
Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward

Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek
University of California, Irvine, USA
{aalshayb,iftekha,malek}@uci.edu

ABSTRACT
Mobile apps are an integral component of our daily life. Ability to
use mobile apps is important for everyone, but arguably even more
so for approximately 15% of the world population with disabili-
ties. This paper presents the results of a large-scale empirical study
aimed at understanding accessibility of Android apps from three
complementary perspectives. First, we analyze the prevalence of
accessibility issues in over 1, 000 Android apps. We find that almost
all apps are riddled with accessibility issues, hindering their use
by disabled people. We then investigate the developer sentiments
through a survey aimed at understanding the root causes of so
many accessibility issues. We find that in large part developers
are unaware of accessibility design principles and analysis tools,
and the organizations in which they are employed do not place a
premium on accessibility. We finally investigate user ratings and
comments on app stores. We find that due to the disproportion-
ately small number of users with disabilities, user ratings and app
popularity are not indicative of the extent of accessibility issues in
apps. We conclude the paper with several observations that form
the foundation for future research and development.

ACM Reference Format:
Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility
Issues in Android Apps: State of Affairs, Sentiments, and Ways Forward.
In 42nd International Conference on Software Engineering (ICSE ’20), May
23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380392

1 INTRODUCTION
Mobile applications (apps) play an important role in the daily life
of billions of people around the world, from personal banking to
communication, to transportation, and more. Ability to access these
necessary services with ease is important for everyone, especially
for approximately 15% of the world population with disabilities [53].
As app usage has steadily increased over the years among the
disabled people, so has their reliance on the accessibility features.
In a survey conducted in 2017, it was found that 90.9% of visually
impaired respondents used screen readers on a smartphone [51],
which is substantially higher than prior years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380392

Due to the increased reliance of disabled people on their mo-
bile devices, ensuring that app features are accessible has become
more important than ever before. Awareness as to the accessibil-
ity of apps has been growing as well. Google and Apple (primary
organizations facilitating the app marketplace) have released de-
veloper and design guidelines for accessibility [7, 12]. They also
provide accessibility services and scanners as part of their plat-
forms [6, 11, 13, 42]. Mandates from government regulations, such
as Section 508 and 504 of the Rehabilitation Act and the Americans
with Disabilities Act (ADA) [2], are bringing further attention to
accessibility factors in apps. Not surprisingly, as a result of such
legislation, accessibility-related lawsuits in US federal courts have
been growing, e.g., by 180% in 2018 compared to 2017 [46].
Despite these accessibility-focused efforts, studies have found

significant accessibility issues in apps [40]. This suggests a continu-
ing need for increasing accessibility awareness among researchers,
developers of mobile platforms (e.g., Apple, Google), and developers
of individual apps. Although some researchers have studied the
accessibility of mobile apps, those studies remain limited in terms
of the number of subjects considered, or the number of accessibility
issues examined [3, 17, 18, 29, 40, 52]. Furthermore, it is not clear
to what extent developers utilize accessibility features in their apps.
To the best of our knowledge, no prior work has investigated the
development practices pertaining to accessibility of mobile apps, to
answer questions such as: how prevalent are different categories
of accessibility issues in mobile apps? why developers write apps
with accessibility issues? what do the developers want from the
accessibility analysis tools? etc.

In this paper, we aim to cover this gap in research by providing
a holistic view of Android accessibility from three complementary
perspectives: apps, developers, and users.We investigate prevalence
of accessibility issues (the apps), reasons why developers create
apps with accessibility issues (the developers), and how accessibil-
ity issues impact user perception (the users). First, we conduct a
mining study based on Android apps collected from AndroZoo [10]
to investigate the extent to which accessibility issues are present.
Next, we analyze the developers and organizations involved in the
creation of these apps to determine their association with accessi-
bility issues. We then conduct a survey with practitioners to gather
a deeper understanding of the underlying reasons for creating apps
with accessibility issues. Finally, we analyze user-provided reviews
of the collected apps to understand potential associations between
accessibility issues and users’ perceptions.

Overall, the paper makes the following contributions:
• We report on the first large-scale analysis of prevalence of a wide
variety of accessibility issues (11 types) in over 1, 000 Android
apps across 33 different application categories.

1323

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380392
https://doi.org/10.1145/3377811.3380392
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377811.3380392&domain=pdf&date_stamp=2020-10-01

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

• We present the findings of a survey involving 66 practitioners,
which shed light on the current practices and challenges pertain-
ing to accessibility, as well as practitioners’ perception regarding
accessibility tools and guidelines.

• We discuss how the presence of accessibility issues, and their
extent, impact users’ perception of apps.

• Based on our results, we outline implications for developers and
researchers, and provide suggestions for improving the existing
tools to better support accessibility in mobile apps.
The paper is structured as follows: we provide a background

on accessibility issues in Android in Section 2, followed by a brief
review of prior research efforts in Section 3. In Section 4, we present
our approach of mining Android apps and surveying developers
for answering our intended research questions. In Section 5, we
present our findings. Section 6 discusses the results and outlines
implications for developers and researchers.
2 ACCESSIBILITY ISSUES IN ANDROID
Accessibility is defined as “The quality of being easily reached, en-
tered, or used by people that have a disability” [27]. Mobile accessi-
bility refers to making websites and apps more accessible to peo-
ple with disabilities when using smartphones and other mobile
devices [48]. Various mobile accessibility standards have been pro-
posed, including W3C [48], Web Content Accessibility Guidelines
(WCAG 2.0 and 2.1) [50], U.S. Revised Section 508 standard [1], and
BBC Standards and Guidelines for Mobile Accessibility from the
UK [15]. Within these standards, variety of recommendations have
been made to provide better support for individuals with different
kinds of disability including motor, hearing, and visual impairment.
Several companies have also created their list of developer guide-
lines based on standards such as Android Accessibility Developer
Guidelines [7], Apple Accessibility Developer Guidelines [12], and
IBM Accessibility Checklist [26]. In this study, we focus on ac-
cessibility issues in Android apps and consider the accessibility
recommendations provided by Google for Android developers [7].

Here we present a brief description of accessibility issues within
Android apps that are the focus of our study.
2.1 Content Labeling
Impacted audience: Individuals with visual impairment.
Description: Content labels are alternative texts to images/actions.
Although they are invisible, they can be accessed and announced
by a screen reader (e.g., TalkBack in Android). They are intended
to provide a clear description of images or actions of buttons for
individuals with visual impairment. Below is a list of issues related
to content labeling.
• Speakable Text: This issue indicates User Interface (UI) elements
that are visible on the screen, but missing text labels. Presence
of this accessibility issue means screen reader will be unable to
convey these elements to visually impaired users. This issue can
be fixed by providing certain attributes in the layout XML file,
or dynamically in the code.

• Duplicate Speakable Text: This issue indicates UI elements with
the same labels are visible in the same screen. Duplicate labels
make it difficult for the user to separate and identify each UI
element.

• Redundant Description: For native Android elements such as a
Button, screen readers can access the type of UI element and

announce it to the user along with the label. Repeating the type
of element in the label is redundant and may confuse the user.

2.2 UI Implementation
Impacted audience: Individuals with mobile impairment.
Description: Developers are required to avoid certain implementa-
tions of UI elements that challenge users with mobile impairment.
Below is a list of accessibility issues related to UI implementation.
• Clickable Span: UI elements such as ClickableSpan may not
be compatible with accessibility services such as screen readers,
i.e., hyperlinks within those elements may not be detectable and
will not be activated. For these hyperlinks to be supported by
accessibility services, the use of alternative UI elements such as
URLSpan is encouraged

• Duplicate Clickable Bounds: This issue indicates two or more
elements, such as nested Views, that share the same space and
boundaries on the screen. When using alternative navigation
approaches, duplicate views can cause the same area on the
screen to be focused more than once.

