
Poster: A Benchmark for Event-Race Analysis in Android Apps
Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek

School of Information and Computer Sciences
University of California, Irvine, USA

{nsalehna,aalshayb,iftekha,malek}@uci.edu

ABSTRACT
Over the past few years, researchers have proposed various pro-
gram analysis tools for automated detection of event-race condi-
tions in Android. However, to this date, it is not clear how these
tools compare to one another, as they have been evaluated on arbi-
trary, disjointed set of Android apps, for which there is no ground
truth, i.e., verified set of event races. To fill this gap and support
future research in this area, we introduce BenchERoid, a set of 34
Android apps with injected event-race bugs. The current version
of benchmark contains 36 types of event-race bugs that were iden-
tified by analyzing Android concurrency literature and publicly
available issue repositories. We believe that our framework is a
valuable resource for both developers and researchers interested
in concurrency bug analysis in Android. BenchERoid is publicly
available at: https://github.com/seal-hub/bencheroid.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Event-Race, Benchmark, Android, Concurrency
ACM Reference Format:
Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek.
2020. Poster: A Benchmark for Event-Race Analysis in Android Apps. In
The 18th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’20), June 15–19, 2020, Toronto, ON, Canada. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3386901.3396602

1 INTRODUCTION
Concurrency mechanisms in Android are an important source of
confusion for developers and contribute to many software bugs in
Android apps [6]. The Android platform provides a hybrid concur-
rency mechanism supporting both traditional multi-threaded and
event-driven programming paradigms [2]. An app defines many
callback methods to handle events originating from the user (e.g.,
tap on the screen), the system (e.g., notifications of location change),
other apps (e.g., requesting data), or the app itself (e.g., download-
ing a file in a background thread). In addition, Android provides a
variety of concurrency libraries for use by developers, e.g., Looper
or AsynTask.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7954-0/20/06.
https://doi.org/10.1145/3386901.3396602

Among the various concurrency bugs, event race is not only
the most frequently encountered, but also the most challenging to
detect in Android apps [3, 5, 6]. An event race occurs when two
event handlers access the same memory location, where at least
one of the accesses is a write operation, and there exists no specific
order between their executions; therefore, the final value contained
in the memory location can change depending upon the stochastic
execution order of events [3].

Over the past few years, researchers have proposed various
program analysis tools for automated detection of event-race condi-
tions in Android [3, 5, 6]. Despite these efforts, not much is known
as to their relative strengths and weaknesses. This is largely due
to the fact that the evaluation of these tools have been performed
in an ad hoc fashion. The subject apps used for the evaluation of
these tools are neither available (the source code and bug locations
are not provided) nor representative (the authors randomly chose
a handful of apps without specifying any selection criterion). Re-
search in this area is hindered by the lack of a benchmark for which
the ground truth is known.

Exiting concurrency benchmarks for Java [4, 8] are not suit-
able for Android due to the differences between the platforms.
For instance, in Android, event races can occur even within a
single thread [3], since the events may execute without any spe-
cific order, while in Java event races can only occur in scenar-
ios involving multiple threads. Figure 1 shows an event-race ex-
ample in Android. When the Activity is created, it registers
a BroadcastReceiver (line 6). The BroadcastReceiver
updates a widget, textView, when it receives a message (line 4).
The widget is initialized in onStart and assigned a null value
when the activity goes to the background in onStop (lines 7-8).
Here, if an intent is sent to the receiver when the app is in the
background, a null pointer exception is thrown, forcing a crash. This
event race is caused by the non-deterministic execution order be-
tween onReceive and onStop even though both are running
on the main thread.

While the research community has developed popular bench-
marks for various quality concerns, such as security vulnerabili-
ties [1] and energy bugs [7], surprisingly none exists for event-race
issues in Android. To fill this gap, we introduce BenchERoid, a first
of its kind, publicly available dataset of Android apps containing
a variety of event races (https://github.com/seal-hub/bencheroid).
We meticulously reviewed real world apps and recent publications
to identify entities that contribute to the manifestation of event-
race bugs in Android apps. Next, we handcrafted 34 Android apps
harboring examples of such concurrency bugs involving a variety
of entities. Finally, we built and ran all the apps, and validated
the existence of event races. The validated event races provide the
ground truth for evaluating the accuracy of event-race detection
tools and advancing the research in this area.

466

https://github.com/seal-hub/bencheroid
https://doi.org/10.1145/3386901.3396602
https://doi.org/10.1145/3386901.3396602
https://github.com/seal-hub/bencheroid
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3386901.3396602&domain=pdf&date_stamp=2020-06-15


MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Salehnamadi, et al.

