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ABSTRACT

Background: Just-In-Time (JIT) defect prediction models predict
if a commit will introduce defects in the future. Deep]IT and CC2Vec
are two state-of-the-art JIT Deep Learning (DL) techniques. Usually,
defect prediction techniques are evaluated, treating all training data
equally. However, data is usually imbalanced not only in terms of
the overall class label (e.g., defect and non-defect) but also in terms
of characteristics such as File Count, Edit Count, Multiline Comments,
Inward Dependency Sum etc. Prior research has investigated the im-
pact of class imbalance on prediction technique’s performance but
not the impact of imbalance of other characteristics. Aims: We aim
to explore the impact of different commit related characteristic’s
imbalance on DL defect prediction. Method: We investigated differ-
ent characteristic’s impact on the overall performance of DeepJIT
and CC2Vec. We also propose a Siamese network based few-shot
learning framework for JIT defect prediction (SifterJIT) combin-
ing Siamese network and Deep]IT. Results: Our results show that
Deep]JIT and CC2Vec lose out on the performance by around 20%
when trained and tested on imbalanced data. However, Sifter]IT can
outperform state-of-the-art DL techniques with an average of 8.65%
AUC score, 11% precision, and 6% F1-score improvement. Conclu-
sions: Our results highlight that dataset imbalanced in terms of
commit characteristics can significantly impact prediction perfor-
mance, and few-shot learning based techniques can help alleviate
the situation.
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1 INTRODUCTION

Assuring the reliability of software is very important due to its
omnipresence. However, it is also inherently a resource-constrained
activity. Real-world software systems have more bugs than develop-
ers can identify and fix [49]. Moreover, bug fixing is effort-intensive;
Kim et al. [43] reported that the time to fix a bug ranges from 100
to 200 days. Therefore, any technique that allows developers to
reliably identify buggy parts of the code to guide their bug-fixing
efforts is helpful. One such technique is defect prediction. In the last
decade, researchers have investigated a wide range of defect pre-
diction models based on different types of metrics, such as metrics
about the code [89], historical data [28, 61], and developers’ inter-
action information [51, 65]. These defect prediction techniques aim
to isolate the parts of the code that are likely to be buggy so as to
facilitate bug-fixing efforts. Just-in-time (JIT) defect prediction [37]
is one such technique to predict if a commit will introduce defects
in the future. Such commit level predictions are useful in allocating
resources to prioritize fixing the riskiest commits.

Researchers have been investigating ways to improve the JIT
defect prediction model’s effectiveness. Applying Deep Learning
(DL) to automatically extract the semantic and syntactic struc-
ture of the actual code changes has been the focus of one such
effort [31, 32, 52, 84] and is the state-of-art in terms of performance.
For example, Yang et al. [84] utilized Deep Belief Network, Hoang et
al. [31] proposed “Deep]IT” which implements Convolutional Neu-
ral Network (CNN) to extract features from both commit messages
and code changes for defect prediction. Hoang et al. also intro-
duced a hierarchical attention network to construct distributed
representations of code changes for JIT defect prediction [32].

All defect prediction techniques, including JIT, relies on the qual-
ity of data [8, 15]. However, data often exhibit highly skewed class
distribution, i.e., most data belong to majority classes. In contrast,
the minority class only contains a small number of instances, also
known as few-shot classes [80]. For example, in JIT defect predic-
tion, defect inducing commits would fall in the few-shot class, and
non-defect inducing commits would be in the majority class.

Since the few-shot class is under-represented during the training
phase [29], trained models perform poorly on the few-shot class.
Such bias is well-known in various domains. For example, in face
recognition, it is comparatively easier to detect humans with a
“normal-sized nose" from web images compared to someone with a
“big-nose" since it is easier to obtain face images of “normal-sized
nose" than faces with “big-nose" during data collection [48]. For
vehicle recognition, it is more difficult to detect crashed vehicles
than regular vehicles since training data rarely contain crashed
vehicles [85].
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Figure 1: Long-tail distribution of number of changed files
in a commit.