• Editable Content Description: This issue highlights improper
setting of properties when implementing EditText elements.
Supporting accessibility for EditText requires implementing a
label describing the field when it is empty. Moreover, once the
user enters text, that text should be announced.

• Unsupported Class Name: Native Android View provides type
information to screen readers and other accessibility services.
For example, accessibility services can recognize an element as
Button or Checkbox automatically and announce that to the
user. However, developers sometimes create a custom View, but
forget to provide this information to screen readers and other
accessibility services. This issue highlights a custom View that
does not provide the type of elements to screen reader.

• Traversal Order: Screen readers navigate the elements on a screen
based on their hierarchical order. Developers can override this
navigation order by using specific attributes for each UI element
within the XML layout file, allowing them to specify the following
and previous elements on the screen. This issue identifies cases
where cyclic navigation is present, which may leave the user
stuck at a certain element and unable to explore the remaining
elements on the screen.

2.3 Touch Target Size
Impacted audience: Individuals with mobile impairment.
Description: Small targets are difficult to tap accurately. This requires
more effort for the user. Failure to successfully tap on a button may
impede using the app altogether.
• Touch target size: This issue identifies clickable UI elements with
small touch areas that can be difficult to use.

2.4 Low Contrast
Impacted audience: Individuals with visual impairment.
Description: Insufficient contrast among an app’s UI elements can
affect how easily users can read, find, and comprehend those ele-
ments. Below is a list of accessibility issues related to contrast.
• Text Contrast: This issue corresponds to visible text, where there
is a low contrast ratio between the text color and background
color.

1324

Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

• Image Contrast: This issue identifies images that are visible on
the screen but with a low contrast ratio between the foreground
and background colors.

3 RELATEDWORK
Although there has not been a prior large-scale analysis of acces-
sibility in mobile apps, related work has been performed on the
conventional desktop and web applications. Several studies for
testing compliance of various websites have found that lack of ac-
cessibility is still a significant issue [3] [18] [29] [52]. Our current
work builds upon and is informed by prior research on mobile
accessibility implementation.

3.1 Previous Empirical Studies
Recently, studies have started to focus and further investigate acces-
sibility issues in mobile apps. However, the number of these studies
is in comparison smaller than those for the web. Notably, most of
the prior work in this space is small scale. Coelho et al. manually
evaluated four government mobile apps using W3C Accessibility
Guidelines [50] and found that accessibility issues are extensive in
these cases [43]. Milne et al. investigated the accessibility of mobile
health sensors for blind users [33]. Walker et al. evaluated weather
apps and found them not to be universally accessible [49].

Vendome et al. [17] performed an empirical study to understand
Android apps’ accessibility issues. However, our study is answering
a much wider and more comprehensive set of questions, as we take
a broader approach by looking into the perspective of users, devel-
opers, and apps, while their study only investigates the developer’s
perspective. Furthermore, our study analyzes 10 additional types
of accessibility issues. Finally, our approach employs dynamic anal-
ysis for detection of accessibility violations, while they use static
analysis, enabling us to detect a wider variety of accessibility issues
as several UI elements in Android are populated at runtime.
Researchers have also previously looked at specific accessibil-

ity issues, such as alternative text labels [41], alternative image
labels [33, 35, 43], and missing labels [35]. These studies help char-
acterize accessibility problems. However, the small scales at which
they were performed make it difficult to more generally assess the
state of accessibility in mobile apps. Additionally, none of these
studies has considered developers and attempted to understand the
development practices that lead to the occurrence of accessibility
issues in apps. Our study aims to fill these gaps.

3.2 Tools for Assessing Accessibility
Accessibility evaluation can be a complex task, requiring human
expertise and judgment to provide an accurate assessment. How-
ever, certain facets of accessibility testing can be automated. De-
spite several studies on mobile accessibility evaluation, only a few
evaluation tools are available. These tools belong to two primary
categories: static analysis and dynamic analysis. Lint [31] is a static
analysis tool that runs as part of the SDK but also integrated with
the Android Studio IDE. It reports missing content descriptions
and missing accessibility labels declared directly in the XML layout
files. Dynamic analysis has the ability to identify and detect more
accessibility issues [20]. Accessibility Scanner [42] is one of the
dynamic analysis tools available on Google Play Store. The tool
is based on the Accessibility Testing Framework, an open-source
library of various automated checks for accessibility. Espresso [21]

and Robolectric [39] are also general-purpose testing frameworks
that can evaluate the same sets of accessibility issues as the Ac-
cessibility Scanner, since they are all based on the same library.
PUMA [25] is a customizable dynamic analysis framework that can
be used to check apps for different properties such as performance,
security, and correctness. The tool also provides accessibility checks
for different types of accessibility issues.

Patil et al. proposed an improved version of UI Automator Viewer,
named “Enhanced UI Automator Viewer” [37], which is a tool for
scanning and analyzing the UI components of an Android applica-
tion. This tool supports inspection of low color contrast accessibility
issue. MATE is another automated accessibility testing framework
for Android that explores different app screens at runtime [20]. Mo-
bile Accessibility Checker (MAC) is a tool from IBM for accessibility
evaluation [54]. Krainz et al. proposed a model-driven development
framework with automated code generation to avoid accessibility is-
sues [30]. Ross et al. proposed an epidemiology-inspired framework
to support the assessment of mobile apps accessibility [40].
All in all, none of the aforementioned approaches deals with

the main objectives of our work: gaining a holistic view regarding
the prevalence of accessibility issues, the reasons why developers
create apps with accessibility issues, and how these accessibility
issues impact user perception.

4 METHODOLOGY
Our study consisted of the following steps: (1) we first collected a
large set of Android apps and filtered those that were not buildable;
(2) we evaluated the accessibility of subject apps using a custom-
build tool that we developed on top of popular accessibility libraries
and testing frameworks; (3) we collected and analyzed developer
and organization information pertaining to each app to identify
their association with accessibility issues; (4) we then conducted a
survey with practitioners to gather a deeper understanding of the
underlying reasons for developing apps with accessibility issues;
and finally (5) we manually analyzed user-provided reviews of
the collected apps to understand potential associations between
accessibility issues and users’ perception. We now describe each of
these steps in further detail.

4.1 Study Subjects
For our study, we selected Android as it is the most popular mobile
platform [9]. We selected 1, 500 top free apps from Google Play
Store. These apps belonged to 33 different categories such as health
and fitness, music and audio, productivity, and etc. After identifying
the apps, we downloaded their APKs from AndroZoo [5], which is
a repository of Android apps with more than 9 million APKs. As
part of our study, we wanted to investigate if same developers tend
to create similar types of accessibility issues. We selected a random
set of 60 developers and found that 52 of them had multiple apps
among the initial 1, 500 apps. We then identified other apps from
Google Play Store that these developers have published and are not
already in our list of projects. This criteria added 200 more apps to
our list.

Since one of our goals was to investigate how accessibility levels
change over time, we needed to analyze multiple versions of apps.
We selected the top 60 apps in terms of their Activity coverage
(defined in Section 4.3) and obtained multiple versions for each app.