1 class MainActivity extends Activity {
2 TextView textView;
3 BroadcastReceiver receiver = new BroadcastReceiver() {
4 public void onReceive(...) { textView.setText("

Received!"); }
5 };
6 void onCreate(){ registerReceiver(receiver, new

IntentFilter(...)); }
7 void onStart(){ textView = findViewById(...); }
8 void onStop(){ textView = null;} }

Figure 1: An event-race example in Android

2 METHODOLOGY
In order to make BenchERoid comprehensive, we followed a system-
atic approach of identifying the various entities that may contribute
to the occurrence of event-race conditions in apps.We started by col-
lecting the relevant publications fromwell-known program analysis
research venues such as PLDI, OOPSLA, FSE, ASE, CGO, ASPLOS,
MobiSys, and ICSE for the past 10 years starting from 2010. Our ini-
tial search identified 46 research papers, out of which we filtered the
ones that are relevant to our study (8 papers related to event races
in Android). We also searched for Github issues and StackOverflow
questions with a set of keywords related to event races such as
"Event race", "Concurrency bugs", "Order Violation", etc. Our search
resulted in 4,173 issues in Github and 177 StackOverflow questions.
The first two authors independently read the papers, reviewed the
issues and questions, and sifted through the corresponding apps to
identify the entities that affect the occurrence of event-race con-
ditions in Android. Next, the authors discussed their findings and
arrived at 9 entities, as discussed further below.
• Concurrency API. An event race is caused by concurrent in-
vocations of instructions handled by a concurrency library, e.g.,
AsyncTask.

• Synchronization Mechanism. The concurrency behavior of
an app can be managed using synchronization mechanism, e.g.,
wait in Thread.

• Involved Components. Android components, e.g., Activity, are
created and managed asynchronously by the framework.

• Android Callbacks. An Android app may override some pre-
defined Android callbacks which can be Life Cycle callbacks of
components, e.g., onCreate, or Event callbacks, e.g., onClick.

• Inter-ComponentCommunication.Different components can
communicate with each other concurrently by sending intent
messages.

• Input. The execution of events depends on the provided input.
For example, an event race may occur only when specific inputs
match the condition of an if.

• Execution Order. The order of execution of statements may
cause (or prevent) event races.

• Thread. Events are executed on threads with various properties,
e.g., a Looper handles its messages sequentially. These properties
may introduce or prevent an event race.

• Time-sensitivity. The order of execution of events may be de-
pendent on the time of their execution.
For each entity, we identified a set of possible values (Table 1) by

analyzing the literature. We created combinations of these values
to generate meaningful event-race scenarios. For example, an event
race can occur while using TimerTask concurrency API that
depends on the time of execution. In total, we created 34 apps for

Table 1: Different entities and their possible values along
with the number of apps, possible event races and true event
races.

Entity Values #Apps #Possible
ER

#True
ER

Concurrency
API

Thread 4 8 5
Handler 11 25 12
AsyncTask 3 13 9
Executor 2 2 2
Timer 2 2 2
IntentService 2 2 1

Synchronization
Mechanism

Wait/Notify/Join 2 4 2
Looper 7 19 8
with Delay 4 8 5
Front Of Queue 2 4 1
Serial 5 6 2
Parallel 4 10 7

Involved
Components

Activity 34 60 36
Service 5 7 5
BroadcastReceiver 1 3 3

Android
Callbacks

Life-Cycle 21 49 27
Event 14 29 19

ICC Yes/No 6 10 7
Input

Yes/No
4 9 4

Execution Order 10 24 7
Thread 10 24 12

Time-sensitivity 3 5 2

568 pairwise combinations that cover a wide variety of event-race
scenarios. We further added some infeasible event races along with
true ones for evaluating the precision of event-race detectors. All
apps have been developed in Android Studio 3.5 and can be built
automatically using Gradle. The detailed list of apps and event races
are provided as part of the companion website.

3 CONCLUSION
In this paper, we presented BenchERoid, a micro benchmark for
supporting the analysis of event-race conditions in Android apps.
The benchmark includes 34 apps containing 36 types of concurrency
bugs. We release the benchmark under the Apache License (Version
2.0) and make it publicly available on Github. Our goal is to provide
the community with the means to support the research on detection
of concurrency bugs in Android and BenchERoid was the first step
towards fulfilling that goal. Our future work involves comparative
analysis of existing tools using BenchERoid.

REFERENCES
[1] 2020. DroidBench. Retrieved March 24 , 2020 from https://github.com/secure-

software-engineering/DroidBench
[2] 2020. Looper in Android. Retrieved March 28 , 2020 from https://developer.android.

com/reference/android/os/Looper
[3] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable race detection for

Android applications. In 2015 International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications - OOPSLA 2015. ACM Press, 332–348.

[4] Yaniv Eytani, Rachel Tzoref, and Shmuel Ur. 2008. Experience with a concur-
rency bugs benchmark. In 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop. IEEE, 379–384.

[5] Xinwei Fu, Dongyoon Lee, and Changhee Jung. 2018. nAdroid: statically detecting
ordering violations in Android applications. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization. ACM Press, 62–74.

[6] Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-based Races
in Android Apps. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 257–270.

[7] Reyhaneh Jabbarvand and Sam Malek. 2017. `Droid: an energy-aware mutation
testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 208–219.

[8] Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao. 2015. Jacon-
tebe: A benchmark suite of real-world java concurrency bugs (T). In IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 178–189.

467

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/os/Looper

	Abstract
	1 Introduction
	2 Methodology
	3 Conclusion
	References

