is, similarly, its
average time-required-to-kill. Alternatively, time-required-to-kill can be thought of in
terms of the number of generated tests required to kill a mutant, since the frequency
of detection is the factor that controls the time (if most tests do not detect a mutant,
then it will take more time to generate a test that does).

Both quick detection of a hard-to-kill mutant and delayed detection of an easy-to-
kill mutant result in inaccurate information, and potentially in a wrong estimate of the
correct test budget to use. Fortunately, an asymmetry in the probabilities of these mis-
leading results allows us to proceed without (usually) running each mutant many times.

3.1.3 Estimating required budget to kill a mutant

The difficulty of detecting a fault (or killing a mutant, which is equivalent) can be
simply expressed by a probability of detection, e.g. a trivial fault is detected with almost
every generated test (99/100 tests), a typical easy fault is detected frequently (1/100
tests), and a hard fault is detected two orders of magnitude or more less frequently
(1/5000 tests). In fact, real faults often seem to fall into such coarse “buckets” of

@ Springer

Automated Software Engineering (2018) 25:917-960 935

10000 T ~> -‘ w
l.f e Q ...*:I.W o S

%
° L]

‘- (X ° '
© 8000 ° °
9 maximum
[
© °
B o
k]
Y 6000 [
=
o
I
]
0
S L mean
£ 4000 e
o
3 1&*
o WP o #%

L)

: ":{%.'*"’:’

2000 -

minimum

o . o .__.h
0 1000 2000 3000 4000 5000
Difficulty (detection probability = 1/N)

Fig. 10 Tests required for detection as difficulty of fault/mutant increases

detection ease, though this is not required for our analysis (Chen et al. 2013). Recall
that, because there is, almost always, a relatively similar time required to generate
and execute each test, and there certainly exists a well-defined probability distribution
over this time even when it is unusually varied, frequency of detection by tests and
time required for detection of a mutant are interchangeable. In what follows we focus
on the number of required tests because this makes the probabilistic reasoning clear.

Figure 10 shows how the minimum number of tests, mean number of tests, and
maximum number of tests needed for detection, over 100 runs each consisting of
10,000 tests, vary as the difficulty of a mutant or fault changes. For simplicity, we
measure difficulty by increasing N, where the probability of detectionis 1/N. As you
can see, the maximum number of tests required increases rapidly with difficulty. The
mean number of tests also increases steadily, but much more slowly, with difficulty.
Finally, the minimum number of tests required increases very slowly as the mutant
becomes more difficult. A concrete example shows why: the probability of hitting a
test with difficulty 1000 on the first test is indeed small, only 1/1000. However, the
chance of failing to detect a test with difficulty 1/10 for even as few as 100 tests is less
than 1/30,000.

This basic asymmetry means that as soon as a mutant has taken a long time to kill
(relative to the maximum test budget), we can safely assume that it is indeed hard to
kill; when a mutant is killed quickly (requiring time that is only a small fraction of the
maximum test budget), we run again, based on a tolerance for error in budget estimation
(where each run adds confidence); after k runs we assume a mutant is indeed easy-to-
kill (and the chance that we are over-approximating its ease can be readily computed
given k, by standard statistical techniques). As soon as one detection takes a “long
time” we can use that value as an estimate for the difficulty of the mutant, which means
that we only use k runs if the first k — 1 runs are all below the current estimated needed

@ Springer

936 Automated Software Engineering (2018) 25:917-960

float stable-budget (M, k, T, mazTime, equiv,killTimes)

budget = 0
form € M:
killTime = -1
runs = 0
maxKillTime = -1
while (killTime < budget) and (runs < k):
runs = runs + 1
// Assume killTime is -1 if not killed
killTime = T (timeout=mazTime)
if killTime > maxKillTime:
maxKillTime = killTime

if maxKillTime == -1:
equiv = equiv U m
else:

killT'imes[m] = maxKillTime
if maxKillTime > budget:
budget = killTime
return budget

Fig. 11 Estimating needed budget for mutant-stable testing

budget. Unless k is very large relative to the definition of a “long time,” the procedure
will never require more than approximately the maximum test budget, per mutant.

The approach does raise the question: what does it mean to take a “long time” to
kill a mutant? If our goal is to set a test budget, the answer is that a mutant takes a
long time to kill if it takes longer than any previously killed mutant (where mutants
that have not been killed at all do not increase this threshold). This means that the
expensive mutants (requiring k long runs) are those that (1) cannot be killed, or are
at least highly unlikely to be killed or (2) require time close to the current estimated
budget, but not exceeding it. If the goal is simply to classify mutants as “easy” or
“hard” based on some threshold, however, the “bad cases” can be made much less
frequent by setting the maximum budget to that threshold, which means that for most
“hard’ mutants only one run, requiring that maximum budget, will be required.

To produce a computationally inexpensive, if course, estimate of a stable test budget
for a set of mutants, we use the procedure in Fig. 11, which returns a budget and
modifies a set of possibly equivalent mutants. The procedure is also designed to store
a difficulty for each mutant, in addition to an overall budget, by reporting the largest
kil1Time for that mutant. The procedure takes as input a set of mutants M, a number
of trials k, a test procedure 7', a maximum test budget to use, maxTime, a (modifiable)
structure to store possibly equivalent mutants, equiv, and a similar structure (except
a map), killTimes to store the maximum kill times for each mutant. It is this map
that allows us to use standard statistical techniques to derive budget tradeoffs. Given
this (admittedly very approximate, since the procedure is intended to set a budget, not
evaluate each mutant) distribution of expected actual kill times based on the reported
maximum kill times, it is also easy to solve for (or use Monte Carlo methods to
estimate) budgets that kill any given percent of mutants, or all killable mutants, with
a certain required confidence.

@ Springer

Automated Software Engineering (2018) 25:917-960 937

4 Case studies and experimental results
4.1 Algorithm implementations

Our initial experiments involved relatively small verification problems, based on
implementations taken from the web or student code for popular algorithms and data
structures. Here we highlight the most interesting of these; we also successfully applied
the method to bubble sort and a student’s harness for verifying a version of Dijkstra’s
shortest path algorithm that enables path reconstruction (scvalex 2008). For the Dijk-
stra harness, the low mutant kill rate of only 58% showed that while the harness checks
incorrect returned paths, it cannot detect when return values indicate there is no path
but one exists. Improving the harness is a substantial exercise, but can be guided by
the survival witnesses.

4.1.1 Binary search

The ideas in this paper grew out of a side project of the first author: to write a follow-
up to Jon Bentley’s article on verifying binary search (Bentley 1983) in the context
of modern software verification tools [and Joshua Bloch’s discovery of a bug in the
assumptions behind Bentley’s proof (Bloch 2006)]. The modeling required is mod-
erately complex (to scale well, an abstract “sorted array” that represents all sorted
arrays but only introduces variables equal to the number of probes made by the search
is essential). In this case, we did not produce an initial, weaker version of the harness,
but checked the existing harness using mutants, and determined that all 3 surviving
mutants are equivalent to a true binary search.

Checking harness mutants (which took 37 min, including computing the kills for
the original harness) produced results confirming the belief this is a good harness. Of
the 31 compiling harness mutants, 19 failed to verify the correct binary search, and
7 had worse kill rates than the original harness. The remaining 5 harnesses, all with
equal kill rates of 86.7%, all modify an assumption to allow the harness to also check
size 0 arrays. This doesn’t kill any additional mutants, but is harmless as expected.
Of the harness mutants with worse kill rates, three are mutants of the assumptions
on the nondeterministic value used to make sure that if binary search returns — 1, no
index in the array actually contains the searched-for item. Two of these mutants are
off-by-one-errors that exclude item O from the check, an easy-to-make mistake. Both
of these fail to kill exactly one mutant killed by the correct harness: the mutant that
sets the lower bound initially to I instead of 0. Traces of passing runs for these mutants
show the problem clearly (the sought item at index 0).

4.1.2 Doubly-linked-list insertion sort

Another example, making use of recursive data structures and pointer validity checks,
is code for inserting an item (in sorted order) into a doubly-linked list [88]. Our
initial harness omitted a check for correctness of prewv pointers. This problem didn’t
directly prevent mutants from being detected, but pushed the stable size larger, as
with the quicksort example above. Looking at a trace of a size 3 run that fails to kill

@ Springer

938 Automated Software Engineering (2018) 25:917-960

a clearly problematic mutant easily reveals the problem (the results are correct up
to prev pointers). This example also showed another use of mutants, in that some
seemingly problematic surviving mutants actually just showed a pointless redundancy
in the implementation, enabling the removal of an entire conditional branch. A harness
check (requiring 30 min, including computing the mutant kills for the original harness)
showed that of the 105 compiling harness mutants, 92 fail to verify the original code.
Another 2 have a worse kill rate than the original (which kills 81% of mutants, a low
rate due to the code redundancy), and 11 survive. The large number of survivors is
due to a redundancy of the final harness, which checks sortedness and the permutation
property for both a forward next traversal of the list and a prev traversal. Omitting
any one of these (e.g. prev sortedness or next permutation) the harness can still
detect all mutants. Removing two, however, fails to kill mutants. The two harness
mutants with worse kill rates have extremely poor kill rates (< 50 and < 25%).

4.1.3 AVL tree

In the case of the AVL tree, the harness we were working with was unable to reach a
mutant-stable unwinding without exhausting memory on the verification of the main
program (for AVL trees of up to size 5). We are investigating a more efficient har-
ness encoding, based on the inability to reach mutant-stability. Without the notion of
mutant-stability, we might have believed the harness was verifying more aspects of
the specification than it is able to, at the largest unwinding reached. Unkilled mutants
include clearly erroneous behaviors.