1325

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

4.2 Accessibility Evaluation Tool
To evaluate the accessibility features of Android apps, we devel-
oped an accessibility evaluation tool that leverages the accessibility
checks provided by Google’s Accessibility Testing Framework [23],
which is an open-source library that supports various accessibility-
related checks and can be applied to various UI elements such as
TextView, ImageView, and Button. Google’s Accessibility Testing
Framework is also the underlying engine that is used by Google
Scanner [42], a Google recommended app for assessing the acces-
sibility of Android apps. We did not use Google Scanner [42] for
our study, as it requires the users to manually run the app, go
through each screen and initiate the evaluation process, making it
time-consuming and not scalable for a large-scale analysis. Since
Google’s Accessibility Testing Framework is open-source, it pro-
vided us with the opportunity to integrate it into our evaluation
tool with ease and automate the entire process.
Our accessibility evaluation tool has two major parts. One part

simulates user interactions and the other part monitors the device
for Accessibility Events. We detail each part below.

4.2.1 Simulating User Interactions. We assess accessibility of
apps dynamically, as several UI elements in Android are populated
at runtime, making it rather difficult to detect them statically. To
that end, our tool first installs the app on an emulator running on a
laptop with Intel Core i7-8550U, 1.80GHz CPU, and 16GB of RAM.
We used an Android image configured with Google services, API
level 25 and 1080 by 1920 pixel display resolution.
After successfully installing an app on the emulator, our tool

uses Android Monkey [8] to simulate user interaction. Android
Monkey [8] is a UI testing tool developed by Google. It generates
pseudo-random gestures, such as clicks and touches, to simulate
user interactions.
Our accessibility evaluation tool runs each app for a time limit

of 30 minutes, during which the app is restarted multiple times
to maximize the coverage of Activities and prevent Monkey from
getting stuck on specific screens. In the case of a crash, the tool
restarts the app and continues to crawl. Monkey takes a value as
the seed to generate the random events. We feed Monkey with a
different seed value for each run tomaximize coverage. Additionally,
at this step, we collect coverage metrics, such as the number of
covered Activities and lines of code.

4.2.2 Monitoring Accessibility Events. We developed an Android
app, called Listener, that was installed on the emulator as part of our
accessibility evaluation tool. Listener has a Service running in the
background that uses Android’s Accessibility API to listen for
Accessibility Events, as each app is crawled. Accessibility
API is included in Android to support the implementation of acces-
sibility services. Accessibility Events are system-level signals
that indicate state changes on the device, e.g., when a Button is
clicked, or a new screen is opened. Every time an Accessibility
Event is detected, the app takes a screenshot of the current screen,
and retrieve the hierarchy of all the UI elements (Views) that are
visible to the user. It then invokes Google’s Accessibility Testing
Framework to perform the various accessibility checks [23]. Since
there are no benchmarks for evaluating this kind of tool, we evalu-
ated the tool by running it on several apps and manually verifying
the results.

4.3 Data Collection and Analysis
We collected different types of accessibility issues for each app using
our accessibility evaluation tool. We also collected Package name,
Activity name, and number of user interface elements and lines-of-
code for each app. We calculated the app Activity coverage by
dividing the number of unique Activities that are explored by the
total number of Activities in the app. We eliminated apps from our
analysis with very low Activity coverage, i.e., apps for which
our tool was not able to explore more than one Activity. We fi-
nally ended up with 1, 135 apps in our corpus. Figure 1 shows the
distribution of apps in our final dataset.

Figure 1: Number of apps for each category in the dataset

For apps in our dataset that were obtained fromGoogle Play Store,
we crawled each app page and collected variousmeta-data including
category, name of developer, number of installs, number of reviews
and rating score. Sincewe collected accessibility issues from screens,
and screens with larger number of elements are prone to more
accessibility issues, we needed to normalize the data to avoid such
bias. To that end, we used inaccessibility rate, a metric calculated
by dividing the number of elements with accessibility issues on a
screen over the total number of elements on the same screen that are
prone to accessibility issues [54]. This ratio is calculated for each of
the 11 types of accessibility issues. For example, the inaccessibility
rate for TextContrast type would be the number of elements with
TextContrast issues divided by all the TextView elements that are
potential victims for this type of accessibility issue.

Game UIs are not built using native UI elements, instead they are
built based on graphic libraries such as OpenGL [24] and Unity [47]
[14], where interactive UI elements such as buttons are rendered
as images in the background. Existing tools can neither evaluate
these elements nor examine their properties, since these elements
do not provide enough information to the accessibility framework.
As a result, we excluded the Game category from our analysis.

An important concern with existing accessibility analysis tools
is that they report all accessibility issues without assigning any

1326

Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

ranking. Our goal was to identify fruitful ways in which the acces-
sibility issues could be ranked, thus engineers can prioritize their
effort in resolving such issues. To identify plausible approaches,
we randomly selected 25 apps and 100 screens from our dataset,
and manually analyzed the reported accessibility issues. Our man-
ual analysis revealed three different cases: (1) Some accessibility
issues make it difficult to use the app, while others make the app
completely unusable. As an example the 5-star rating element of
the Yelp app lacks accessibility support, leaving this core function-
ality inaccessible to many people. This led us to define severity of
impact on the user as a ranking criterion. (2) Some accessibility
issues are easily fixed, while others require redesigning the inter-
face completely. This motivated us to define ease of fix as another
ranking criterion. (3) Not all reported accessibility issues are in fact
accessibility issues, as the tools sometimes produce false positives.
Thus, we defined certainty of the warning (true positive) as another
plausible ranking criterion.
We also investigated the impact of company culture on accessi-

bility issues. We identified apps in our dataset that are developed
by well-known companies. It is naturally the expectation that such
companies would have better software development resources than
others. The selection criteria is based on the Forbes Top 100 Digital
Companies list [22]. The list contains companies such as Amazon,
Google, and Microsoft. 23 apps met this criteria. We also analyzed
the impact of accessibility issues on users perception. To answer
this question, we crawled the Google Play Store and collected meta-
data about each app including app rating score, and whether it
was promoted as an Editors’ Choice on the Store. Our analysis
covered reviews written in English only. Prior to performing the
review analysis, we pre-processed the text of the reviews using
NLTK library [34]. We applied text tokenization, stemming, and
lower-case letters conversion. We then searched the dataset using a
set of accessibility-related keywords that are based on the different
accessibility guidelines and tools, sample keywords include “acces-
sibility”, “visual impairment”, “blind”, etc. We improved upon this
set as we scanned through reviews that discussed accessibility. The
search process flagged 704 reviews. Two authors independently
read the reviews and assigned the accessibility concern types and
whether the sentiment was positive or negative. We also had a
high inter-rater reliability of 0.84. . We ended up with 150 verified
accessibility-related reviews from 102 different apps.
4.4 Survey
To validate our findings, we performed an online survey of Android
developers. In this section, we describe the survey design, partici-
pant selection criteria, pilot survey, data collection, and analysis.

4.4.1 Survey design. We designed an online survey to gather
a deeper understanding of the underlying reasons for creating
apps with accessibility issues. We asked demographic questions
to understand the respondents’ background (e.g., their number
of years of professional experience). We then asked them about
their current practice of using guidelines and tools for assessing
accessibility (if any). We also asked them about the challenges of
ensuring accessibility based on their experiences. We presented
some of the accessibility challenges identified through our empirical
analysis of apps and asked the respondents to rate each of them
with one of the following ratings and to provide a rationale for

their rating: very important, important, neutral, unimportant, very
unimportant. A respondent can also specify that he/she prefers
not to answer. We included this option to reduce the possibility of
respondents providing arbitrary answers. During our app analysis,
we noticed that none of the available accessibility analysis tools
distinguish between the reported accessibility issues. We identified
three potentially fruitful methods of ranking reported accessibility
issues: severity of impact on the user, certainty of the warning (true
positive), and ease of fix. We asked the respondents to rate each
of the 3 ranking methods with one of the following ratings and
to provide a rationale for their rating: very important, important,
neutral, unimportant, very unimportant. A sample of the survey
instrument can be found at the companion website [44].

