
Land of Lost Knowledge: An Initial Investigation
into Projects Lost Knowledge

Márcia Lima
Institute of Computing

Universidade Federal do Amazonas
Manaus, Brazil

marcia.lima@icomp.ufam.edu.br

Iftekhar Ahmed
Department of Informatics
University of California

Irvine, USA
iftekha@uci.edu

Tayana Conte
Institute of Computing

Universidade Federal do Amazonas
Manaus, Brazil

tayana@icomp.ufam.edu.br

Elizamary Nascimento
Institute of Computing

Universidade Federal do Amazonas
Manaus, Brazil

elizamary.souza@icomp.ufam.edu.br

Edson Oliveira
Department of IT

Secretaria de Estado da Fazenda
Manaus, Brazil

edson.cesar@sefaz.am.gov.br

Bruno Gadelha
Institute of Computing

Universidade Federal do Amazonas
Manaus, Brazil

bruno@icomp.ufam.edu.br

Abstract—Background: Software development teams adopt
various communication tools to support coordination and team
interaction during the software development process. Among
many other communication channels, developers’ use instant
messaging to discuss ideas, decisions and other project related
issues with team members. Due to the informal nature of instant
messaging, many of these discussions and decisions are lost.
This situation could be even more critical in startups and other
software companies that rely more heavily on instant message
tools or other informal communication channels.
Aims: This work investigates the effectiveness of using a semi-
automatic approach for identifying, extracting, and determining
a project’s lost knowledge that was discussed using unstructured
communication tools such as instant message.
Methodology: We employed data-mining techniques to automat-
ically retrieve discussions from instant message logs and showed
them to the project managers to identify lost knowledge from
two startup companies.
Results: Our results demonstrate that the data-mining technique
was capable of retrieving sentences with relevant issues discus-
sion; reaching a precision of 75% at the first 10 relevant sentences
evaluated. Moreover, the qualitative analysis conducted involving
project managers shows an association of retrieved sentences with
the project’s lost knowledge.
Conclusion: Our findings indicate that automated approaches can
be used to identify such lost knowledge in software development
projects. Follow-up interviews revealed the interest of PMs in
adopting such automated tools in other projects.

Index Terms—Communication Tools, Software Knowledge,
Data Mining, Empirical Study

I. INTRODUCTION

Software development teams adopt various communication
channels [1]–[4] to support the collaborative development
model and coordinate tasks. Not only distributed but also
collocated software teams use these channels. Researchers
have investigated the artifacts generated through using these
channels such as bug report descriptions, source code linguistic

data, requirements documents, mailing lists content, and chat
messages [1]–[5]. However, recent studies show that software
development teams are increasingly using social media for
communication purposes [6] instead of using the traditional
communication channels. Alkadhi et al. [1] found that chat
messages have replaced emails in some development teams.

When teams use informal channels such as instant messag-
ing (IM) for communication, relevant discussions pertaining to
the software development and management resides in IM log
files. According to Alkadin et al. [1], [2] IM log files are rich
source of information and can help in identifying important
issues. Along with many other things, these log files contain
crucial decisions, design discussions, and issues related to the
project that may not be preserved and implemented midst of
various discussions happening among the team members.

Startups need to rapidly evolve and adapt to an uncertain
market. Due to such dynamic nature it may not be always
possible for startups to rely on traditional communication
channels [7], [8]. Hence, startups rely more heavily on IM
tools for facilitating interaction between team members. Since
projects lose knowledge (from here on we will refer this as
Project’s Lost Knowledge (PLK)) even when using established
communication mechanisms [9], [10], it’s more likely that
startups relying on IM would lose even more. Moreover, star-
tups should be more affected by PLK compared to established
companies, since forgetting about an important feature or a
crucial design decision can lead to a failed software or even a
failed company in the worst case. However, to the best of our
knowledge, no prior research investigated how prevalent PLK
is in startups, nor what are the impacts of PLK for startups.
We aim to close this gap through a mix of automatic and
manual analysis of the communication of development teams
from two software startup companies. We start by using a
ranking algorithm to retrieve relevant information from IM
logs. Then we conduct a study involving the project managers
to identify the PLK. We also follow up by contacting the978-1-7281-2968-6/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

managers to understand what were their perceptions regarding
the lost knowledge.