4.1.4 Merge with duplicate removal

Even a killed mutant—one the harness does detect—can shed critical light on harness
vulnerabilities. For example, the code in Fig. 12 is a portion of a harness to verify
code that merges two sorted arrays, removing all duplicates (the source arrays may
contain duplicates or shared items, the output array is guaranteed to be sorted and have
all-unique values). This harness detects all non-equivalent mutants of the source code
with an unwinding depth of only 2 (the check requires less than a minute).

However, as is well known, many software faults (Just et al. 2014) are not repre-
sented by a mutant. Because we are model checking, we want our harness to actually
rule out all bad runs of the program under test. Even a killed mutant’s passing execu-
tions may show such a problem. Here we see that when the output array’s size is 1,
the way we have written the duplicate check in fact assumes away all executions! We
check no properties of size 1 output arrays, and a fault that only appears with size = 1
will never be detected. No mutant produces such behavior, but noting an incorrect but
passing trace of this run using the CBMC extension lets us see the problem (Fig. 13).

4.2 SpiderMonkey Boyer-Moore-Horspool implementation

Figures 14 and 15 show, respectively, the source code and an initial harness for veri-
fication of the Boyer—-Moore—Horspool substring finding algorithm (Horspool 1980;

@ Springer

Automated Software Engineering (2018) 25:917-960 939

int main (O {

int a[SIZE], b[SIZE], c[SIZE*2];
int i, v, il, i2, csize;
int asize = nondet_int();
int bsize = nondet_int();
__CPROVER_assume ((asize >= 0) && (bsize >=0));
__CPROVER_assume ((asize <= SIZE) && (bsize <= SIZE));
for (i = 0; i < asize; i++) {

a[i]l = nondet_int();

__CPROVER_assume((i == 0) || (ali] >= al[i-11));
}
for (i = 0; i < bsize; i++) {

b[i] = nondet_int();

__CPROVER_assume((i == 0) || (b[i] >= b[i-11));
}
csize = merge_sorted_nodups(a, asize, b, bsize, c);
assert (csize <= (asize + bsize));
il = nondet_int();
i2 = nondet_int();
__CPROVER_assume ((il >= 0) && (i2 >= 0));
__CPROVER_assume ((il < csize) & & (i2 < csize));
__CPROVER_assume (il != i2);
assert(c[il] != c[i2]);
v = nondet_int();
__CPROVER_assume ((v >= 0) && (v < asize));
v = alv];
int found = 0;
for (i = 0; i < csize; i++) {

if (c[i] == v)

found = 1;

}

assert (found == 1);
v = nondet_int();
__CPROVER_assume ((v >= 0) && (v < bsize));
v = blv];
int found = O;
for (i = 0; i < csize; i++) {

if (c[i] == v)

found = 1;

assert (found == 1);

}

Fig. 12 Harness for merge_sorted_nodups

Alipour et al. 2013) in version 1.6 of Mozilla’s SpiderMonkey JavaScript engine. Ver-
ifying this code presents one immediate issue that is not unusual in verification: how
to handle an assert in the code being verified. An assert at the end of a function
or in the main body is typically an additional part of the specification, and is often
best left unchanged. An assert at the beginning of a function’s body, however, is
typically a precondition for the code (Alipour et al. 2013). It is natural to consider
changing such an assertion into an assume and ignoring any problems produced by
calling the code with non-conforming inputs. While this can be a useful technique (for
instance when it is hard to write a harness that only produces valid inputs, but easy to
filter out the invalid inputs and only verify behavior for those) it is also a dangerous
technique. Mutation analysis of the harness shows that 4 is a mutant-stable size (where
the same size is used for text length, pattern length, and character set size), with a kill

@ Springer

940 Automated Software Engineering (2018) 25:917-960

int merge_sorted nodups(int a[], int asize,
int b[], int bsize, int c[]) {
int apos = 0, bpos = 0, cpos = -1, csize = 0;
while ((apos < asize) || (bpos < bsize)) {
if ((apos < asize) &&
((bpos >= bsize) || (alapos] < blbposl))) {
if ((cpos == -1) || (clcpos] != alaposl)) {
c[++cpos] = alapos];
csize++;
}
apos++;
} else {
if ((cpos == -1) || (clcpos] != blbposl)) {
c[++cpos] = bl[bpos];
csize++;
}

bpos++;
return csize;

}

Fig. 13 Code to merge two sorted arrays into one sorted array with no duplicate elements

jsint
js_BoyerMooreHorspool(const jschar *text, jsint textlen,

const jschar *pat, jsint patlen,
jsint start)

jsint i, j, k, m;
uint8 skip[BMH_CHARSET_SIZE];
jschar c;
JS_ASSERT (0 < patlen && patlen <= BMH_PATLEN_MAX);
for (i = 0; i < BMH_CHARSET_SIZE; i++)
skip[i] = (uint8)patlen;
m = patlen - 1;
for (1 = 0; i < m; i++) {
c = pat[il;
if (¢ >= BMH_CHARSET_SIZE)
return BMH_BAD_PATTERN;
skiplc] = (uint8)(m - i);

for (k = start + m;
k < textlen;
k += ((c = text[k]) >= BMH_CHARSET_SIZE) ?
patlen : skiplcl) {
for (i =k, j=m; ; i-——, j—-) {
if (§ < 0)
return i + 1;
if (text[i] != pat[jl)
break;
}
}

return -1;

}

Fig. 14 SpiderMonkey 1.6 Boyer—Moore—Horspool code

@ Springer

Automated Software Engineering (2018) 25:917-960 941

Fig. 15 Boyer—Moore—Horspool #include "bmh.h"
harness int main() {
int i;

unsigned int v;
char itext[TSIZE];
char ipat[PSIZE];
unsigned int itext_s = nondet_uint();
__CPROVER_assume (itext_s < TSIZE);
unsigned int ipat_s = nondet_uint();
__CPROVER_assume (ipat_s < PSIZE);
printf ("LOG: size text=Y/u, pat=/u\n", itext_s, ipat.s);
for (i = 0; i < itext.s; i++) {
v = nondet_unit();
__CPROVER_assume ((long)v < (long)BMH_CHARSET_SIZE);
itext[i] = v;
__CPROVER_assume (itext[i] < BMH_CHARSET SIZE);
printf ("LOG: text[%d] = %u\n", i, itext[i]);
}
for (i = 0; i < ipat_s; i++) {
v = nondet_uint();
__CPROVER_assume ((long)v < (long)BMH CHARSET SIZE);
ipat[i] = v;
__CPROVER_assume (ipat[i] < BMH_CHARSET_SIZE);
printf ("LOG: pat([%d] = %u\n", i, ipat[il]);
}
jsint r = js_BoyerMooreHorspool(itext, itext_s,
ipat, ipat_s, 0);
printf ("LOG: return = %d\n", r);
int pos, ppos, found;
v = nondet_uint();
printf ("LOG: looking at %u\n", v);
__CPROVER_assume(v >= 0);
if (r == -1) {
__CPROVER_assume(v < itext_s);
pos = v; ppos = O; found = 1;
while (ppos < ipat.s) {
printf ("LOG: itext[%d] = %u, ipat[%d] = %u\n",
pos, itext([pos], ppos, ipat[ppos]l);
if ((pos>=itext_s) || (itext[pos]!=ipat[ppos])) {
found = 0; break;
}

pos++; ppos+t;

assert (!found);
} else {
pos = r; ppos = 0;
while (ppos < ipat.s) {
assert (itext[pos] == ipat[pposl);
pos++; ppos++;

v = nondet_uint();
printf ("LOG: looking at %u\n", v);
__CPROVER_assume(v < r);
pos = v; ppos = 0; found = 1;
while (ppos < ipat.s) {
printf ("LOG: itext[%d] = %u, ipat[%d] = %u\n",
pos, itext[pos], ppos, ipat[ppos]l);
if ((pos>=itext_s) || (itext[pos]!=ipat[ppos])) {
found = 0; break;

post++; ppost+t;

assert (!found);

@ Springer

942 Automated Software Engineering (2018) 25:917-960

rate of 72.3%. On initial examination, the 20 surviving mutants do not seem problem-
atic. A large number involve the JS_ASSERT converted toa___ CPROVER_assume,
showing the harness cannot tell if the assumption is incorrect, which is not surprising
(the harness only generates good inputs, and some of the mutants simply discard too
many inputs).

At this point, we were satisfied with our harness, and ran a check on mutants
of the harness itself. To our surprise, three mutants of the harness had a better kill
rate than the “correct” harness, killing 73.5% of mutants. Investigating these “better”
harnesses showed mutants that broke processing of some return values in such a way
that, while these harnesses failed to detect certain major bugs in the code, they were
able to detect some JS_ASSERT assumption mutants. Guided by this, we produced
a revised harness that raised the kill rate to 79.52%. However, on examining the
surviving mutants, we realized that our verification was still unsatisfactory as a good
regression for the Boyer—-Moore—Horspool code: in particular, if the assertion were
ever modified to allow bad inputs to pass through, or otherwise incorrectly changed,
we would miss those bugs. We then changed the JS_ASSERT into code that returned a
special value to signal assertion failure, and modified the harness once more, allowing
some incorrect values to pass through and checking that “assertion failure” happened
if, and only if, the inputs were invalid. This harness killed 89.2% of mutants, and the
six surviving mutants were easily understood to be equivalent to the BMH code under
all valid inputs (in one case we weren’t certain about, we had CBMC verify that for all
non-assertion violating inputs, this was true up to size 10). The new harness, informed
by the harness mutations, in fact had a better mutant kill rate for size 3 (80.7%) than our
first harness had at the mutant-stable point. This examples serves as our best evidence
of the value of harness mutation.