4.4.2 Participant Selection. We recruited participants for the
survey from the list of open-source app developers on F-Droid. In
total, we identified 740 unique email addresses for our survey.

4.4.3 Pilot Survey. To help ensure the validity of the survey, we
asked Computer Science professors and graduate students (two
professors and two Ph.D. students) with experience in Android
development and in survey design to review the survey to ensure
the questions were clear and complete. We conducted several iter-
ations of the survey and rephrased some questions according to
the feedback. In this stage, we also focused on the time limit to
ensure that the participants can finish the survey in 10 minutes.
The responses from the pilot survey were used solely to improve
the questions and were not included in the final results.

4.4.4 Data Collection. We used Qualtrics [38] to send a total
of 740 targeted e-mail invites for the survey. 6 of those emails
bounced and we received 9 automatic replies, leaving at most 725
potential participants, assuming all other emails actually reached
their intended recipients. According to the Software Engineering
Institute’s guidelines for designing an effective survey [28], “When
the population is a manageable size and can be enumerated, simple
random sampling is the most straightforward approach". This is the
case for our study with a population of 740 software developers.
From the 740 sent emails, we received 66 responses (8.9% re-

sponse rate). Previous studies in software engineering field have
reported response rates between 5.7% [36] and 7.9% [32]. We dis-
qualified 5 partial responses. Finally we considered 61 responses.
We received responses from 18 countries across 5 continents. The
top two countries where the respondents reside are Brazil and
the United States. The professional experience of our respondents
varies from 0.25 years to 6 years, with an average of 3.11 years.

4.4.5 Data Analysis. We collected the ratings our respondents
provided for each accessibility issue, converted these ratings to
Likert scores from 1 (Strongly Disagree) to 5 (Strongly Agree) and
computed the average Likert score.We also extracted comments and
texts from the “other" fields by the survey respondents explaining
the reasons behind their choices. To further analyze the results, we
applied Scott-Knott Effect Size Difference (ESD) test [45] to group
the accessibility issues into statistically distinct ranks according to
their Likert scores. We excluded responses that selected “I don’t
know” for our ESD test. Tantithamthavorn et al. [45] proposed
ESD as it does not require the data to be normally distributed. ESD
leverages hierarchical clustering to partition the set of treatment

1327

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

means (in our case: means of Likert scores) into statistically distinct
groups with non-negligible effect sizes.
5 RESULTS
In this section, we present the results of our study from three
complementary perspectives: apps, developers, and users.
5.1 App Perspective
We start by looking into the prevalence of accessibility issues in the
apps. More specifically, we answer the following research question.

5.1.1 RQ1: How prevalent are accessibility issues in An-
droid apps? We measure the inaccessibility rate of each app for
the 11 types of accessibility issues explained earlier in Section 2.
The inaccessibility rate is calculated by dividing the number of UI
elements (such as TextView or Button) infected with accessibility
issues by the total number of UI elements that are prone to such ac-
cessibility issues. We also use the overall inaccessibility rate, which
is the average of all the inaccessibility rates for the different types
of accessibility issues.

Figure 2 shows the distribution of overall inaccessibility rate for
all the apps in our dataset. As shown in figure 2, a small number
of apps have no accessibility issues, while most apps do. In our
dataset, the mean inaccessibility rate for each app is 6.04% and the
standard deviation is 2.42%.

Figure 2: Distribution of inaccessibility rate among apps�

�
	Observation 1: Accessibility issues are prevalent across all

categories of apps, and the mean inaccessibility rate is 6.04%.

5.1.2 RQ2: What are the most common types of accessi-
bility issues? Are specific categories of apps more suscepti-
ble to accessibility issues than others? Next, we take a closer
look at the inaccessibility rate among the various types of accessi-
bility issues. Table 1 shows that Text Contrast, Touch Target, Image
Contrast, and Speakable Text are the most frequent and have a mean
of 22.81%, 19.78%, 12.85%, and 11.08%, respectively. Almost a quar-
ter of TextView elements reported a Text Contrast issue. None of the
apps in our dataset had a Traversal Order accessibility issue. Since
this is a very specific problem with app navigation approach that is
optional to use by developers, zero occurrence of this accessibility
issue is not surprising. We omit this issue from our analysis in the
rest of the tables.
Figure 3 shows inaccessibility rate of the apps grouped into 33

categories. We observe that despite slight variations, all categories
have accessibility issues. The overall inaccessibility rate is between
4.2% and 7.3.%. Music and Audio category exhibits the highest
inaccessibility rate of 7.3%. While different categories of apps have

Table 1: The distribution of accessibility issues

Type of accessibility issue Mean Std Max

TextContrast 22.81 11.61 65.10
TouchTargetSize 19.78 10.09 52.63
ImageContrast 12.85 11.99 50.0
SpeakableText 11.08 8.34 42.24
RedundantDescription 0.93 3.40 50.0
DuplicateSpeakableText 0.89 1.47 15.45
ClassName 0.68 1.96 19.64
DuplicateClickableBounds 0.55 0.92 8.33
EditableContentDesc 0.31 2.69 50.0
ClickableSpan 0.15 0.95 14.72
TraversalOrder 0.0 0.0 0.0

All accessibility types 6.04 2.42 16.64

similar distribution of overall inaccessibility rates, certain types
of accessibility issues are more frequent in some categories. For
example, apps in the Finance category have the lowest SpeakableText
inaccessibility rate at about 4.0%, while Design and Beauty has the
highest inaccessibility rate of this type at around 16.0%.

Figure 3: Distribution of inaccessibility rates across the dif-
ferent categories

�
�

�

Observation 2: 10 out of 11 types of accessibility issues eval-
uated in the study were present in the evaluated apps, but to
varying degrees.

Since developers use templates provided by Android Studio to
build their apps, we posit that the presence of accessibility issues
in templates can contribute towards the prevalence of accessibility
issues in apps. To that end, we analyzed the templates and found
that 5 out of the 10 templates provided by Android Studio suffered
from Text Contrast , Touch Target and SpeakableText accessibility
issues. For instance, a screen built using Tabbed Activity template
has Text Contrast issues for the titles of the different tabs (as shown
in Figure 4).

1328

Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 4: Two accessibility issues are identified in the Tabbe-
dActivity template. TextContrast for the title of inactive tab,
and a missing SpeakableText For the Button�
�

�

Observation 3: 50% of the templates provided by Android
Studio, the most popular IDE for Android development, have
accessibility issues.

5.1.3 RQ3:Howdoes accessibility evolve over time inAn-
droid apps? In order to answer this question, we used a subset of
the apps with multiple versions (details in Section 4). We excluded
apps with only one version from our analysis as our goal was to in-
vestigate the evolution of accessibility issues. In total, this analysis
involved 60 apps with 181 versions. We then performed the acces-
sibility evaluation and calculated the difference in inaccessibility
rate among the subsequent versions. A positive difference indicates
more accessibility issues than the prior version, and vice versa.

Since we are using inaccessibility rate instead of the total number
of accessibility issues for our analysis, changes in the app user
interface are less likely to impact the results. Figure 5 depicts the
summary of changes in accessibility issue for 128 updates for 53
apps. Majority of the updates (47%) improved the app’s overall
accessibility, 28% of the updates impacted the overall accessibility
negatively, and for the remaining 25% overall accessibility levels
remained the same. Note that despite the use of inaccessibility
rate, it is possible that the reduction in inaccessibility rate is not
due to fixes but due to the addition of UI elements. However, we
still consider it an improvement in the overall accessibility of a
new version, as the new UI elements did not introduce any new
accessibility issues.