The goal of this study is to investigate whether and how we
can identify PLK from IM logs effectively. Specifically, this
study aims at answering the following research questions:

• RQ 1: Can we extract relevant discussion from developers
IM logs using automated techniques?

• RQ 2: Can we identify PLK from the relevant discussions
by interviewing project managers?

II. RELATED WORK

A. Software Project Repositories: Data and Knowledge

Software development process produces different data
sources resulted from the teams’ daily interaction and evo-
lutionary changes to software artifacts [11]. Chen et al.
[11] classifies these sources into structured and unstructured.
Structured sources have a known form, such as source code
parse trees, execution logs and traces, mailing list metadata
and chat log metadata. The unstructured sources mostly use
natural language text such as: bug report descriptions, source
code linguistic data, requirements documents, mailing lists
content, and chat messages. Researchers have investigated both
structured and unstructured sources. Instant messages (IM)
tools are used for quick questions and clarifications, scheduling
or coordination team’ activities, and, social purposes, however
the main purpose of workplace IM is to discuss work [12].

While analyzing different communication mechanisms, re-
searchers found that knowledge is lost in projects. Soria and
Hoek [9] found that not all of the knowledge generated dur-
ing design meetings are captured because spoken knowledge
evaporates. Burge and Brown [10] found that design rationale
decisions are usually not captured and are therefore lost. They
proposed an Eclipse plug-in that integrates the rationale with
the source code. Manteuffel et al. [13] developed a tool to deal
with architectural decision lost knowledge. They emphasize
that architectural decisions are often not documented but reside
in the architects mind as tacit knowledge. Kleebaum et al.
[14] aim to support developers’ tasks using summarization
techniques to promote capture and use of decision knowledge
into developers’ daily work. Codoban and Ragavan [15] found
that developers frequently refer to software history to gain
knowledge. They propose a software history model that gives
identity to Version Control System data history.

Bavota [16] highlighted the growth of unstructured data
and describes the application of Mining Unstructured Data
(MUD) in software engineering. They discuss three techniques
for MUD, unstructured data repositories available for mining,
and potential applications of MUD in software engineering.
Alkadhi et al. [2] investigated the use of content analysis
and machine learning techniques for extracting rationale from
chat messages. Viviani et al. [3] used design-related keywords
to automatically extract design information from pull request
discussions. Francois et al. [4] proposed a Knowledge Trace
Retrieval (KTR) system to retrieve elements of problem solv-
ing and design rationale from business emails.

Fig. 1. The PLK identification approach process

Our goal is to identify PLK from IM logs. To the best of
our knowledge no prior study tried to use a mix of automated
and semi-automated techniques to extract relevant sentences
from the developer’s IM in order to identify the PLK.

B. Ranking Algorithms

Ranking algorithms are used for automatically sorting ob-
jects according to their relevance. Gambhir and Gupta [17]
found that many Information Retrieval (IR) problems such as
text summarization are by nature ranking problems. We use
a generic text summary technique to automatically identify
and extract PLK from developers’ chat message. Position-
based measures, such as Precision@k and Mean reciprocal
rank (MRR), are used to evaluate the performance of ranking
models [18]. Precision is the probability that a retrieved
sentence is relevant. Precision@k (P@k) is the fraction of
relevant results out of the first k returned [19]. It captures the
ranking quality for applications where only the first k results
matters. MRR measure denotes the rank position of the first
relevant document, if all relevant documents are at the top of
the ranked list the MRR value is 1 [18].

III. METHODOLOGY

In this work, we investigate developers’ IM logs collected
from two different software startups. Figure 1 shows the over-
all process conducted in order to enable the PLK identification.
We describe the data collection method and the phases of the
applied research method to determine the PLK.