4.3 Linux Kernel RCU verification challenges

Read-copy-update (RCU) is a synchronization mechanism sometimes used as a
replacement for reader-writer locking for linked structures, allowing extremely
lightweight readers (McKenney 2013). In the limiting case, achieved in server-class
builds of the Linux kernel, overhead for entering and exiting an RCU read-side criti-
cal section (using rcu_read_lock () and rcu_read_unlock (), respectively)
is exactly zero (McKenney and Slingwine 1998), making RCU an excellent choice
for read-mostly workloads (McKenney 2013; Guniguntala et al. 2008; McKenney
et al. 2013). However, lightweight readers mean updaters cannot exclude readers,
so updaters must take care to avoid disrupting readers. Updaters typically maintain
multiple versions of the portion of the data structure being updated, removing old
versions only when readers are no longer accessing them. To this end, RCU provides
synchronize_rcu (), which waits for a grace period: when all pre-existing RCU
readers complete. RCU updaters typically remove a data element (rendering it inacces-
sible to new readers), invoke synchronize_rcu (), and then reclaim a removed
element. The Linux kernel contains more than 10,000 uses of the RCU API (McKen-
ney 2006), and a userspace RCU library (Desnoyers 2009; Desnoyers et al. 2012) is
seeing significant use. Validation and verification of RCU is a major concern for each

@ Springer

Automated Software Engineering (2018) 25:917-960 943

static int rcu_read_nesting_global;

static void rcu_read_lock(void)
{

(void) __sync_fetch_and_add(&rcu_read_nesting_global, 2);
}

static void rcu_read_unlock(void)

9 {

10 (void) __sync_fetch_and_add (&rcu_read_nesting_global, -2);
11 }

13 static void synchronize_rcu(void)

14 {

15 for (5;) {

16 if (__sync_fetch_and_xor(&rcu_read_nesting_global, 1)<2)
17 return;

18 SET_NOASSERT() ;

19 return;

20 }

21 }

Fig. 16 Approximate model of RCU

implementation, and a topic of considerable interest in the PL/verification community
now (Tassarotti et al. 2015).

Because both RCU and the Linux kernel are moving targets, any validation and
verification must be both automated and repeatable, for inclusion in a regression-
test suite. At present the rcutorture stress-test (https://www.kernel.org/doc/
Documentation/RCU/torture.txt) provides some assurance in the form of automated
testing, but ideally would be complemented by some formal verification of the
implementation(s) in the kernel. An important question is whether available formal
verification tools can provide effective additional regression checking for RCU. We
use a pair of RCU-related benchmarks (McKenney 2015a, b) to provide the beginnings
of an answer to this question. The first benchmark applies formal verification to the
simplest of the Linux kernel’s RCU implementations, Tiny RCU (McKenney 2009),
which targets single-CPU systems. This model includes Tiny RCU’s handling of idle
CPUs as well as its (trivial) grace-period detection scheme. The second benchmark
creates the trivial model approximating an RCU implementation for multiprocessor
systems shown in Fig. 16. In this model, the number of RCU read-side critical sections
currently in flight is tracked by the global rcu_read_nesting_global, which
is atomically incremented by rcu_read_lock () and atomically decremented by
rcu_read_unlock (). This allows synchronize_rcu() to atomically XOR
rcu_read_nesting_ global’sbottom bit to detect whether the current execution
has waited for all pre-existing readers (over-approximated by checking the absence of
all readers), with SET_NOASSERT () being invoked to suppress all future assertions.
Although this model has a number of shortcomings, perhaps most prominently exces-
sive read-side ordering, it is capable of detecting common RCU-usage bugs, including
failure to wait for an RCU grace period and failure to enclose read-side references in an
RCU read-side critical section. Can falsification aid in these two complex, in-progress,
verification efforts?

Our efforts are ongoing, due to the complexity of the targeted code (even with
support from the primary developer, a co-author of this paper). At this time the inves-

@ Springer

https://www.kernel.org/doc/Documentation/RCU/torture.txt
https://www.kernel.org/doc/Documentation/RCU/torture.txt

944 Automated Software Engineering (2018) 25:917-960

tigation of mutants has already provided valuable information about these verifications
benchmarks. First, there are two versions of the Tiny RCU verification. The earliest,
very preliminary version, kills only 10 of 169 Tiny RCU mutants. Adding code to
the harness to account for interrupts in the dyntick-idle handling kills an additional
12 mutants, confirming that the modification increases the strength of the harness.
More importantly, the modeling of concurrency in the harness has two versions, one
using CBMC support for pthread mutex locks, the other using disabling of assertions
to ignore executions that violate locking semantics. The native mutex version allows
much faster verification, and catches the original, hand-constructed checks to ensure
the harness can detect faults in Tiny RCU. However, the native mutex version fails
to kill any mutants, a fact we are currently investigating: without mutants, we would
not have been aware of this possibly critical problem, which may be a CBMC bug (in
the course of this paper’s work, we have uncovered several CBMC bugs) or a harness
flaw. In support of the verification, we also generated passing maximal-coverage exe-
cutions for all mutants of the Tiny RCU code. For 97 of the mutants, there is no passing
execution; in many cases, these are not killed: the mutant modifies the concurrency
semantics so CBMC has no valid executions to analyze (potentially invalid in some
cases, which must be investigated). For 79 mutants the maximal-coverage passing runs
are currently being examined, to determine the best next steps in improving the Tiny
RCU harness. For the second benchmark, we have computed mutant kills and find
that the kill rates range between 40 and 46%. While these benchmarks are far from
complete, and over-simplify the modeling process, they are already able to catch a
substantial number of potential RCU usage errors. Again, we have produced passing
runs for the surviving mutants to use in enhancing the process. The good news is that
while the RCU verification is much more substantial than the above case studies, the
time to analyze mutants is not prohibitive. No single model checking run for the Tiny
RCU benchmark takes more than 40 s, and total runtime for all mutants in the usage
benchmarks ranges from just over 12 s for a basic litmus test to less than 5 min for the
most complex of the benchmarks.

4.4 Plausible verification by failure to falsify

A key problem in model checking is the state explosion problem, or, more simply
(and more accurately, in that number of states is not always the determining factor
in symbolic methods) the problem of scalability. As discussed above, even proving
binary search correct over the full domain of integer inputs is not possible within a
reasonable time frame. Even when verification is impossible at the desired problem
size falsification can provide limited confidence in the correctness of a program. In
particular, we observe from all of our experiments that the average time, for any
program and harness pair, to verify the original code and all surviving mutants is
much higher than the average time to produce a counterexample for killed mutants.
Showing that a constraint is satisfiable is, usually, easier than proving it is unsatisfiable.
This is not limited to SAT solvers; we used SAT rather than SMT in our experiments
because we generally found Z3 to be slower than CBMC’s built in version of MiniSAT
(Een and Sorensson 2003) in almost all cases, but Z3 also aims to be fast at producing

@ Springer

Automated Software Engineering (2018) 25:917-960 945

100000 , , , ,
10000 | + .:
+ + 1
—_ ++ ++ n
@ 1000 | i
o + + +
2 + " + + H
-]
£ 100 L + + 4 i
2 * N +#++¥ T
® +
> 10 | " S +]
& et +
@ 1 4
z 2 H E
T]
01| A I
+ +]
001 1 1 1 1
0.01 0.1 1 10 100

Average kill time (log s)

Fig. 17 Average times for killing/verifying mutants, in seconds

satisfying assignments, not proving UNSAT (de Moura and Bjgrner 2008), and our
few runs with Z3 showed the same pattern.

Figure 17 shows (with log scales on both axes) the average running times for all
experiments (including faulty versions of the harness, incorrect runtime parameters,
harness mutation checks, etc.) performed in the course of this work. The general trend
is clear: time to verify is usually worse than time to kill, and the worst average time
to kill (about 350 s) is much better than many average verification times. One use
of this relationship is that, in cases where all (non-equivalent) mutants of the SUT
are killed, but the SUT verification fails to complete, the SUT might be considered
provisionally verified. In particular, the larger the ratio between the timeout for failed
verification and the longest kill time for any mutant, the “more likely” to be correct we
can consider the SUT (the same holds with respect to memory use limits). This belief
can be further justified by modifying the harness to force mutant kills to use large
problem sizes, violating the usual inclusiveness rule (that way, if the new size allows
a counterexample not previously existing, the mutant killing problem for mutants
killable at smaller sizes better approximates the counterexample construction problem
for the actual fault).

Additionally, the times shown here (with mean mutant kill time of 16.4 s and
median mutant kill time of 0.54 s) show the general feasibility of the falsification-
driven approach. Most of the time, killing mutants is cost-effective. The outliers come
from a few difficult problems, arising from buggy harnesses (or harness mutants that
resemble buggy harnesses). The much worse cost for surviving mutants is due to a
few expensive stubborn mutants: the median verification success time is only 1.5 s.

@ Springer

946 Automated Software Engineering (2018) 25:917-960

4.5 Automated test generation and falsification
4.5.1 rcutorture case study

In a first effort to integrate our approach with automated test generation, we applied our
method to rcutorture (https://www.kernel.org/doc/Documentation/RCU/torture.
txt) itself (Ahmed et al. 2017). While the model checking harnesses we were working
with were weak and limited, rcutorture is the workhorse of RCU testing, and
has resulted in detection of numerous bugs. We generated, again using Andrews’ tool,
2815 valid (compilable) mutants (and 354 invalid mutants). After throwing out all
mutants that were equivalent or redundant via TCE (Papadakis et al. 2015), we ran
rcutorture for 2 min on each of the 2150 remaining mutants. Two minutes is
actual testing budget; each mutant took up to 30 min to compile in the first place
(build failures usually took less time), and a 1-time setup cost of about 30 min to
produce an image for use in future testing, if we wanted to run rcutorture for
longer runs (this time without compilation or image-production overhead). Of these
2150 mutants, only 380 survived the process, yielding an 82% kill rate, showing that
rcutorture is indeed quite effective at detecting most deviations from the code,
and that the code is relatively tightly constrained in behavior.