Figure 5: How Apps accessibility levels changed over time

�

�
	Observation 4: Apps become more accessible over time, with

47% of app updates improving the overall accessibility.

5.2 Developer Perspective
We now explain our findings regarding the associations between
developer/organization and accessibility issues.

5.2.1 RQ4:Do samedevelopers tend to create similar types
of accessibility issues? We examine whether developers are cre-
ating apps with similar types of accessibility issues. To answer this
question, we first identified a subset of developers who had con-
tributed tomultiple projects in our corpus.We then explored Google
Play Store to identify all apps written by these developers, which
yielded 200 new apps. Finally. we calculated the inaccessibility rate
for 260 apps. Table 2 shows the average Standard Deviation (SD)
of inaccessibility rate for apps developed by the same developer
and apps developed by different developers. In the first column of
Table 2, first we calculate the standard deviation for apps grouped
by each developer who has multiple apps and then calculate the
average. In the second column, we did a similar calculation but
only for developers who contributed a single app. From table 2, we
observe that the average standard deviation of inaccessibility rate
in apps developed by the same developers is 1.70, whereas it is 2.42
for apps developed by different developers.

We performed a Two Sample t-test for each category of accessibil-
ity issues and found that for three of the categories (SpeakableText,
DuplicateSpeakableText andClassName) populationmeans are statis-
tically significant (Two Sample t-test, p < 2.2 × 10−16) represented
using an asterisk (*) in Table 2. Since we are performing multiple
tests, we have to adjust the significance value accordingly to ac-
count for multiple hypothesis correction. We use the Bonferroni
correction [19], which gives us an adjusted α value of 0.004 to be
used as the significant level. We also report the Cohen’s d value
(effect size) for each accessibility issue. A Cohen’s d value ≥ 0.8
indicates a large effects size, a value ≥ 0.5 and < 0.8 indicates a
medium effects size, and a value ≥ 0.2 and < 0.5 indicates a small
effects size. Although the observed effect is for the most part small,
it is not negligible. This is reasonable, because other factors also
impact the presence of accessibility issues.

Table 2: Comparison of SD values for appsmade by the same
developers, and different developers.

Accessibility issue Inaccessibility rate
SD Cohen’s d

Same
developer

Different
developers

TextContrast 9.35 11.61 0.02
TouchTargetSize 7.86 10.09 -0.14
ImageContrast 7.64 11.99 0.06
SpeakableText * 4.50 8.34 0.33
RedundantDescription 0.66 3.40 0.02
DuplicateSpeakableText * 0.69 1.47 -0.23
ClassName * 0.42 1.96 -0.31
DuplicateClickableBounds 0.40 0.92 0.14
EditableContentDesc 0.0 2.69 -0.18
ClickableSpan 0.76 0.95 0.09

Overall inaccessibility 1.70 2.42 0.01�

�
	Observation 5: App developers tend to create apps with sim-

ilar types of accessibility issues.

1329

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

5.2.2 RQ5: What are the underlying reasons for develop-
ing apps with accessibility issues? We surveyed Android de-
velopers (See Section 4 for details) to get their opinion about the
reasons behind accessibility issues in apps.
Table 3 represents the percentage of respondents selecting an

option. It shows that lack of awareness about accessibility and its
importance is identified as the top reason (48.53%). Additional cost
and lack of support from management are the other top reasons.
Table 3: Reported challenges with ensuring accessibility

Challenges with
Ensuring accessibility Percent

Lack of awareness about accessibility and its importance 48.53
Additional cost of ensuring accessibility 16.50
Lack of support from management 15.53
Lack of tools 9.70
Lack of standards and guidelines 8.73
Not sure which standards to follow 0.97�

�
	Observation 6: Developers perceive lack of awareness as the

top reason for introducing accessibility issues in apps.
5.2.3 RQ6: Do apps developed by large and well-known

companies have better inaccessibility rate than other apps?
To answer this question, we identified apps that are developed by
well-known companies such as Amazon, Google, Microsoft, and
etc. The selection criteria is based on the Forbes Top 100 Digital
Companies list [22]. We posit that these companies have access
to more experienced developers and better development resources
than others. 23 apps satisfied this criterion. From table 4, we ob-
serve that the mean for one type of accessibility issue is noticeably
different. SpeakableText rate is 70% lower in the apps produced
by top companies compared to the mean for all other apps in the
dataset. Surprisingly, no major difference is observed among the
other accessibility issues.
Table 4: Comparison of the mean for apps’ inaccessibility
rates developed by top companies against all other apps

Accessibility issue Inaccessibility rate Cohen’s d

Apps by
top companies Other apps

TextContrast 20.63 22.75 -0.28
TouchTargetSize * 19.79 19.67 0.01
ImageContrast 12.60 12.86 0.02
SpeakableText * 3.39 11.21 -1.14
RedundantDescription * 2.49 0.90 0.36
DuplicateSpeakableText 1.10 0.89 0.12
ClassName * 1.68 0.68 0.47
DuplicateClickableBounds 0.33 0.55 -0.28
EditableContentDesc * 1.80 0.31 0.37
ClickableSpan * 0.76 0.14 0.41

Overall inaccessibility * 4.80 6.03 -0.48

We wanted to understand the reason behind this. In the survey,
we asked the developers whether accessibility evaluation is part of
their app development/testing process. Out of the 32 survey respon-
dents that are paid developers, 23 did not have any accessibility
evaluation as part of their app development process. We also asked
the developers whether accessibility of their apps is treated with
importance in their organization. 27 respondents mentioned that
accessibility is not treated as importantly as other quality attributes,
such as security, in their organization. These might be some of the

reasons why apps developed by top companies are as susceptible
to accessibility issues as apps developed by other companies.�
�

�

Observation 7: The inaccessibility rates for apps developed
by top companies are similar to inaccessibility rates for other
apps, except for SpeakableText accessibility issue.
5.2.4 RQ7: Do developers perceive all accessibility issues

equal? Our goal was to understand how developers perceive dif-
ferent accessibility issues. To that end, we presented a list of some
of the accessibility issues identified through the app analysis and
asked the developers to rate them (See Section 4 for details). Ta-
ble 5 presents the 6 accessibility issues ranked according to the
Scott-Knott ESD test in terms of means of Likert scores for all
the respondents. Redundant Description , Text Contrast and Image
Contrast are the top two groups.
Table 5: Accessibility issues ranked according to the Scott-
Knott ESD test (all respondents)

Group Accessibility issue category

1 RedundantDescription
2 TextContrast
2 ImageContrast
3 TouchTargetSize
3 DuplicateSpeakableText
4 SpeakableText

In our study, we noticed that none of the existing tools rank
the reported accessibility issues, thus do not provide any means
of prioritizing accessibility issues that should be resolved by the
developer. We asked the respondents to rate three ranking methods
that we identified through amanual analysis and provide a rationale
for their rating (See Section 4 for details). We used Scott-Knott ESD
test to rank their responses. Respondents ranked severity of impact
on the user as the primary criterion, and certainty of the warning
(true positive) and ease of fix as the second and third criterion,
respectively.�
�

�

Observation 8: Developers believe impact on user should be
the primary criterion for ranking (prioritizing) the accessibility
issues.

5.3 User Perspective
Here, we report our findings regarding how users’ perception about
apps is affected by the presence of accessibility issues.