A. Data Collection

We collected and analyzed the IM log of two different
development teams: Team A and Team B, from two star-
tups companies. Though both teams were collocated, team
members had different work times. Both teams used IM
tool to support the software development process and some
management activities. We chose to analyze one project for
each team. We selected projects that had delivered a current
operational version of a software that the startup companies
want to evolve. Therefore, the companies wanted to check for
any lost knowledge in these projects.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

Team A is composed of 5 members: 1 business manager,
1 project manager, 2 developers, and 1 tester. Team A is
specialized in the development of crowd interaction through
technology for entertainment purposes. They dealt with in-
complete and evolving requirements. The team’s interaction
was conducted through in-person meetings and IM tools. We
collected Team A’s IM log ranging from November 17, 2017 to
October 18, 2018. 104 days and 3,325 messages in total were
analyzed. In this period, the team was engaged in a project
for enabling crowd interaction through mobile devices for a
nationwide folklore festival. This team works for a two-years
software startup, composed of eight employees. The team used
evolutionary prototypes lifecycle to develop the system and
adopted Swift and Iconic as programming languages.

Team B is composed of 6 members: 1 projects owner,
2 scrum master, 1 interface designer, 2 developers, and 1
tester. Team B works on developing general software solutions
for other companies. In the analyzed project, the team was
engaged in a project related to an e-commerce mobile appli-
cation. For this project, Team B was collocated, except for one
of the developers. The team used IM tool for communication,
discuss the software designs, and for scheduling meetings.
Team B also used a Kanban board and some documentation,
such as prototypes. We collected IM log ranging from March
4, 2016 to November 29, 2018. 285 days of conversation and
5,256 exchanged messages in total were analyzed. This team
works for a five-years software startup company, composed of
nine employees, adopting Scrum as a software development
process and Java as the programming language.

B. Semi-automated Approach for relevant sentence identifica-
tion

To answer the RQ 1- Can we extract relevant discussion
from developers IM log using automated techniques? - we
applied text summarization algorithm on the collected IM
log files. Applying text summarization algorithm in natural
language requires data pre-processing in order to optimize
the algorithms execution [4], [17], [20]. We conducted the
following pre-processing steps: Splitting the entire chat log
into individual sentences, removing stopwords, non-alphabetic
data, and administrative messages sent by the chat message
tool. The text summarization algorithm used is based on term
relevance measured using Term Frequency (TF) and Inverse
Document Frequency (IDF) [21]. TF ×IDF measure is used
to compute the relevance score of each sentence with the whole
document [4], [20]. We used TF × IDF to retrieve relevant
sentences that could be associated with the PLK.

The text summarization algorithm provided a ranked list of
important discussion by the development team. This ranking
was calculated based on the relevance score of 1,726 different
sentences (845 sentences from Team A, 881 sentences from
Team B). A total of 240 relevant sentences were identified
and extracted, as shown in Table I. In order to measure
the effectiveness of text summarization algorithm, we asked
project managers from each project to classify the relevance
of the 20-top sentences in their respective project. The ranking

TABLE I
EVALUATION METRICS VALUES

Team A Team B
#Evaluated Sentences 845 881
#Displayed Sentences to PMs 100 140
MRR 1 1
P@3 100% 85%
P@5 88% 80%
P@10 74% 75%
% of analyzed days 47.11% 20%

algorithm was evaluated using Precision@k(P@k) [19] and
MRR [18] measures. In order to measure the precision value
of the 3-top, 5-top and 10-top results, we calculated the P@3,
P@5 and P@10 values.

C. Semi-automated Approach for PLK determination

To answer the RQ 2: Can we identify PLK from the relevant
discussions by interviewing project managers? - we need to de-
termine if relevant sentences can be associated with PLK. This
step introduces some unique challenges: 1. It requires semantic
analysis of the data; 2. It requires prior knowledge about the
project; and, 3. It involves human judgment, given that the
concept of relevance depends on the evaluators’ perspective,
role and maturity. So the project managers evaluated the results
from the semi-automatic phase, assessing the relevance of
extracted sentences to determine the PLK.