Manual inspection by the RCU developer (author McKenney) required about 5 min
per mutant, but with very high variance. Some mutants were immediately dismissed as
irrelevant, while other required considerable effort. A good estimate for overall human
effort in this case is 25 h. This is a significant investment of time, but the payoff, in
this case, was substantial. In general, the mutants that resulted in changes to kernel
code were also mutants that required substantial analysis time.

The results of mutation analysis were five patches to RCU code. Two of these
patches were to rcutorture code, improving the testing process. Three were
patches to RCU code, including one actual bug fix for a bug detected by the changes
to rcutorture. Another change to RCU was a performance improvement, avoid-
ing the overhead of a local_irqg save()/local_irg restore pair, since
surviving mutants showed that interrupts were always disabled. A final patch more
precisely specified a type, again based on information from mutation testing. Patch
details are available at:

— https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/ ?id=45fed3e7cf
b4001c80cd4bd25249d194a52bfed3

— https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/ 7id=7c9906ca5
e582a773fff696975e312cef58a7386

— https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/ ?id=cald5 led9
809299d71c23a343b3acd3fd4ad8cbe

— https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=6e91{8cb1
38625be96070b778d9ba71ce520ea7e

— https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=f13bad904
2dctf9b60b48a0137951b614a2ee24b5

@ Springer

https://www.kernel.org/doc/Documentation/RCU/torture.txt
https://www.kernel.org/doc/Documentation/RCU/torture.txt
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=45fed3e7cfb4001c80cd4bd25249d194a52bfed3
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=45fed3e7cfb4001c80cd4bd25249d194a52bfed3
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=7c9906ca5e582a773fff696975e312cef58a7386
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=7c9906ca5e582a773fff696975e312cef58a7386
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=ca1d51ed9809a99d71c23a343b3acd3fd4ad8cbe
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=ca1d51ed9809a99d71c23a343b3acd3fd4ad8cbe
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=6e91f8cb138625be96070b778d9ba71ce520ea7e
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=6e91f8cb138625be96070b778d9ba71ce520ea7e
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=f13bad9042dcf9b60b48a0137951b614a2ee24b5
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=f13bad9042dcf9b60b48a0137951b614a2ee24b5

Automated Software Engineering (2018) 25:917-960 947

More details of our rcutorture analysis are available in a workshop paper
presented at the 2017 International Workshop on Mutation Testing (Ahmed et al.
2017).

4.5.2 pyfakefs case study

We used the a test harness written in the TSTL (Groce and Pinto 2015; Groce et al.
2015a; Holmes et al. 2016; Groce et al. 2015b) automated test generation language
for testing pyfakefs (bremen et al. 2011) as a second case study in applying our
approach to aggressive testing. The pyfakefs module is a widely-used tool for
Python testing that allows tests to replace real file system usage with the use of a
“fake file system” that can contain arbitrary contents, operate faster than a real file
system, avoid tests modifying the real file system, and allow faultinjection. The harness
for pyfakefs is a TSTL-based differential testing harness conceptually similar to
harnesses used at NASA for file system testing (Groce et al. 2007, 2008). The TSTL
tools support a number of testing methods, but in this case study we restricted ourselves
to pure random testing.

The muupi (Liu 2016) mutation generation tool generated 873 mutants of the file
fake_filesystem.py, the tested part of the pyfakefs system. At the time we
generated mutants, testing of pyfakefs had been going on for a period of months,
with many changes and extensions of the test harness, leading to discovery and correc-
tion of more than 50 bugs’ Of the 873 mutants, only 449 (51.4%) were actually covered
within 30 min of testing pyfakefs, and so we omitted the mutants of code not cov-
ered. Coverage information itself is useful, and showed some (known) limitations of
the testing, but, as discussed above, we are interested in the additional information on
oracle and input generation strength provided by mutation testing results.

The harness killed 288 of the 449 covered mutants (64.1%), all within 60 s. For
279 of these, 5 of 5 attempts to kill within 60 s succeeded. For another 7, fewer than
5 (but not less than (3) attempts to kill in 60 s succeeded. Extending the test budget to
5 min did not add any newly killed mutants. The mean minimum time to kill a mutant
was 0.59 s, and the mean maximum time was 3.25 s. The longest minimum time to
kill a mutant was 44.8 s, and the longest mean time to kill a mutant was 42.64 s. Our
mutation results suggest that 45 s of testing is likely to be as effective as 60 s (or 5 min)
of testing for pyfakefs.

Examining the 163 interesting un-killed mutants proved extremely fruitful. First,
there were large groups of mutants that could be ignored, as they related to aspects of
testing intentionally not performed, such as checking disk usage or atime/ctime/mtime
related behavior (these behaviors are ignored due to the problems of differential testing
with areference file system). Additionally, some mutants were obviously uninteresting
on inspection (e.g., those that reversed a list where clearly the order of items in a list
is not important). Table 1 shows the groups of mutants ignored, and the number of
such mutants for each category. Removing these obviously uninteresting mutants left
us with 101 mutants to examine. After throwing these mutants out, another two large
sets of similar mutants were evident. First, there were 14 mutants that modified a

7 See the issues labeled with TSTL on the pyfakefs GitHub issue tracker for a history of the testing effort.

@ Springer

948 Automated Software Engineering (2018) 25:917-960

Table 1 Easily ignored unkilled mutant categories

Identifier Explanation Count
ChangeDiskUsage Disk usage is hard to model in differentialtesting 8
usage_change Disk usage is hard to model in differential testing 2
_last_dev Differential testing only uses one device 4
_last_ino Inode usage not modeled in differential testing 8
epoch Epoch not modeled in differential testing 3
link_depth Link depth is limited by assumption in testing 4
reversed Reversing lists used as sets or singleton lists is a no-op 5
st_atime Time stat fields not modeled in differential testing 4
st_ctime Time stat fields not modeled in differential testing 4
st_mtime Time stat fields not modeled in differential testing 4
st_mode Mode values differ in ways not modeled in differential testing 9
st_nlink Known discrepancies in nlink behavior to be ignored 7

statement containing a check on the fake file system class field indicating whether the
file system is case sensitive. We immediately noticed that the harness only produced
path components with lowercase characters, meaning that any faults related to handling
of case sensitivity would never be detected. Second, there were a large number of
mutants referencing methods checking the position of the path separator in a path, and
in particular two mutants checking whether the path ends with a path separator. We
realized that paths ending in a path separator, or more generally containing extra path
separators, were also not being generated, meaning that path normalization related
faults would also be missed.

We added these features to the test harness, a simple matter of changing the path
component generation line from

<component> := <["alpha", "beta", "gamma", "delta", "epsilon","a","b",
"C","d","e","f","g", "h","Omega","lambda","phi"]>
to
<component>
:=< ["alpha" , llbetan , "gaman , HAlphall , llBetaH , "Gaman , Hau , Hbll ,
llcn , ||d|l , "e" , llfn , ||g|l , "Omega" , |llambdall , ||phi|l , won] >

and as a result were able to discover the following new faults, almost all of which have
since been corrected:

—_—

https://github.com/jmcgeheeiv/pyfakefs/issues/306
https://github.com/jmcgeheeiv/pyfakefs/issues/307
https://github.com/jmcgeheeiv/pyfakefs/issues/308
https://github.com/jmcgeheeiv/pyfakefs/issues/309
https://github.com/jmcgeheeiv/pyfakefs/issues/310
https://github.com/jmcgeheeiv/pyfakefs/issues/311
https://github.com/jmcgeheeiv/pyfakefs/issues/312
https://github.com/jmcgeheeiv/pyfakefs/issues/313
https://github.com/jmcgeheeiv/pyfakefs/issues/314

RS IR ol

@ Springer

https://github.com/jmcgeheeiv/pyfakefs/issues/306
https://github.com/jmcgeheeiv/pyfakefs/issues/307
https://github.com/jmcgeheeiv/pyfakefs/issues/308
https://github.com/jmcgeheeiv/pyfakefs/issues/309
https://github.com/jmcgeheeiv/pyfakefs/issues/310
https://github.com/jmcgeheeiv/pyfakefs/issues/311
https://github.com/jmcgeheeiv/pyfakefs/issues/312
https://github.com/jmcgeheeiv/pyfakefs/issues/313
https://github.com/jmcgeheeiv/pyfakefs/issues/314

Automated Software Engineering (2018) 25:917-960 949

10. https://github.com/jmcgeheeiv/pyfakefs/issues/315
11. https://github.com/jmcgeheeiv/pyfakefs/issues/317
12. https://github.com/jmcgeheeiv/pyfakefs/issues/318
13. https://github.com/jmcgeheeiv/pyfakefs/issues/319
14. https://github.com/jmcgeheeiv/pyfakefs/issues/320
15. https://github.com/jmcgeheeiv/pyfakefs/issues/322

Adding these new features to the test harness and throwing out mutants matching
one of our “correctly ignored” classes of mutants, we were able to improve the kill
ratio to 81.1% of covered mutants, a result indicating, we believe, a relatively strong
oracle, which matches our expectations for a differential testing-based harness (and
the very large number of faults thus far detected by the harness).