5.3.1 RQ8: What accessibility issues do users complain
about? To answer this question, we identified 704 reviews from 102
different apps using the process explained in Section 4, resulting in
150 accessibility-related reviews. Figure 6 summarizes the content
of all the app reviews in terms of the type of accessibility concern
discussed. Almost half of the reviews discussed accessibility without
specifying the exact issues. Users in the other half of the reviews
discussed mainly 3 concerns: (1) difficulties related to missing label
or content description, (2) text size or color, and (3) image/icon
contrast or size. We also found that users tend to use app review
to communicate both positive and negative experiences with app
accessibility. In some cases users gave a bad review and stated that
they are going to delete the app as it is unusable.

Some of the accessibility issues that were discussed in the reviews
are not detectable by automated tools and require manual evalua-
tion. For example, users reported issues related to the grouping of

1330

Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

UI elements on the screen. Users with visual impairment may rely
on using Google TalkBack linear navigation service to understand
what is shown on the screen (they swipe right and left to move
from one element to another). In one app screen, there were too
many elements visible, and navigating that screen linearly was a te-
dious task, and slowed down the reading experience. Alternatively,
developers should hide elements that do not add value to the user,
either by marking them as unimportant for the screen reader, or by
grouping them with other UI elements under descriptive headings.

Figure 6: The rate of the different accessibility concerns dis-
cussed in app reviews�
�

�
�

Observation 9:Almost half of the accessibility issues reported
by users in app reviews are about difficulties related to missing
label or content description, text size or color, and image/icon
contrast or size.
5.3.2 RQ9: Do accessibility issues have any association

with app ratings? We explore the association, if any, between
apps’ inaccessibility rate and their user ratings on Google Play
Store. We crawled the Google Play Store and collected meta-data
about each app including user rating, and whether it was promoted
as an Editors’ Choice on the Store. Table 6 shows the details of the
correlation analysis for apps’ inaccessibility rates and user ratings.
We used Pearson correlation coefficient since the data is normally
distributed.
Table 6: Inaccessibility rates correlation with app rating

Accessibility issue Correlation value

TextContrast * 0.150
TouchTargetSize -0.023
ImageContrast * 0.108
SpeakableText -0.020
RedundantDescription 0.019
DuplicateSpeakableText -0.059
ClassName -0.028
DuplicateClickableBounds 0.012
EditableContentDesc -0.020
ClickableSpan 0.022

Overall inaccessibility rate 0.050�

�
	Observation 10: There is no strong association between the

presence of accessibility issues and app ratings.
We also checked whether presence of inaccessibility issues has

association with being promoted as Editors’ Choice. Table 7 com-
pares the inaccessibility rate for apps that were promoted as Editors’
Choice (a total of 83 apps in our dataset) against all other apps that
were not promoted as Editors’ Choice. Interestingly, apps that were
selected as Editors’ Choice had similar inaccessibility rate compared
to those that were not selected.�

�
	Observation 11: Presence of accessibility issues does not im-

pact popularity of an app.

Table 7: Comparison of inaccessibility rates for apps that
were selected as Editors’ Choice in Play store.

Accessibility issue Inaccessibility rate Cohen’s d

Editors
Choice

Other
apps

TextContrast 25.30 22.71 0.23
TouchTargetSize 18.99 20.19 -0.12
ImageContrast * 15.41 12.43 0.25
SpeakableText 9.81 11.16 -0.16
RedundantDescription 1.12 0.97 0.04
DuplicateSpeakableText 0.71 0.91 -0.15
ClassName 1.04 0.66 0.18
DuplicateClickableBounds * 0.37 0.59 -0.26
EditableContentDesc 0.18 0.36 -0.07
ClickableSpan 0.05 0.17 -0.16

Overall inaccessibility 6.29 6.02 0.11

6 DISCUSSION
Accessibility issues are widely prevalent. One goal of our study was
to investigate and identify the most prominent accessibility issues.
Our findings show Text Contrast, Image Contrast, and Touch Target
are widely prevalent accessibility issues in all categories (33 in our
dataset) of Android apps. Since the apps used in this study are the
top free apps in the Google Play Store, our results represent the
accessibility status of the most commonly used Android apps on
the market.

Individuals with different kinds of disability are affected. To make
things worse, identified accessibility issues affect individuals with
different types of disabilities. As an example, Touch Target accessi-
bility issue impedes the app use for individuals with mobile impair-
ment. Color- and image-contrast related accessibility issues create
difficulty for visually impaired users. Our results also highlight
the fact that approximately 39 million blind users and 246 million
low-vision users worldwide [16] are mostly affected by accessibility
issues, since the most frequent issues identified in our analysis were
Text Contrast, Image Contrast, and Touch Target. These findings call
for action to the software engineering community for reducing
accessibility issues and lowering the barrier for individuals with
different kinds of disability.
Accessibility issues are found even in the Android templates. Our

study provided us with useful insights as to the underlying reasons
for why existing app are so riddled with accessibility issues. One
such reason appears to be the presence of accessibility issues in the
templates provided by IDEs. 5 out of the 10 templates from Android
Studio suffer from Text Contrast, Touch Target and SpeakableText
accessibility issues (two of the top three identified accessibility
issues). It is a common practice for developers to build their apps
based on these templates. Interestingly, Android Studio is not only
the most popular IDE for Android development, but it is also from
Google, the company that makes the most popular accessibility
analysis tool for Android (i.e., Google Accessibility Scanner).

Developer are generally unaware of the accessibility principles. The
pervasiveness of accessibility issues can also be attributed to the
lack of awareness and training among the developers. This was iden-
tified as the top challenge (48.53%) among the survey respondents
(Table 3). For example, all of our survey respondents mentioned
using Lint. However, prior research shows that developers do not
actually know how accessibility warnings from Lint impact the

1331

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

app’s use by a disabled person [17]. Developers could benefit from
training on accessibility design principles, yet such training is a
rarity in most formal academic curricula.

Apps do not get worse over time.When we looked at the evolution
of accessibility in apps, we found that 72% of the apps are either
improving or remaining the same in terms of accessibility (Figure 5).
This is surprising, for two reasons. First, conventional code qual-
ity attributes, e.g., code smells, tend to degrade over time as the
complexity and size of apps increase [4], while with respect to ac-
cessibility we observe a reverse effect. Second, developers claim to
be unaware of accessibility issues and standards (Table 3), thus the
improvements in accessibility cannot be attributed to a conscious
effort on their part. This warrants further investigation into why
and how the accessibility of apps improve over time.

Tools have ways to go. Our results highlight the limitations of cur-
rent accessibility analysis tools. Some of the accessibility issues are
not easy to identify. One such example is the Dropbox app, which
requires the user to navigate through all files in the current folder
before accessing the“menu”, “select”, or “more” buttons. This makes
it difficult, or even impossible, for individuals with mobile impair-
ment to use the app. Identifying such accessibility issues is not
straightforward and requires considering the context of interaction.
None of the current accessibility analysis tools consider context.
Existing tools are also unable to evaluate apps with non-native
elements in their UIs such as Games. Attention from the research
community is needed to investigate the accessibility issues that are
context-specific or occur in non-native UI elements.

Furthermore, we found that the reported accessibility issues are
not equally important. In some cases, a single inaccessible element
undermines the entire purpose of an app. As an example, we found
the rating UI widget of the Yelp app lacks accessibility support, leav-
ing the core functionality of this app inaccessible to many users.
We noticed that none of the analysis tools report severity of issues.
Rather important issues are presented alongside of those that af-
fect tangential functions of an app, e.g., text contrast on the About
screen. The high number of accessibility issues reported by the
existing tools, reaching hundreds in some cases, overwhelm the
developers. Therefore, research is needed into identifying effective
means of prioritizing accessibility issues in terms of their impor-
tance. We took the first step and identified three potentially fruitful
methods of ranking accessibility issues: severity of impact on the
user, certainty of the warning (true positive), and ease of fix. When
asked to rank these during the survey, developers ranked “sever-
ity of impact on the user” as the primary criterion for prioritizing
the accessibility issues. However, further research is required to
identify and compare different prioritization criteria.