Team A’s project manager (PM-A) choose five different
periods of interest to identify the PLK. These five periods
totaled 49 days. Team B’s project manager (PM-B) selected
seven different periods of time, totaling 57 days, to conduct his
analysis and identify the related PLK. The last line of Table I
identify the percentage of analyzed days determined by PMs
interesting. Relating to Team A’s IM log, the PM-A analyzed
47.11% of the days on which communication occurred. The
PM-B analyzed 20% of the days on which Team B exchanged
messages. An evaluation screen displayed the 20-top most
relevant sentences to the managers who then commented on
whether each of the sentences were associated with PLK or
not. Managers were then asked to describe the PLK identified
from their perspective.

D. Manual Data Analysis

We first categorized the different types of software issues
registered in IM log files. To do so, two of the authors coded
a random sample of IM’s sentences separately; after that, they
discussed the differences in their coding. We measured the
inter-rater agreement using Cohens Kappa Coefficient [22],
which were 0.61 and 0.64, for Team A and Team B, respec-
tively. These values indicate substantial agreement according
to the interpretation proposed by Landis and Koch [23].

Table II summarizes the categories of identified relevant
software issues in IM logs. We also asked the PMs to
categorize the topics of their identified PLK using the same
categories.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CATEGORIES OF TOPICS DISCUSSED IN IM

Category Description

Requirement The features, services, and constraints of a
software product

Design Software design
Development Configuration, implementation
Deployment Software installation
Delivery Software delivery
Testing Testing and testability
Acceptance Users’ feedback

Support Assistance on the installation process,
and troubleshooting

Company Business Company’s management
Management Product’s management
Marketing Product’s marketing
Product Vision Future plans and similar applications
Clarification Generic questions
Documentation Project documentation in and out-code

E. Follow up interview

We contacted the managers, to understand if they made any
changes to their communication process to reduce PLK. We
asked the following questions: (1) Did you get surprised to
see that you were losing knowledge?;(2) What did you do
afterwards once you learned that software knowledge was
being lost?; and, (3) Would you be willing to use a tool that
automatically captures the lost knowledge in other projects?

IV. RESULTS

In the following section, the collected and observed results
for the research questions stated above are presented.

A. Can we extract relevant discussion from developers IM log
using automated techniques? (RQ1)

We applied text summarization algorithm on IM log files
collected from the projects. Based on the relevance of the
sentences a ranking was calculated of 1,726 different sentences
(845 sentences from Team A, 881 sentences from Team B). A
total of 240 relevant sentences were identified and extracted,
as shown in Table I. Once project managers from each project
classified the relevance of the 20-top sentences in their respec-
tive project. Team A’ project manager highlighted that all the
3-top sentences are related to relevant issues. Considering the
10-top sentences, 74% of them were considered relevant. Team
B’ project manager highlighted that 85% of the 3-top sentences
and 75% of the 10-top were relevant, as shown in Table
I. Table I also shows that the proposed approach achieved
the best MRR value, this means that all the first ranked
sentences were considered relevant to the project according
to the managers’ perspective.�
�

�
�

Observation 1: We can extract relevant discussion from
developers IM log using automated techniques with high
precision.

B. Can we identify PLK from the relevant discussions by
interviewing project managers? (RQ2)

To answer RQ2, we asked project managers to describe the
PLK they identified after they read the 20-top sentences. Also,

PMs manually classified their quotations to reveal the PLK
related topics.

To illustrate the process of PLK determination, let’s consider
the following sentences that the project manager of TEAM A
(PM-A) classified as relevant (for brevity, we did not include
the complete sentences transcription):

• “...we have already seen that it is not enough to let users have
the option to adjust what we need (time, luminosity, etc.) ... we
have to do it automatically...”

• “ we discussed, and we noticed that the 3-sec side effect is
speedy and could it not synchronize ...”

• “... I had an interesting idea. If we combine a bracelet with a
mobile app? The cell phones would be available for photos and
other functions...”

After identifying the relevant sentences, we asked PM-A if
the sentences reminded him of some PLK. PM-A described
the PLK according to his point of view:

1) “Less user intervention required. This could simplify user
interaction with the app.”

2) “Decision to change app’ effects speed and the reason for
blocking the app...”

3) “It emphasized the need to merge visual and sounds effects.
The team did not implement this issue yet.”

4) “Although during this period I did not identify lost knowledge,
I remembered negotiations for the using the app in a concert.”