Examining unkilled mutants using the more advanced, dynamic-analysis-based
techniques proposed in this paper was also useful, if more time consuming. For
instance, consider a mutant that modifies the line:

if (not self.isabs(path)):
to
if self.isabs(path):

This code is easily covered, and stepping through a maximal-coverage test covering
it generated using our TSTL extension makes it easy to see why the mutant is not killed.
Our harness only generates absolute paths, so the mutant forces the branch to always
(instead of never) be taken. That causes execution of the code:

path = self.join(getcwd (), path)

However, since the current directory is always root (“/”’) this is a no-op. The change
indicates that we can extend our testing by generating relative paths. This means the
harness must also be modified to make sure the current directory in both file systems
is the same. Unfortunately, without the kind of file system sandboxing that pyfakefs
provides, this also changes the current directory in the TSTL test generator itself,
breaking the tool. So, while in theory this could be added to testing, in practice the
effort required is too large. Discovering this, we can add absolute path queries to our
set of ignored mutant types and proceed.

Another mutant introduces a spurious break into a loop in a method of the file
system’s FakeDirectory class, HasParentObject that checks whether (this
is the text of the actual code comment):

dir_object is a direct or indirect parent directory, or if both are
the same object

This code is only called during a rename operation, and the change simply makes
the function incorrectly return False in cases where discovering the link (that makes
a rename invalid) requires traversing multiple levels of indirection. This is clearly
possible with our harness, but is likely to be quite difficult, since it requires setting
up an invalid rename that is invalid due to at least two levels of indirection. We
hypothesized that the test size/search depth limit of 200 operations was making this
problem hard to detect, and ran the t st 1 random tester with a depth limit of 500 steps.

@ Springer

https://github.com/jmcgeheeiv/pyfakefs/issues/315
https://github.com/jmcgeheeiv/pyfakefs/issues/317
https://github.com/jmcgeheeiv/pyfakefs/issues/318
https://github.com/jmcgeheeiv/pyfakefs/issues/319
https://github.com/jmcgeheeiv/pyfakefs/issues/320
https://github.com/jmcgeheeiv/pyfakefs/issues/322

950 Automated Software Engineering (2018) 25:917-960

Within 3 min the mutant was detected. This did not result in a change in the file system
harness, but showed that to find all faults in the file system, testing to a more aggressive
depth limit is important for thorough testing. And, sure enough, running our harness
(without the changes for invalid paths, since not all of the faults thus revealed have
been fixed) with depth 1000 revealed what appeared to be a new fault: https://github.
com/jmcgeheeiv/pyfakefs/issues/321. The test failed when run stand-alone, without
the reference, so it appeared to be a legitimate issue. However, on inspection the test
is invalid, since writing to a directory is known to fail. The TSTL harness guards
against such a problem, however, so how could the test be generated? It turns out the
guard in the harness uses the reference file system (which has a bug, in this case),
and incorrectly believes the path involved is not a directory. However, the problem
also turns out to be a bug in pyfakefs which throws an internal error rather than
signaling the correct errno and throwing OSError.

At this point, the utility of examining mutants using our tools to generate witness
tests that cover the mutant but pass is quite clear: these were the first two unkilled
mutants inspected, chosen at random. The first revealed a desirable but difficult change
to the harness (and for now lets us ignore two mutants as clearly unkillable without
that change). The second, after investigation, resulted in the discovery of an extremely
subtle flaw in the test harness, interacting with a fault in the reference (Mac OS X) file
system, and also an actual fault in the tested file system.

5 Discussion: falsification, verification, and popperism

Those among us who are unwilling to expose their ideas to the hazard of refu-
tation do not take part in the scientific game.
-Popper, The Logic of Scientific Discovery (Popper 1959).

The core idea of this paper is that, while successful verification is the result that a
developer seeks when verifying a program, it is most meaningful in a context provided
by many failed verifications. The useful model checking harness (e.g., specification)
essentially, is one that prohibits certain execution sequences. This is not controversial; a
good property is defined by its rejection of bad behavior. However, in most verification
efforts, there is a focus on arriving at a successful verification, which sheds very
little light on exactly what has been verified. By focusing on mutants throughout
the verification process, our approach shifts the emphasis to one of “verifying” the
verification itself by repeatedly falsifying claims that various incorrect programs satisfy
the property. This is, at a conceptual level, akin to Karl Popper’s philosophy of science
(Popper 1959, 1963).

For Popper, all scientific knowledge is provisional, and the key to the scientific
approach is a critical effort, based on prohibitive theories. In brief, Popper proposes
that proper science must be strongly grounded in a search for counterexamples. Using
mutants as a basis for verification is akin to this approach, with the harness taken
to be the “theory” of the empirical behavior of the world. Mutants, in this view, are
counterfactual worlds that are likely to violate any correct theory of the actual world.
A “scientific theory” (that is, a harness) is proven effective by its ability to be shown

@ Springer

https://github.com/jmcgeheeiv/pyfakefs/issues/321
https://github.com/jmcgeheeiv/pyfakefs/issues/321

Automated Software Engineering (2018) 25:917-960 951

to be false in these counterfactual worlds. If we can prove a theory is incorrect for
an “incorrect” world and cannot prove it is incorrect for the real world, that gives us
greater confidence (always provisional, since our understanding of the world, e.g., any
complex software system, is almost always limited and prone to error) that the theory
is indeed true of the real world/program. Of course, generating alternative worlds
and showing that, for example, special relativity is easily falsified in a world where
special relativity does not in fact hold, is not practical in scientific discovery. It is,
however, quite easy in the artificial “scientific discovery” sense of verifying properties
of computer programs.

Furthermore, many of the theoretical objections to Popper (e.g., such as that we
“cannot learn from experience the falsehood of any theory” Lakatos 1974) do not hold
for software correctness problems: we can clearly establish the falsehood of a “theory”
in our context by a single counterexample; it is only establishing the truth of a theory,
and the value of that truth, that is difficult for us.

The same idea applies to software testing, where there is perhaps even more danger
of focusing on a successful result, since small errors in specification are less likely to
be detected by lackluster testing efforts. Shifting attention to false claims of correct-
ness, and the ability to detect them, is the mental adjustment, with or without use of
program mutants, necessary for good testing and proper attention to not only running
the program but providing an effective oracle (Barr et al. 2015) for those runs. This
point of view both lets us see code coverage (Groce et al. 2014) as both useful and
harmful: code coverage can easily be used as a potentially misleading indicator that the
code is “mostly” tested (e.g., “we have 80% coverage, we’re done”) or as a beneficial
guide to code not yet “put through the proving ground” of a test (a very Popperian
notion, code that has not been potentially falsified) (Ahmed et al. 2016), or a measure
of how many times code has been put to the test, with more quantitative coverage
counts, such as traditionally provided by gcov.

Another way to think about this concept is to note that Popper basically rejects
induction, in the sense of drawing general conclusions of truth from particulars (he
claims that Hume’s famous problem of induction Hume 1748 is best solved by stating
it cannot be solved). This corresponds to a rejection of one view of testing, where it is
seen as demonstrating that a program works: if we observe enough “good” runs, we can
conclude that the program is correct. Dijkstra meant his statement that testing “shows
the presence, not the absence of bugs” (Buxton and Randell 1969) as a criticism,
but Popper implies this is precisely the value of testing, in any context not purely
deductive: that is, any context where we are either unable to prove fully that a program
satisfies its specification (the usual case) or where we are able to do so, but unsure
we really have a complete and perfect specification (which is still almost always the
case). In this sense the distinction between testing and verification is not so large, in
a Popperian sense.

The novel assumption we make in our use of mutation analysis that goes beyond
Popper is our belief that a truer specification likely constrains the programs satisfying
it more than a less true specification. Replace “truer” with simply “more scientific”
and Popper would likely agree. One additional interesting change is that methods not
really (at present) practicable in scientific efforts apply here. For instance, while our
notion of tests is deductive in that a useful test is one that potentially refutes either the

@ Springer

952 Automated Software Engineering (2018) 25:917-960

correctness of the program (by failing) or the specification (by allowing a mutant to
survive that should not), we can apply random testing. In random testing, most tests
are not very useful in a deductive sense: they provide little chance to refute a claim
about the program. However, collectively, some randomly generated tests are likely to
be powerful for falsification in ways that individual tests designed by humans with the
deductive approach in mind seldom achieve. In science the equivalent concept would
be to perform a vast set of experiments, with little effort to design them for refutation
of a theory, and then scan the data for any results that falsify an existing theory. This
seems impractical, to say the least.

The key idea really is that of falsification, in both the enterprise of software cor-
rectness and (in Popper’s view) the enterprise of scientific, empirical, method. A test,
ideally, and a counterexample (by definition) falsifies the claim that a program satisfies
some specification. A surviving, non-equivalent, mutant can falsify the related claim
that a specification, test harness, or test suite is sufficiently powerful in its ability to
falsify the system under test. That is, a surviving mutant can falsify a claim about
falsification power itself. This meta-level aspect of falsification in testing or verifica-
tion is usually less closely considered than the simpler falsification question answered
by a faulty program’s inability to satisfy a specification or pass a series of tests, pre-
sumably because it is much more abstract and hard to think about. What program
mutants bring to the table, again, is a concrete way for even non-formal-methods spe-
cialists to think about the falsification of a method for falsification, itself. Surviving
mutants help determine if tests and verification harnesses and properties sufficiently
constrain the system under test, by potentially providing concrete demonstration that
the constraints are not sufficient. Only repeated, serious effort to falsify all that can be
falsified can bring us to (still provisional) confidence on this front. Specifications and
test harnesses fulfill the same role in software engineering that proposed natural laws
do in the scientific endeavor:

Not for nothing do we call the laws of nature ‘laws’: the more they prohibit the
more they say.
-Popper, The Logic of Scientific Discovery (Popper 1959).