Prior studies have investigated ways to deal with data imbalance.
Wang et al. investigated how to benefit defect prediction from
such imbalance via implementing imbalance learning methods,
such as resampling techniques, threshold moving, and ensemble
algorithms [79]. Their experimental result shows that these class
imbalance learning methods could improve overall defect prediction
performance. From there on, more defect prediction studies started
using imbalance learning techniques [55, 73].

However, these works only focused on the class imbalance be-
tween the buggy and non-buggy classes. We posit that other char-
acteristics of the dataset can also be imbalanced and can have an
adverse effect on the prediction model’s performance. For example,
Figure.1 shows the frequency along with the number of modified
files in each commit from OPENSTACK [2] defect prediction dataset.
We can observe that the major number of modified files is less than
10, and only a few commits modified more than ten files. Our goal is
to understand whether characteristics such as these impact defect
prediction models’ performance and whether other characteristics
can affect defect prediction. Understanding this is important be-
cause such characteristics can limit the maximum performance of
a prediction model by consistently incorrectly predicting commits
with certain characteristics. Being aware of them can help alleviate
the issue and help devise techniques and tools to deal with them.
Simply applying feature importance measuring techniques (such
as information gain [53, 68]) will not suffice since these techniques
are not tailored for measuring bias (i.e., if a metric is important, it
does not mean that the metric must be imbalanced).

In order to identify characteristics that may make the defect
prediction dataset biased, we conduct experiments to answer the
following research questions:

RQ1: Do commit characteristics have an impact on defect
prediction performance?

RQ2: Considering different commit characteristics, which
one affects defect prediction performance the most?

RQ3: How well can DL techniques predict defects by ex-
plicitly considering few-shot classes?

To improve the prediction performance for the few-shot class, we
relied on the Siamese network, which is the most efficient technique
for few-shot learning, and we call our new Siamese-based few-shot

learning “Sifter]IT”. We also compared SifterJIT’s result with state-

of-art JIT techniques. Specifically, this paper makes the following

contributions:

o This is the first study to empirically validate a set of commit
characteristics that potentially bias the defect prediction perfor-
mance.

e An end-to-end DL framework (SifterJIT) aimed towards improv-
ing the prediction performance for few-shot classes.

The remainder of the paper is structured as follows. Section 2
describes the related work. Section 3 presents details of our method-
ology. Section 4 reports the findings. Section 5 places our results in
the broader context of work to date and outlines the implications
for practitioners and researchers. Section 6 is the threats to validate
our results. Section 7 concludes with a summary of the key findings
and an outlook on our future work.

2 RELATED WORK

In this section, we first give an overview of ML-based defect
prediction studies. Then, we describe the biases studied in soft-
ware engineering, ML, and defect prediction. Finally, we provide
background about the few-shot learning and Siamese Network.

2.1 ML for Defect Prediction

ML based defect prediction techniques have been proposed to
predict software defects to reduce the manual effort for identify-
ing defects and reduce software development and maintenance
cost [28, 35]. A large number of research studies were performed
to boost the performance of ML defect prediction models. In these
studies, ML models were built from past software data (e.g., soft-
ware codebase, issue tracking systems, etc.) and then used to predict
whether new instances of code regions (e.g., files, changes, and func-
tions) contain or introduce defects [28, 45, 88]. Researchers have
investigated on how to manually design new features or combi-
nations of features to represent defects [56]. Prior research also
looked into using DL algorithms to learn features or new representa-
tions automatically [31, 32]. Besides these approaches, researchers
also explored transfer learning [36], Personalized [34] for defect
predictions.