5) “Lighting test to check colors displayed on the cellphone
screen. We also needed to check the feasibility to distinguish
each color.”

One can notice that the PM-A identified some important
projects decisions in his quotations. These decisions can be
used in order to support the software requirements, code
design, updates, User Interface (UI) design and evolution.

Following, we describe some relevant sentences identified
by PM-B:

• “..features of the devices that can be used for android apk
testing: (1) smart-phone; (2) Android versions from 5.0 release;
(3) screen resolutions...”

• “.. I will check if we already visualize the medicament descrip-
tion. If yes, I will start the delivery process today...”

• “But, can you create the testing cases? He needs testing the ap-
plication. I thought to create rules for two users, for validation
purposes. What do you think? This functionality is essential for
project conclusion and the application deployment...”

Similar to PM-A, PM-B also described the PLK identified:
1) “Changes in design to improve the web service. Usability

changes to improve the user experience...”
2) “Functional rules for particular clients were not specified. The

team did not know how the app should treat these client’s
purchases. Developers had not implemented these rules.”

3) “It was important to remember that the Ministry of Health de-
fined the drugs description... The acceptance testing, identified
the software nonconformity.”

4) “Identified how user configuration profile were used. I did not
remember that there was a case test for the functionality that
deals with clients registration.”

5) “Definition of two new requirements for the next software
release. It also defined rules to deal with particular users
purchase.”

The quotations of PM-B identified relevant PLK regarding
software updates, testing, maintenance and code design. The
identified PLK also allowed to understand some software
requirements elicitation, identified when the PM-B says : “...

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE PROJECT’S LOST KNOWLEDGE TOPIC

PLK Topic PLK Count
PM-A

PLK Count
PM-B

Requirement 1 7
Testing 2 3
Design 2 1
Product Vision 2 1
Management 1 1
Development 0 1
Delivery 0 1
Acceptance 0 1
Company Business 1 0

the Ministry of Health defined...”. This issue identifies who
defined the description messages displayed in the application.
One can notice that the determined PLK can be used to
promote the software knowledge transfer, that is important to
disseminate software information through the team.�

�
	Observation 2: We can successfully identify PLK from

the relevant discussions by interviewing project managers.

We also investigated the categories of most frequently PLK
in IM discussions. As explained in Section III, we asked PMs
to codify their PLK’s quotations according to the categories
identified in Table II. Table III summarizes the count of each
topic found in the PLK identification. According to PM-A
perspective, different PLK’s categories were identified, such
as design issues, testing, product vision, management, and
requirements. The most common lost knowledge determined
by PM-B perspective was related to requirements issues.

We also conducted a follow up interview of the PMs to
understand what were their perceptions regarding the PLK.
Below are some of the responses we received:

PM-A’s response: “The retrieved relevant sentences reminded me
of important design decisions, testing issues, and business-related
knowledge. We used the identified PLK to evolve the software... It was
surprising to observe issues that I did not remember, even though I
had selected only five periods to analyze.”

PM-B’s response:“I was surprised by the amount of lost knowl-
edge I found during the PLK identification process because many
decisions were made only in the chat tool. Although this specific
project is over, we can use the acquired knowledge as a source of
information to rescue decisions made and use the learning acquired
in new projects.”

When asked about the possibility of adopting this technique
in other projects both PMs showed interest:

PM-A’s response: “A tool that automatically extracts PKL beyond
chat logs, such as emails, discussion forums, project management
tools would be fantastic, and I would make it use as default to all
the projects developed in my company.”

PM-B’s response: “It is crucial to take advantage of IM tools.
IM logs contain different information and decisions registres. I would
adopt a tool to automatically tells the team the PLK. If we had
identified the PLK in this project, it probably could have led us to
detect bugs, confirm requirements, and identify testing problems.”

V. DISCUSSION

This paper reveals a promising use of text summarization
algorithms to select relevant sentences from developers’ chat
message in IM tools. While identifying PLK after reading the

20-top ranked sentences PMs highlighted different opinions
and utilities for the identified PLK. On average, PMs took
22 minutes to evaluate each set of 20 relevant sentences
and identify the PLK. An analysis of the quotations indicate
that relevant sentences identified by the text summarizarion
algorithm enables the PLK determination.