In this sense, the distinction between specification and verification or testing method
is perhaps less important than commonly thought. How these interact to produce a
prohibition on bad behavior is shared, and is most critical. Moreover, using Popper’s
ideas helps us see why we should expect mutation-based falsification to be more
fruitful in the context of verification or automated test generation than in manual test
construction. A manual test suite is like a scientific theory that consists entirely of basic
empirical statements® about reality, e.g. that a certain very specific experiment should
produce a certain result. While potentially useful in a limited way, and potentially
falsifiable, such a “theory” does not even qualify as a theory in Popper’s analysis,
since he expects theories to make universal statements, and be capable of generating a
very large set (or even unbounded set) of such basic empirical statements via deduction:
i.e., to produce tests. Falsifying the kind of quasi-theory that a traditional manual test

8 Our terminology here is not quite Popper’s, which is somewhat difficult to follow without a lengthy
introduction to his classification of statements.

@ Springer

Automated Software Engineering (2018) 25:917-960 953

suite represents might be useful, and extend its power, but is a much weaker operation
than modifying universal statements with generative power to produce a large set of
such quasi-theories.

Moreover, while the complex methods Popper proposes for comparing theories do
not all (at least obviously) apply, the basic ideas are fruitful for software engineer-
ing. For instance, the proposal that it is often useful to devise a specification that
arbitrarily forces a fixed behavior in cases where requirements can be satisfied with
non-deterministic behavior (Groce et al. 2007) is a simple application of choosing the
more testable theory. Of course, in Popper’s setting this often exposes a theory to actual
falsification, when the real world is not so strongly determined, but in software making
the implementation match the more testable specification by fiat decision is practical
and often useful. Arguably, many long-term problems in computing’s ecosystem arise
when standards are so non-testable that it turns out that “‘conforming” implementations
are not really compatible.

Itis not, on the whole, surprising that there should be a correspondence between the
ideas of Popper and efforts to verify and test software systems. Popper is clear that his
approach is meant as an answer to all the fundamental problems of epistemology. Even
such highly practical popular guides to software testing as the well-known book of
Kaner, Bach, and Pettichord (Kaner et al. 2001) argue that software testing is essentially
an epistemological discipline.® We speculate that further close reading of Popper’s core
works might yield additional insight into software testing, given this epistemological
foundation. For example, a notion like that of a crucial experiment (Popper 1959),
an experiment devised not just to falsify a given theory, but to guarantee value by
falsifying at least one of two competing theories, has a resemblance to a stronger type
of differential testing (McKeeman 1998), or the methods used in approaches such as
regression verification, where the entire goal is to find “experiments” that distinguish
two putatively similar systems (Strichman and Godlin 2008).

Taking the correspondences with Popper’s ideas seriously, we can derive some
high-level conclusions:

— A verification harness (which includes both a specification and a definition of
behaviors to apply the specification to) is mappable to a scientific theory of the
world.

— A test generation harness (which includes both a specification and a definition of
behaviors to apply the specification to) is mappable to a scientific theory of the
world.

— Both of these things, then, serve an epistemological purpose: to help understand
the actual nature of an external reality (the System Under Test).

— That epistemological purpose is achieved via a route of falsification, or at least
serious attempted falsification.

— Asinreal science, this includes falsification of the theories, via proof that a system
does not match the theory.

9 In fact, Kaner, Bach, and Pettichord explicitly mention Popper, though only in the context of using tests
to refute conjectures about the correctness of software, not in the context of attempting to refute the testing
effort itself.

@ Springer

954 Automated Software Engineering (2018) 25:917-960

— As in real science (with very rare exceptions for simple systems), all theories are
provisional and open to future rejection based on the discovery that they under-
specify (or incorrectly specify) behavior.

6 Related work

The idea that a “successful verification” in model checking (or even theorem proving)
often simply indicates an inadequate property is long-standing (Chockler et al. 2001;
Hoskote et al. 1999). The most recent works in this line of thinking, to our knowledge,
use Inductive Validity Cores (IVCs) (Ghassabani et al. 2016, 2017a,b) to indicate
correspondence between property and constraint on the system under verification.

Use of mutants (Black et al. 2000; Lee and Hsiung 2004) to provide a coverage
measure dates back both to these early explorations and relatively recent work (Kupfer-
man et al. 2008; Auerbach et al. 2010; Chockler et al. 2012). However, in these efforts
the mutation was usually applied to hardware models, and (critically) the surviving
mutants were used to, e.g., identify “uncovered” portions of a model, rather than pre-
sented to a developer for examination and understanding directly. To our knowledge,
no previous work presented passing executions of a source code mutant as a guide
to understanding specification weakness. Our modification of the harness is a source-
code analogue to attempts to modify logical formulas, e.g., the effort to (in a narrow,
vacuity-based sense) produce the strongest passing LTL formula of Chockler et al.
(Chockler et al. 2008). We are not the first to note that model checking, at present, due
to the “many obstacles” in proving a system correct, is primarily used for falsifica-
tion (Ball et al. 2005). Most previous work on the topic (Ball et al. 2005) focused on
abstractions based on under-approximation, to ensure counterexamples were not spu-
rious. We instead preserve the goal of verification,'? but drive the verification process,
from the human point of view, by repeated falsification of incorrect systems.

More distantly related is the general effort to determine the quality not only of test
suites (which is often focused on missing tests within the “range” of testing, not a
problem for CBMC) but of test oracles and entire testing infrastructures (Barr et al.
2015). The problem of “testing the tester”” (Groce 2009) is fundamental to all efforts to
improve software quality. Recent efforts of most interest have focused on measuring
checked coverage (Schuler and Zeller 2011, 2013; Murugesan et al. 2015), where a
metric tries to make sure the code under test potentially changes the value of an assert,
using dynamic slicing (Zhang et al. 2003; Tip 1995). This is weaker than requiring
the oracle kill a mutant, our goal, but more manageable for testing, where complete
behavioral coverage is less feasible than in model checking (and where source code
sizes combined with test inadequacy may make hand mutation analysis infeasible).

Our idea of examining successful executions to better understand surviving (and
even killed) mutants is a peculiar variation of the fault localization and error expla-
nation problem in model checking (Groce 2004), with the twist being that we are

10 Note that we use a model checking approach that already guarantees non-spurious counterexamples,
and provides bounded rather than full verification.

@ Springer

Automated Software Engineering (2018) 25:917-960 955

“explaining” an artificial fault that (1) typically does not cause a test failure (for sur-
viving mutants) and (2) has an obviously known location.

The connection between the ideas of Karl Popper and (software) testing is so obvi-
ous that it is fairly commonplace, in both academic and popular work (Kaner et al.
2001). However, this is almost always in the more narrow connection that a test should
try to falsify a program. The link between falsification of specifications or harnesses
and “Popperism” appears only in our previous work (Groce et al. 2015) and in a brief
discussion in the direction of the basic idea by Aichernig in his work on model-based
mutation testing of reactive systems (Aichernig et al. 2013).

According to (Mathur 2012), the idea of mutation testing itself was first proposed
by Lipton, then formalized by (DeMillo et al. 1978), and practically implemented by
Budd et al. (1980) in 1980. Mutation analysis subsumes different coverage measures
(Budd 1980; Mathur and Wong 1994; Offutt and Voas 1996). Mutants are similar
to real faults in terms of both errors produced (Daran and Thévenod-Fosse 1996)
and difficulty of detection detection (Andrews et al. 2005, 2006). Just et al. (2014)
investigated the relation between mutation score and test case effectiveness using 357
real bugs, and found that the mutation score increased with effectiveness for 75% of
cases, which was better than the 46% reported for structural coverage.

7 Conclusions and future work

This paper proposes a falsification-driven methodology for formal verification and
high-quality automated testing, particularly when these tasks are performed by the
developers of critical software systems. These developers are usually not experts in
formal verification or automated test generation, but in the systems they are verifying.
Verification, like testing, we claim, always provisional, in that the potential flaws in
our assumptions, specification, and understanding of system behavior tend to leave
room for doubt about the correctness of any verification result. Verification of code is
not self-explanatory, unlike a counterexample. We propose to take advantage of the
use of counterexamples and witnesses and center verification (and testing) around the
incorrect programs a verification or test effort fails to prove incorrect. A verification or
test effort is considered effective when it finds no faults in the SUT and detects every
faulty variation of the SUT. An obvious source of faulty SUT variations is mutants; we
also suggest that known-flawed versions of code be included in this set, which all of
our tools support, but the key to the method is the generation of a large set of potential
buggy versions without additional developer effort.

Given these faulty versions, a developer can examine mutants that a verification
effort fails to detect, and (with the algorithms and tools presented in this paper) exam-
ine executions showing precisely how a program mutant can “make it through” a
verification or testing process without being detected, with assurance that these exe-
cutions will have high coverage (and thus likely be non-trivial). Developers can also
check that a verification or testing harness itself does not have any mutants that 1)
verify the SUT while (2) killing more mutants than the original harness. This can help
detect very subtle flaws in harnesses, especially those based on bad reasoning about
“equivalent” mutants. We demonstrate, as a proof-of-concept, that our approach can

@ Springer

956 Automated Software Engineering (2018) 25:917-960

be useful for simple but realistic verification efforts, and can contribute to serious
systems verification and modeling efforts for complex code such as the Linux kernel
RCU implementations. Adapting the approach to testing, it works just as well, actually
leading to detection of faults in the RCU implementation and a widely-used Python
library.