Another limitation of the existing accessibility testing tools is the
inability to consider all kinds of impairment. As an example, Google
Accessibility Scanner has no support for testing hearing impairment
related issues. Devising new robust tools for automatically testing
accessibility for all kinds of impairment requires further attention
from the research community.

An interesting observation is that while accessibility issues can
render an app completely useless for a disabled person, the fixes to
many accessibility issues are in fact quite easy. For instance, text
contrast can be easily fixed through simple changes to the font
and/or background colors. Given the recent advances in automated

program repair in the software engineering research community,
this appears to be a fruitful avenue of future research.

Finally, one approach for stemming accessibility issues is to plan
for accessibility in the early design phase rather than handling it
as an afterthought at the end of the development phase. Catching
accessibility issues early on at the design stage allows the developer
to adapt the UI without significant effort. Automated accessibil-
ity analysis tools are needed that can be applied to early design
prototypes, e.g., UI sketches. Furthermore, we found that the most
popular build-time code scanning tool for Android, called Lint, only
provides support for detection of one type of accessibility issue.
We believe incorporating more comprehensive checks in the build
process of IDEs could drastically reduce the accessibility issues that
creep into the final product, allowing the developers to resolve the
issues early in the development.
Gaps between developer and user perception. The preliminary in-

dication from our study is that developers and users have different
perceptions as to the impact of accessibility issues on the usability
of apps. Bridging this gap would help developers prioritize fixes for
accessibility issues that are most critical for users first. However, in
order to do a meaningful comparison and have a better understating
of user perspective, a more extensive user study, involving disabled
users, would be needed. This is outside the scope of our current
study, given that property conducting such a study would require,
among others, access to users with different types of disability (e.g.,
visual, hearing, mobility impairment). Nevertheless, we consider
this to be an interesting avenue of future work.

Organizations need to pay attention.When we tested the relation-
ship between app ratings and presence of accessibility issues, we
did not find any strong association. We posit this has to do with
the fact that disabled people are a small minority of app users, thus,
reports by this category of users do not have a significant impact
on the overall app ratings. This became further evident when we
saw a lack of association between presence of accessibility issues
and popularity of an app (Table 7). Unfortunately, this implies that
disabled users cannot rely on app ratings to determine which apps
to install, and accessibility-related criticism of apps tends to go
unnoticed, as most users do not share the same concerns.

Our analysis revealed that inaccessibility rates for apps developed
by top companies are relatively similar to inaccessibility rates for
other apps. Moreover, out of the 32 survey respondents that are
paid developers, 23 did not have any accessibility evaluation as
part of their app development process. Respondents also mentioned
that accessibility is not treated as importantly as other aspects of
quality, such as security, in their organization. Lack of support from
management was also identified as one of the challenges (15.53%)
with regards to ensuring accessibility (Table 3). All of these indicate
that even the top companies in most cases do not pay attention to
accessibility. We believe training the app developers and increasing
their general awareness of the accessibility issues could improve
the state of affairs, as they become ambassadors of accessibility in
their organizations.

7 THREATS TO VALIDITY
We have strived to eliminate bias and the effects of random noise
in our study. However, it is possible that our mitigation strategies
may not have been effective.

1332

Accessibility Issues in Android Apps:
State of Affairs, Sentiments, and Ways Forward ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Bias due to sampling : To increase our confidence that the sub-
ject apps are representative, we used multiple sources (i.e., Google
Play Store and F-Droid). We also used large number of projects
belonging to multiple categories. Since we used only two sources,
our findings may not be generalizable to all Android apps. However,
we believe that the large number of projects sampled from multiple
sources adequately addresses this concern.

Bias due to tools used: Any error in the tools used may affect
our findings. Tominimize this risk, we leverage Google Accessibility
Testing Framework which is widely used by other researchers [20,
40] and practitioners. This is also the underlying framework for the
state-of-art Google Scanner.
Moreover, it is possible that there are defects in the implemen-

tation of our tool. To that end, we have extensively tested our
implementation, among others, verifying the results against a small
set of apps for which we manually verified the accessibility issues.
Additionally, we do not claim to identify all accessibility issues, as
it is possible that certain accessibility issues cannot be identified
using the existing tools.

Bias due to survey: It is possible that the survey participants
misunderstood some of the survey questions. Tomitigate this threat,
we conducted a pilot study with Android developers with different
experience levels from both open-source community and industry.
We also conducted a pilot study with survey design experts. We
updated the survey based on the findings of these pilot studies.

8 CONCLUSION
We presented the results of a large-scale empirical study aimed at
understanding the state of accessibility support in Android apps.
We found accessibility issues to be rampant among more than
1, 000 popular apps that were studied. We identified a number of
culprits, including, among others, the observation that developers
are generally unaware of the accessibility principles, and that ex-
isting analysis tools are not sufficiently sophisticated to be useful,
e.g., are unable to prioritize accessibility issues. Due to the dispro-
portionately small number of disabled users, apps with extensive
accessibility issues are highly popular and have good ratings. Thus,
disabled people have no way of determining which apps are suitable
for their use based on the app ratings. Moreover, app developers
appear to lack the incentives and backing of their organizations
to make their apps usable by this small, yet important, segment of
society.
Our ultimate goal is to help catalyze advances in mobile app

accessibility by shedding light on the current state of affairs. Our
findings can help practitioners by highlighting important skills
to acquire, and educators by recommending important skills to
include in the curriculum. The findings also highlight opportunities
for researchers to address the limitations of existing tools.

The research artifacts for this study are available publicly at the
companion website [44].

ACKNOWLEDGMENT
This work was supported in part by awards 1823262 and 1618132
from the National Science Foundation. The first author is supported
by King Saud University for his PhD studies at the University of
California, Irvine.

REFERENCES
[1] 508Standards. 2019. U.S. Revised Section 508 standards. https:

//www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines

[2] ADAlaws. 2019. ADAlaws. https://www.ada.gov/cguide.htm
[3] Gaurav Agrawal, Devendra Kumar, Mayank Singh, and Diksha Dani. 2019. Eval-

uating Accessibility and Usability of Airline Websites. In Advances in Computing
and Data Sciences, Mayank Singh, P.K. Gupta, Vipin Tyagi, Jan Flusser, Tuncer
Ören, and Rekha Kashyap (Eds.). Springer Singapore, Singapore, 392–402.

[4] Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, and Carlos Jensen. 2015.
An empirical study of design degradation: How software projects get worse over
time. In Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 1–10.

[5] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468–471.

[6] AndroidAccessibility. 2019. Android Accessibility Overview. Accessed April 12th,
2018. https://support.google.com/accessibility/android/answer/6006564.

[7] Androidguide. 2019. Android Accessibility Developer Guidelines. https://
developer.android.com/guide/topics/ui/accessibility

[8] androidmonkey. 2019. Application Exerciser Monkey:Android Developers. https:
//developer.android.com/studio/test/monkey.html

[9] Androiduse. 2019. Android User worldwide. https://stuff.mit.edu/afs/sipb/
project/android/docs/about/index.html

[10] AndroZoo. 2019. AndroZoo. https://androzoo.uni.lu
[11] AppleAccessibility. 2018. Apple Accessibility - iPhone. Accessed April 12th, 2018.

https://www.apple.com/accessibility/iphone/
[12] Appleguide. 2018. Apple Accessibility Developer Guidelines. https://developer.

apple.com/accessibility/ios/
[13] AppleScanner. 2019. Apple Accessibility Scanner. https://developer.

apple.com/library/content/documentation/Accsssibility/Conceptual/
AccessibilityMacOSX/OSXAXTestingApps.html

[14] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based Android
GUI testing using multi-level GUI comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. ACM,
238–249.