Our findings suggest that many decision and rationales
can be identified during the process of PLK identification
which also creates the opportunity to do knowledge transfer,
knowledge transformation and the inception of new ideas.
Knowledge transfer can help to disseminate the knowledge
throughout the team and reduce the chance of introducing
inconsistencies and bugs in the code. The knowledge identifi-
cation can enable members, specifically new ones, to acquire
the necessary project related knowledge quickly and help them
in on-boarding. Knowledge transformation permits refreshing
the software knowledge and deepen team’s understanding of
the project. This can help conceptualization of new ideas and
develop new ways to help company businesses [24].

The loss of knowledge leads to a variety of problems, such
as loss of design rationale, decrease system understanding,
degraded knowledge sharing, and makes difficult the software
evaluation, and the estimation of changes impact [9], [13].
We also noticed that though the most frequent PLK was
related to requirements (Table III), each project has a different
distribution of the PLK topics. This highlights the fact that
the project lose knowledge on different stages of the software
development life cycle and PLK is not necessarily tied to any
specific step.

While interviewing the PMs, we noticed they had a good
experience while identifying the PLK. They highlighted that
PLK is very important to promote software quality, acquire
knowledge, and to produce new product releases. The PMs
affirmed that they would like to adopt tools that automatically
informs them about lost knowledge to support their compa-
nies’ software development process.

VI. THREATS TO VALIDITY

We have taken care to ensure that our results are unbiased,
and have tried to eliminate the effects of random noise, but
it’s possible that our mitigation strategies may not have been
entirely effective.

Given that we examined only two projects, we cannot
guarantee whether our findings generalize to all projects. Our
categorization of discussions required manual labeling since
this information is not readily available. Our labeling process
included inter-rater reliability to reduce the threat of individual
bias. As we had multiple researchers and we also had a high
inter-rater agreement, we assume this should minimize the
aforementioned threat.

In addition, this study only traced one strand of knowledge
exchange, via IM, and did not look further to see if any of
this knowledge could be captured in other media, like e-mail,
Slack, commented code, backlog document or daily stand-ups.

We presented sentences to PMs using a ranking algorithm
which uses TF × IDF value. Since TF × IDF is sensitive

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

to misspelling, the ranking is not perfect. Since our study
was an investigation to understand if projects lose knowledge
and if we can identify the lost knowledge using a semi-
automated approach, our major findings are not impacted by
the imperfect ranking. However, we intend to investigate the
TextRank algorithm’s efficiency [25] as future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated whether projects lose knowl-
edge and how to retrieve it from IM logs. Our analysis
indicates that projects lose knowledge as decisions, reasons,
and rationales are discussed in IM tools. These decisions
simply fall through the cracks. We also found that data-
mining techniques can effectively extract relevant information
from discussions which can be used by team members to
identify PLK.The proposed approach can support knowledge
identification and transfer on startups and other software com-
panies that rely on IM tools or other informal communication
channels. On average, PMs took 22 minutes to evaluate the
sentences for each period and identify the PLK. Other team
members can also use this approach during the entire software
life cycle time to support development tasks.

The importance of this work is two fold. First, our results
show that we can use a semi-automatic approach for identi-
fying the PLK and achieve a precision of 75%. While this
is an important step forward, it serves as a call to action
for future research to investigate other techniques that can
further improve the accuracy. Second, it provides empirical
evidence that projects lose knowledge and the process of
PLK determination creates opportunity for knowledge transfer,
acquisition, update and conception of new ideas. The PLK
can be used to support the software products evolution and
also to support the strategic decision-making process. We only
investigated IM log for this study, however our results indicate
the need for extensive research to understand how knowledge
is lost in other non-official and official channels such as IRC,
mailing list, Slack, etc. Also, we interviewed only the PMs to
identify the PLK, incorporating feedback from the whole team
could lead to more effective PLK identification and is another
interesting future research direction.