The bigger picture is that our approach attempts to apply the ideas of Karl Popper’s
falsification-centered approach to the philosophy of science to the understanding of
software systems. In this view, verification is almost always provisional, but we can
gain considerable confidence in a verification by making serious attempts to prove its
inadequacy.

In future work we plan to continue to apply this falsification-driven approach to the
RCU verification, and to other critical systems-software targets, which we expect will
lead to discovery of new ways a model checker’s ability to ask “whatif” questions about
program behavior (Groce 2004; Groce and Kroening 2005) can improve developer
understanding of verification efforts. We would also like to integrate falsification-
driven verification support into the CBMC Eclipse tools, and use speculative model
checking calls and incremental SAT to make mutant analysis available to developers
continuously as part of their development/debugging process. Finally, these techniques
should also be applicable to verification using, e.g., Java Pathfinder (Visser et al. 2003).

Thus far, we have not applied the harness mutation aspect of our approach in soft-
ware testing, in part because TSTL harnesses are not written in Python, but in a DSL
that embeds Python, making mutation difficult. However, using a newly developed
mutation tool that does not require parsing of the file, but instead uses regular-
expression-defined rules to make syntactic changes (Groce et al. 2018), we plan to
extend our approach to harness mutation in the testing domain as well. Moreover, this
tool should enable our approach to be easily applied even to languages without their
own mutation tools, so long as they have a basic structure similar to some supported
language, and even to mutation of PROMELA harnesses for the SPIN model checker.
Given that most modern programming languages use similar expression syntax, and
many resemble C and Java in structure, this should make our approach much more
widely applicable.

More fundamentally, it would be useful to perform human studies to determine
the actual differences between extending (1) manually produced suites consisting of
specific tests with additional specific tests, and (2) extending automated test generation
harnesses of the same mutation-killing effectiveness.

Acknowledgements A portion of this work was funded by NSF Grants CCF-1217824 and CCF-1054786.

References

Ahmed, I., Gopinath, R., Brindescu, C., Groce, A., Jensen, C.: Can testedness be effectively measured? In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pp. 547-558. ACM, New York, NY, USA (2016). https://doi.org/10.1145/
2950290.2950324

Ahmed, I., Jensen, C., Groce, A., McKenney, P.E.: Applying mutation analysis on kernel test suites: an
experience report. In: International Workshop on Mutation Analysis, pp. 110-115 (2017)

@ Springer

https://doi.org/10.1145/2950290.2950324
https://doi.org/10.1145/2950290.2950324

Automated Software Engineering (2018) 25:917-960 957

Aichernig, B.K.: Model-based mutation testing of reactive systems. In: Theories of Programming and
Formal Methods, pp. 23-36. Springer (2013)

Alipour, M.A., Groce, A., Zhang, C., Sanadaji, A., Caushik, G.: Finding model-checkable needles in large
source code haystacks: Modular bug-finding via static analysis and dynamic invariant discovery. In:
International Workshop on Constraints in Formal Verification (2013)

Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing experiments? In:
International Conference on Software Engineering, pp. 402-411 (2005)

Andrews, J.H., Groce, A., Weston, M., Xu, R.G.: Random test run length and effectiveness. In: Automated
Software Engineering, pp. 19-28 (2008)

Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis for assessing and comparing
testing coverage criteria. IEEE Trans. Softw. Eng. 32(8), 608 (2006)

Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw. Test. Verif. Reliab. 24(3), 219-250 (2014)

Auerbach, G., Copty, F., Paruthi, V.: Formal verification of arbiters using property strengthening and under-
approximations. In: Formal Methods in Computer-Aided Design, pp. 21-24 (2010)

Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Computer Aided Verification, pp. 67-81
(2005)

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: a survey.
IEEE Trans. Softw. Eng. 41(5), 507-525 (2015)

Bentley, J.: Programming pearls: writing correct programs. Commun. ACM 26(12), 1040-1045 (1983)

Black, P.E., Okun, V., Yesha, Y.: Mutation of model checker specifications for test generation and evaluation.
Mutation 2000, 14-20 (2000)

Bloch, J.: Extra, extra - read all about it: nearly all binary searches and mergesorts are broken. http://
googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html (2006)

bremen, mrbean, jmcgeheeiv, et al.: pyfakefs implements a fake file system that mocks the Python file
system modules. https://github.com/jmcgeheeiv/pyfakefs (2011)

Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Theoretical and empirical studies on using program
mutation to test the functional correctness of programs. In: Principles of Programming Languages,
pp- 220-233. ACM (1980)

Budd, T.A.: Mutation analysis of program test data. Ph.D. thesis, Yale University, New Haven, CT, USA
(1980)

Budd, T.A., Lipton, R.J., DeMillo, R.A., Sayward, F.G.: Mutation Analysis. Yale University, Department
of Computer Science, New Haven (1979)

Buxton, J.N., Randell, B.: Report of a conference sponsored by the NATO science committee. In: NATO
Software Engineering Conference, vol. 1969 (1969)

Chen, Y., Groce, A., Zhang, C., Wong, W.K., Fern, X., Eide, E., Regehr, J.: Taming compiler fuzzers. In:
ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 197-208
(2013)

Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: Towards the strongest passing formula. In:
Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design,
pp- 24:1-24:8 (2008)

Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach to coverage in model
checking. In: Computer Aided Verification, pp. 66-78 (2001)

Chockler, H., Kroening, D., Purandare, M.: Computing mutation coverage in interpolation-based model
checking. IEEE Trans. CAD Integr. Circuits Syst. 31(5), 765-778 (2012)

Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of counterexamples and witnesses
in symbolic model checking. In: Design Automation Conference, pp. 427-432 (1995)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)

Cuoq, P,, Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., Yang, X.: Testing static analyzers
with randomly generated programs. In: NASA Formal Methods Symposium, pp. 120-125 (2012)

Daran, M., Thévenod-Fosse, P.: Software error analysis: A real case study involving real faults and mutations.
In: ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 158-171. ACM
(1996)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction
and Analysis of Systems, pp. 337-340 (2008)

DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing programmer.
Computer 4(11), 34 (1978)

@ Springer

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://github.com/jmcgeheeiv/pyfakefs

958 Automated Software Engineering (2018) 25:917-960

Desnoyers, M.: [RFC git tree] userspace RCU (urcu) for Linux (2009). http://urcu.so

Desnoyers, M., McKenney, P.E., Stern, A., Dagenais, M.R., Walpole, J.: User-level implementations of
read-copy update. IEEE Trans. Parallel Distrib. Syst. 23, 375-382 (2012). https://doi.org/10.1109/
TPDS.2011.159

Dijkstra, E.-W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ (1976)

Een, N., Sorensson, N.: An extensible SAT-solver. In: Symposium on the Theory and Applications of
Satisfiability Testing (SAT), pp. 502-518 (2003)

Ghassabani, E., Gacek, A., Whalen, M.W., Heimdahl, M.P.E., Wagner, L.G.: Proof-based coverage metrics
for formal verification. In: IEEE/ACM International Conference on Automated Software Engineering,
pp. 194-199 (2017a)

Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity cores for safety prop-
erties. In: ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 314-325
(2016)

Ghassabani, E., Whalen, M.W., Gacek, A.: Efficient generation of all minimal inductive validity cores. In:
FMCAD, pp. 31-38 (2017b)

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, A., Marinov, D.: Comparing non-adequate test
suites using coverage criteria. In: International Symposium on Software Testing and Analysis, pp.
302-313 (2013)

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, A., Marinov, D.: Guidelines for coverage-based
comparisons of non-adequate test suites. ACM Trans. Softw. Eng. Methodol.(accepted for publica-
tion)

Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by developers. In: International
Conference on Software Engineering, pp. 72-82 (2014)

Groce, A., Ahmed, L., Jensen, C., McKenney, P.E.: How verified is my code? falsification-driven verifica-
tion. In: 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015, pp. 737-748 (2015). https://doi.org/10.1109/ASE.2015.
40

Groce, A., Alipour, M.A., Gopinath, R.: Coverage and its discontents. In: Onward! Essays, pp. 255-268
(2014)

Groce, A., Erwig, M.: Finding common ground: choose, assert, and assume. In: Workshop on Dynamic
Analysis, pp. 12-17 (2012)

Groce, A., Holmes, J., Marinov, D., Shi, A., Zhang, L.: An extensible, regular-expression-based tool for
multi-language mutant generation. In: International Conference on Software Engineering (2018)
Groce, A., Holzmann, G., Joshi, R., Xu, R.G.: Putting flight software through the paces with testing, model

checking, and constraint-solving. In: Workshop on Constraints in Formal Verification, pp. 1-15 (2008)

Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude to formal verification. In:
International Conference on Software Engineering, pp. 621-631 (2007)

Groce, A., Joshi, R.: Exploiting traces in program analysis. In: Tools and Algorithms for the Construction
and Analysis of Systems, pp. 379-393 (2006)

Groce, A., Joshi, R.: Random testing and model checking: Building a common framework for nondeter-
ministic exploration. In: Workshop on Dynamic Analysis, pp. 22-28 (2008)

Groce, A., Pinto, J., Azimi, P, Mittal, P., Holmes, J., Kellar, K.: TSTL: the template scripting testing
language. https://github.com/agroce/tstl (2015b)

Groce, A., Pinto, J., Azimi, P., Mittal, P.: TSTL: alanguage and tool for testing (demo). In: ACM International
Symposium on Software Testing and Analysis, pp. 414417 (2015a)

Groce, A., Pinto, J.: A little language for testing. In: NASA Formal Methods Symposium, pp. 204-218
(2015)