To further reduce the costs of software development by identi-
fying defects as soon as they are introduced, research studies [40,
42, 84] in recent years proposed JIT defect prediction techniques.
JIT techniques can predict whether a particular code region (e.g.,
file, code line, and function, etc.) involved in a code change (e.g.,
commit) will introduce defects in the future. JIT defect prediction
allows developers to check and resolve defects as soon as they are
introduced. In an ideal scenario, JIT helps to pinpoint the most
likely defective commits [39] before those commits are introduced
into the codebase. The convenience of providing early feedback to
software developers allows them to prioritize and optimize efforts
for code review and testing, especially when they are restricted by
limited resources [31]. As a result, JIT defect prediction research
has gained much attention in recent years [20, 41, 72].

ML techniques such as Support Vector Machine [23], Random
Forest [9] and Nearest-Neighbor [70] have been widely used in
existing work for building JIT defect prediction models. Similar



to regular defect prediction, a common theme of existing JIT de-
fect prediction work is to rely on manually crafted features/met-
rics to characterize a code change and use them to predict de-
fects [40, 59, 63]. DL techniques have also been adopted in JIT
defect prediction [31, 32, 64, 82, 84]. Yang et al. [84] integrated DL
in JIT defect prediction by constructing a Deep Belief Network-
based approach. Qiao et al. [64] employed a DL neural network for
JIT defect prediction to overcome the difficulty of selecting useful
change metrics and mapping between the input (metrics of code
changes) and the output (defective or non-defective). Hoang et al.
proposed [31, 32] techniques based on deep representation learn-
ing to extract semantic feature representations from both commit
message and commit code change.

Among the aforementioned DL based JIT defect prediction tech-
niques, we picked the state-of-the-art Deep]IT [31] and CC2Vec [32]
with respect to performance. Deep]IT [31] is a DL-based JIT defect
prediction technique. It trains on the information of both com-
mit message and code change [31]. Deep]IT uses two separate
Convolutional Neural Networks (CNN) for feature extraction and
concatenation [50]. Using the resulting vector, the output layer com-
putes the probability of a commit being defective. CC2Vec [32] is
an improvement over DeepJIT which uses a Hierarchical Attention
Network (HAN) for extracting features. The resulting features are
concatenated to form a representation of the code change, which is
then concatenated with the commit message vector and the code
change vectors generated by Deep]IT. Concatenated vector is then
fed into Deep]JIT’s feature combination layers to predict whether
the given commit is defective.

Although the two techniques mentioned above achieved fairly
good performance, these frameworks did not improve the predic-
tion performance for classes with a small number of instances
(few-shot classes). Since under-represented classes with particu-
lar characteristics may negatively impact the JIT defect prediction
model’s overall performance, improving prediction performance
for under-represented classes can boost the overall performance.
In our study, we implement the SifterJIT approach to improve the
overall performance of DL-based JIT defect prediction.

2.2 Study on Data Bias in Software Engineering

In recent years, with the advent of ML, numerous studies have
analyzed the biases within ML related software [16, 17, 74]. This
type of biases mainly results from biased ML model training/eval-
uation processes and data distribution imbalance in the training
or testing datasets [6, 12, 16, 17, 27, 74]. In addition, the data la-
beling, model training, and model evaluation may contribute to
building a biased model [8, 57, 75, 77]. Data-driven decisions have
the potential to negatively impact already disadvantaged popula-
tions [8, 15, 57, 67, 76] as they are relatively less represented in the
training data.

In the software defect prediction field, there are mainly two pop-
ular research branches of analyzing data bias. We provide detailed
explanations of these two branches below.