ACKNOWLEDGEMENT

We would like to thank the financial support granted
by CNPq through processes number 423149/2016-4,
311494/2017-0, and 204081/20181/PDE. CAPES through
process number 175956/2013, and PROAP 001. FAPEAM
through process number PPP 04/2017.

REFERENCES

[1] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do
developers discuss rationale?” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 357–369.

[2] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge, Rationale in devel-
opment chat messages: an exploratory study, IEEE, 2017.

[3] G. Viviani, C. Janik-Jones, M. Famelis, X. Xia, and G. C. Murphy,
“What design topics do developers discuss?” in Proceedings of the 26th
Conference on Program Comprehension. ACM, 2018, pp. 328–331.

[4] R. Francois, M. Nada, and A. Hassan, How to extract knowledge from
professional e-mails, IEEE, 2015.

[5] A. E. Hassan and T. Xie, Mining software engineering data, IEEE, 2010.
[6] H. Mushtaq, B. H. Malik, S. A. Shah, U. Bin Siddique, M. Shahzad, and

I. Siddique, “Implicit and explicit knowledge mining of crowdsourced
communities: Architectural and technology verdicts,” INTERNATIONAL
JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICA-
TIONS, vol. 9, no. 1, pp. 105–111, 2018.

[7] J. Pantiuchina, M. Mondini, D. Khanna, X. Wang, and P. Abrahamsson,
“Are software startups applying agile practices? the state of the practice
from a large survey,” in International Conference on Agile Software
Development. Springer, Cham, 2017, pp. 167–183.

[8] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and
P. Abrahamsson, “What do we know about software development in
startups?” IEEE Software, vol. 31, no. 5, pp. 28–32, 2014.

[9] A. M. Soria and A. van der Hoek, “Collecting design knowledge through
voice notes,” in Proceedings of the 12th International Workshop on
Cooperative and Human Aspects of Software Engineering. IEEE Press,
2019, pp. 33–36.

[10] J. E. Burge and D. C. Brown, “Seurat: Integrated rationale management,”
in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 835–
838. [Online]. Available: http://doi.acm.org/10.1145/1368088.1368215

[11] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[12] E. Isaacs, A. Walendowski, S. Whittaker, D. J. Schiano, and C. Kamm,
“The character, functions, and styles of instant messaging in the work-
place,” in Proceedings of the 2002 ACM conference on Computer
supported cooperative work. ACM, 2002, pp. 11–20.

[13] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avge-
riou, “Industrial implementation of a documentation framework for
architectural decisions,” in 2014 IEEE/IFIP Conference on Software
Architecture. IEEE, 2014, pp. 225–234.

[14] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and
B. Bruegge, “Decision knowledge triggers in continuous software
engineering,” in Proceedings of the 4th International Workshop on
Rapid Continuous Software Engineering, ser. RCoSE ’18. New
York, NY, USA: ACM, 2018, pp. 23–26. [Online]. Available:
http://doi.acm.org/10.1145/3194760.3194765

[15] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 1–10.

[16] G. Bavota, “Mining unstructured data in software repositories: Current
and future trends,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 5.
IEEE, 2016, pp. 1–12.

[17] M. Gambhir and V. Gupta, “Recent automatic text summarization
techniques: a survey,” Artificial Intelligence Review, vol. 47, no. 1, pp.
1–66, 2017.

[18] T.-Y. Liu, Learning to rank for information retrieval. Springer Science
& Business Media, 2011.

[19] B. McFee and G. R. Lanckriet, “Metric learning to rank,” in Proceedings
of the 27th International Conference on Machine Learning (ICML-10),
2010, pp. 775–782.

[20] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
2. ACM, 2010, pp. 223–226.

[21] S. Robertson, “Understanding inverse document frequency: on theoret-
ical arguments for idf,” Journal of documentation, vol. 60, no. 5, pp.
503–520, 2004.

[22] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[23] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[24] P. Carreteiro, J. B. de Vasconcelos, A. Barão, and Á. Rocha, “A
knowledge management approach for software engineering projects
development,” in New advances in information systems and technologies.
Springer, 2016, pp. 59–68.

[25] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in
Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 02:02:50 UTC from IEEE Xplore. Restrictions apply.