Groce, A.: Error explanation with distance metrics. In: Tools and Algorithms for the Construction and
Analysis of Systems, pp. 108-122 (2004)

Groce, A.: Quickly testing the tester via path coverage. In: Workshop on Dynamic Analysis (2009)

Groce, A., Kroening, D.: Making the most of BMC counter examples. Electron. Notes Theor. Comput. Sci.
119(2), 67-81 (2005)

Guniguntala, D., McKenney, P.E., Triplett, J., Walpole, J.: The read-copy-update mechanism for supporting
real-time applications on shared-memory multiprocessor systems with Linux. IBM Syst. J. 47(2),
221-236 (2008)

@ Springer

http://urcu.so
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/ASE.2015.40
https://doi.org/10.1109/ASE.2015.40
https://github.com/agroce/tstl

Automated Software Engineering (2018) 25:917-960 959

Holmes, J., Groce, A., Pinto, J., Mittal, P., Azimi, P., Kellar, K., O’Brien, J.: TSTL: the template scripting
testing language. Int. J. Softw. Tools Technol. Transf. (2016). https://doi.org/10.1007/s10009-016-
0445-y. (Online first)

Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501-506 (1980)

Hoskote, Y., Kam, T., Ho, P.H., Zhao, X.: Coverage estimation for symbolic model checking. In: ACM/IEEE
Design Automation Conference, pp. 300-305 (1999)

Hume, D.: An Enquiry Concerning Human Understanding. Routledge, London (1748)

Just,R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are mutants a valid substitute for real
faults in software testing? In: ACM SIGSOFT Symposium on Foundations of Software Engineering,
pp. 654-665 (2014)

Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing: A Context-Driven Approach.
Wiley, Hoboken (2001)

Kroening, D., Clarke, E.M., Lerda, F.: A tool for checking ANSI-C programs. In: Tools and Algorithms for
the Construction and Analysis of Systems, pp. 168—176 (2004)

Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Verification, Model Check-
ing, and Abstract Interpretation, pp. 298-309 (2003)

Kupferman, O., Li, W., Seshia, S.: A theory of mutations with applications to vacuity, coverage, and fault
tolerance. In: Formal Methods in Computer-Aided Design, pp. 1-9 (2008)

Lakatos, I.: The role of crucial experiments in science. Stud. His. Philos. Sci. Part A 4(4), 309-325 (1974)

Lawlor, R.: quicksort.c. http://www.comp.dit.ie/rlawlor/Alg_DS/sorting/quickSort.c. Referenced April 20
(2015)

Lee, T.C., Hsiung, P.A.: Mutation coverage estimation for model checking. In: Automated Technology for
Verification and Analysis, pp. 354-368 (2004)

Lipton, R.J.: Fault diagnosis of computer programs. Carnegie Mellon Univ, Technical Report (1971)

Liu, X.: muupi mutation tool. https://github.com/apepkuss/muupi (2016)

Mathur, A.P.: Foundations of Software Testing. Addison-Wesley, Boston (2012)

Mathur, A.P., Wong, W.E.: An empirical comparison of data flow and mutation-based test adequacy criteria.
J. Softw. Test. Verif. Reliab. 4(1), 9-31 (1994)

McKeeman, W.: Differential testing for software. Dig. Tech. J. Dig. Equip. Corp. 10(1), 100-107 (1998)

McKenney, PE., Eggemann, D., Randhawa, R.: Improving energy efficiency on asymmetric multiprocessing
systems (2013). https://www.usenix.org/system/files/hotpar13-poster8-mckenney.pdf

McKenney, PE., Slingwine, J.D.: Read-copy update: Using execution history to solve concurrency problems.
In: Parallel and Distributed Computing and Systems, pp. 509-518. Las Vegas, NV (1998)

McKenney, PE.: RCU Linux usage (2006). Available: http://www.rdrop.com/users/paulmck/RCU/
linuxusage.html (Viewed January 14, 2007)

McKenney, P.E.: RCU torture test operation. https://www.kernel.org/doc/Documentation/RCU/torture.txt

McKenney, PE.: Re: [PATCH fyi] RCU: the bloatwatch edition (2009). Available: http://lkml.org/lkml/
2009/1/14/449 (Viewed January 15, 2009)

McKenney, P.E.: Verification challenge 4: Tiny RCU. http://paulmck.livejournal.com/39343.html (2015a)

McKenney, PE.: Verification challenge 5: Uses of RCU. http://paulmck.livejournal.com/39793.html
(2015b)

McKenney, P.E.: Structured deferral: synchronization via procrastination. Commun. ACM 56(7), 4049
(2013). https://doi.org/10.1145/2483852.2483867

Murugesan, A., Whalen, M.W., Rungta, N., Tkachuk, O., Person, S., Heimdahl, M.P.E., You, D.: Are we
there yet? determining the adequacy of formalized requirements and test suites. In: NASA Formal
Methods Symposium, pp. 279-294 (2015)

Offutt, A.J., Voas, J.M.: Subsumption of condition coverage techniques by mutation testing. In: Technical
Report ISSE-TR-96-01, Information and Software Systems Engineering, George Mason University
(1996)

Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler equivalence: A large scale empirical study
of a simple fast and effective equivalent mutant detection technique. In: International Conference on
Software Engineering (2015)

Popper, K.: The Logic of Scientific Discovery. Routledge, Hutchinson (1959)

Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, London (1963)

Schuler, D., Zeller, A.: Assessing oracle quality with checked coverage. In: International Conference on
Software Testing, Verification and Validation, pp. 90-99 (2011)

@ Springer

https://doi.org/10.1007/s10009-016-0445-y
https://doi.org/10.1007/s10009-016-0445-y
http://www.comp.dit.ie/rlawlor/Alg_DS/sorting/quickSort.c
https://github.com/apepkuss/muupi
https://www.usenix.org/system/files/hotpar13-poster8-mckenney.pdf
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
https://www.kernel.org/doc/Documentation/RCU/torture.txt
http://lkml.org/lkml/2009/1/14/449
http://lkml.org/lkml/2009/1/14/449
http://paulmck.livejournal.com/39343.html
http://paulmck.livejournal.com/39793.html
https://doi.org/10.1145/2483852.2483867

960 Automated Software Engineering (2018) 25:917-960

Schuler, D., Zeller, A.: Checked coverage: an indicator for oracle quality. Softw. Test. Verif. Reliab. 23(7),
531-551 (2013)

scvalex: Finding all paths of minimum length to a node using dijkstras algorithm. https://compprog.
wordpress.com/2008/01/17/finding-all- paths-of-minimum-length-to-a-node-using- dijkstras-
algorithm/ (2008)

Stout, R.: If Death Ever Slept. Viking (1957)

Strichman, O., Godlin, B.: Regression verification-a practical way to verify programs. Verified Software:
Theories, Tools, Experiments pp. 496-501 (2008)

Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for weak memory. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (2015). (To appear)

Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121-189 (1995)

visar: [SOLVED] doubly linked list insertion sort in C. http://www.linuxquestions.org/questions/
programming-9/doubly-linked-list-insertion-sort-in-c-41754 15860/ (2012)

Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Autom. Softw. Eng. 10(2),
203-232 (2003)

Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C compilers. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 283-294 (2011)

Zhang, X., Gupta, R., Zhang, Y.: Precise dynamic slicing algorithms. In: International Conference on
Software Engineering, pp. 319-329 (2003)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Alex Groce' - Iftekhar Ahmed? - Carlos Jensen? - Paul E. McKenney? .
Josie Holmes'

Iftekhar Ahmed
ahmedi @oregonstate.edu

Carlos Jensen
cjensen@eecs.oregonstate.edu

Paul E. McKenney
paulmck @linux.vnet.ibm.com

Josie Holmes
josie.holmes @nau.edu

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff,
USA

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, USA

IBM Linux Technology Center, Beaverton, USA

@ Springer

https://compprog.wordpress.com/2008/01/17/finding-all-paths-of-minimum-length-to-a-node-using-dijkstras-algorithm/
https://compprog.wordpress.com/2008/01/17/finding-all-paths-of-minimum-length-to-a-node-using-dijkstras-algorithm/
https://compprog.wordpress.com/2008/01/17/finding-all-paths-of-minimum-length-to-a-node-using-dijkstras-algorithm/
http://www.linuxquestions.org/questions/programming-9/doubly-linked-list-insertion-sort-in-c-4175415860/
http://www.linuxquestions.org/questions/programming-9/doubly-linked-list-insertion-sort-in-c-4175415860/

	How verified (or tested) is my code? Falsification-driven verification and testing
	Abstract
	1 Introduction
	1.1 Contributions

	2 A simple example verification
	2.1 Finding a good problem size
	2.2 Examining surviving mutants
	2.3 Mutating the harness
	2.4 Summary of proposed approach

	3 Algorithms and techniques
	3.1 Adapting falsification-based approaches to automated test generation
	3.1.1 Mutants and manual versus automatically generated tests
	3.1.2 Falsification-driven testing
	3.1.3 Estimating required budget to kill a mutant

	4 Case studies and experimental results
	4.1 Algorithm implementations
	4.1.1 Binary search
	4.1.2 Doubly-linked-list insertion sort
	4.1.3 AVL tree
	4.1.4 Merge with duplicate removal

	4.2 SpiderMonkey Boyer–Moore–Horspool implementation
	4.3 Linux Kernel RCU verification challenges
	4.4 Plausible verification by failure to falsify
	4.5 Automated test generation and falsification
	4.5.1 rcutorture case study
	4.5.2 pyfakefs case study

	5 Discussion: falsification, verification, and popperism
	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