[15] BBC. 2019. Mobile Accessibility Standards and Guidelines v1.0. http://www.bbc.
co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

[16] BlindUserworldwide. 2019. Blind User worldwide. http://www.who.int/
mediacentre/factsheets/fs282/en/

[17] Santiago Liñán Christopher Vendome, Diana Solano and Mario Linares-Vásquez.
2019. Can everyone use my app? An Empirical Study on Accessibility in Android
Apps. In 2019 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). IEEE.

[18] Trinidad Domínguez Vila, Elisa Alén González, and Simon Darcy. 2018. Website
accessibility in the tourism industry: an analysis of official national tourism
organization websites around the world. Disability and rehabilitation 40, 24
(2018), 2895–2906.

[19] Werner Dubitzky, Olaf Wolkenhauer, Hiroki Yokota, and Kwang-Hyun Cho. 2013.
Encyclopedia of systems biology. Springer Publishing Company, Incorporated.

[20] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 116–126.

[21] espresso. 2019. Espresso : Android Developers. https://developer.android.com/
training/testing/espresso

[22] forbes. 2019. forbes. https://www.forbes.com/top-digital-companies/list/
[23] Google. 2018. google/Accessibility-Test-Framework-for-Android. https://github.

com/google/Accessibility-Test-Framework-for-Android
[24] Khronos Group. 2019. The Industry’s Foundation for High Performance Graphics.

https://www.opengl.org/
[25] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. ACM, 204–217.

[26] IBMAccessibility. 2018. IBM Accessibility Checklist for 7.0. Retrieved March 10,
2018. https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html.

[27] Susanne Iwarsson and Agnetha Ståhl. 2003. Accessibility, usability and universal
design—positioning and definition of concepts describing person-environment
relationships. Disability and rehabilitation 25, 2 (2003), 57–66.

[28] Mark Kasunic. 2005. Designing an effective survey. Technical Report. Carnegie-
Mellon Univ Pittsburgh PA Software Engineering Inst.

[29] Royce Kimmons. 2017. Open to all? Nationwide evaluation of high-priority
web accessibility considerations among higher education websites. Journal of
Computing in Higher Education 29, 3 (2017), 434–450.

1333

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.ada.gov/cguide.htm
https://support.google.com/accessibility/android/answer/6006564.
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://stuff.mit.edu/afs/sipb/project/android/docs/about/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/about/index.html
https://androzoo.uni.lu
https://www.apple.com/accessibility/iphone/
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/library/content/documentation/Accsssibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/content/documentation/Accsssibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/content/documentation/Accsssibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
http://www.bbc.co.uk/ guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.bbc.co.uk/ guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.who.int/mediacentre/factsheets/fs282/en/
http://www.who.int/mediacentre/factsheets/fs282/en/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://www.forbes.com/top-digital-companies/list/
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://www.opengl.org/
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

[30] Elmar Krainz, Klaus Miesenberger, and Johannes Feiner. 2018. Can We Improve
App Accessibility with Advanced Development Methods?. In International Con-
ference on Computers Helping People with Special Needs. Springer, 64–70.

[31] Lint. 2019. Improve your code with lint checks. https://developer.android.com/
studio/write/lint?hl=en

[32] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2017. Discipline matters:
Refactoring of preprocessor directives in the# ifdef hell. IEEE Transactions on
Software Engineering 44, 5 (2017), 453–469.

[33] Lauren R Milne, Cynthia L Bennett, and Richard E Ladner. 2014. The accessibility
of mobile health sensors for blind users. (2014).

[34] nltk. 2019. Natural Language Toolkit¶. https://www.nltk.org/
[35] Kyudong Park, Taedong Goh, and Hyo-Jeong So. 2014. Toward accessible mobile

application design: developing mobile application accessibility guidelines for
people with visual impairment. In Proceedings of HCI Korea. Hanbit Media, Inc.,
31–38.

[36] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A study of feature scattering
in the linux kernel. IEEE Transactions on Software Engineering (2018).

[37] Neha Patil, Dhananjay Bhole, and Prasanna Shete. 2016. Enhanced UI Automator
Viewer with improved Android accessibility evaluation features. In 2016 Inter-
national Conference on Automatic Control and Dynamic Optimization Techniques
(ICACDOT). IEEE, 977–983.

[38] qualtrics. 2019. qualtrics. https://www.qualtrics.com/. Accessed: 2019-08-17.
[39] Robolectric. 2019. robolectric/robolectric. https://github.com/robolectric/

robolectric
[40] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.

Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility. ACM, 2–11.

[41] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.
Examining image-based button labeling for accessibility in Android apps through
large-scale analysis. In Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 119–130.

[42] scanner. 2019. Accessibility Scanner - Apps on Google Play. https:
//play.google.com/store/apps/details?id=com.google.android.apps.accessibility.
auditor&hl=en_US

[43] Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas Pereira Ferreira, Jorge
Belimar Silva Vaz, and André Pimenta Freire. 2015. Accessibility evaluation of
e-government mobile applications in Brazil. Procedia Computer Science 67 (2015),
348–357.

[44] Android Accessibility Study. 2019. Android Accessibility Study. https://github.
com/Abdulaziz89/accessibility_eval/

[45] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2016),
1–18.

[46] Jason Taylor. 2018. 2018 ADA Web Accessibility Lawsuit Recap Report [BLOG].
https://blog.usablenet.com/2018-ada-web-accessibility-lawsuit-recap-report

[47] Unity Technologies. 2019. Unity. https://unity.com/
[48] w3c. 2019. w3c. https://www.w3.org/WAI/standards-guidelines/
[49] Bruce N Walker, Brianna J Tomlinson, and Jonathan H Schuett. 2017. Universal

Design of Mobile Apps: Making Weather Information Accessible. In International
Conference on Universal Access in Human-Computer Interaction. Springer, 113–
122.

[50] WCAG. 2019. Web Content Accessibility Guidelines (WCAG) Overview. https:
//www.w3.org/WAI/standards-guidelines/wcag/

[51] WebAIM. 2018. Screen Reader User Survey 7 Results. Retrieved May 10, 2018.
https://webaim.org/projects/screenreadersurvey7/

[52] Brian Wentz, Dung Pham, Erin Feaser, Dylan Smith, James Smith, and Allison
Wilson. 2018. Documenting the accessibility of 100 US bank and finance websites.
Universal Access in the Information Society (2018), 1–10.

[53] who. 2019. World Health Organization. (2011). World Report on Disability.
http://www.who.int/disabilities/world_report/2011/report/en/

[54] Shunguo Yan and PG Ramachandran. 2019. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS) 12, 1 (2019),
3.

1334

https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/write/lint?hl=en
https://www.nltk.org/
https://www.qualtrics.com/
https://github.com/robolectric/robolectric
https://github.com/robolectric/robolectric
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://github.com/Abdulaziz89/accessibility_eval/
https://github.com/Abdulaziz89/accessibility_eval/
https://blog.usablenet.com/2018-ada-web-accessibility-lawsuit-recap-report
https://unity.com/
https://www.w3.org/WAI/standards-guidelines/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/projects/ screenreadersurvey7/
http://www.who.int/disabilities/world_report/2011/report/en/