One type of bias in defect prediction datasets stems from the
construction of the datasets [11]. Identifying defect-fixing changes

is a key to the identification of defect code regions in the code-
base to construct a historical dataset for defect prediction mod-
els [56, 66]. However, multiple factors (e.g. severity of the defect or
the experience of the fixer) can impair the automated identification
of defect-fixing changes and further impact the performances of
defect prediction models [83]. For instance, suppose only experi-
enced developers annotate their changes as defect-fixing or not.
Automated tools only identify defect-fixing changes made by experi-
enced developers. Therefore, there will be an under-representation
of the code regions fixed by inexperienced developers in defect
prediction datasets; and the resulting bias may negatively affect
the performances of the models. Rahman et al. [66] proposed a set
of bias-influence metrics to measure the aforementioned bias in
file-level defect prediction techniques. Inspired by their work, we
identify several commit characteristics to see how does bias among
these commit characteristics affects the performances of JIT defect
prediction techniques.

Another category of bias studied in defect prediction is mostly
the class imbalance problem. Previous studies on defect prediction
demonstrate that most of the defects occur in very few modules [89],
which indicates that the number of defective instances is much less
in number compared to non-defective instances, which results in
imbalanced datasets. In such cases, the imbalanced distribution of
classes may result in incorrect predictions of the minority class
instances. Therefore, handling imbalanced datasets to obtain im-
proved results has received much attention among Software Engi-
neering researchers. Various methods have been developed to deal
with imbalanced data like data sampling, cost-sensitive learning,
and ensemble methods [21, 38, 47, 54, 71, 79]. To the best of our
knowledge, researchers have used the methods mentioned above to
mitigate the class imbalance issue [63, 84]. However, in this study,
our goal is to investigate the effect of biased commit characteristics
on JIT defect prediction and, in addition, we aim to propose an
approach to overcome such effect on the performance.

2.3 Few-shot learning and Siamese Network

The performances of ML models may be hampered when there
are few training instances. However, in some certain areas (e.g. drug
discovery [7], image classification [46]), labelled data instances may
be difficult or impossible to acquire. Few-shot Learning is proposed
to tackle this issue with the help of prior knowledge [80].

As a representative method of few-shot learning, the concept of
Siamese networks was proposed by Bromley et al. [14]. Koch [46]
and Neculoiu et al. [62] pointed out that the Siamese network is a
type of twin framework with two or more identical sub-networks
and every sub-network has the same parameters and weights. The
parameters of Siamese networks are updated based on the joint per-
formance of all sub-networks. Its classification powers are learned
through similar and dissimilar information between data pairs [58].
Moreover, they proved that Siamese networks are good at learning
on a dataset where a small amount of data is available [46, 62, 78].

Siamese network has also been used in defect prediction field,
Zhao et al. [87] proposed Siamese Dense neural networks (SDNN)
based defect prediction model, which integrates similarity feature
learning and distance metric learning. After comparison experi-
ments, SDNN outperformed other state-of-the-art defect prediction



models on NASA datasets [26]. However, their approach does not
leverage the true notions of DL as they still employ the numeric fea-
tures/metrics that are manually engineered. Our goal is to improve
the learning efficiency of the few-shot class with respect to commit
characteristics. While SDNN is a few-shot learning model dealing
with a lack of sufficient training data, they did not consider the bias
existing in the dataset and its impact on the model’s performance.
In this study, we investigate such bias to fill this gap in existing
research.

3 METHODOLOGY

We use the following process during our study: (A) First, we
select state-of-art JIT defect prediction techniques, (B) we select
characteristics to investigate; (C) we explore if commit character-
istics have an impact on the state-of-the-art DL defect prediction
techniques; (D) we measure how much these characteristics can
impact the prediction technique by splitting the data based on char-
acteristics; (E) we propose a new DL framework called SifterJIT and
compare our framework’s performance with existing techniques.

3.1 Prediction Technique Selection

Among many available DL-based JIT defect prediction tech-
niques, we picked Deep]JIT [31] and CC2Vec [32] since they are state-
of-the-art. These two studies use the same training/testing datasets
originally curated by McIntosh et al. [56] and have been widely
used in JIT defect prediction [31, 32, 63] literature. In the dataset,
MclIntosh et al. manually filtered and analyzed commits from two
well-known software projects QT [4] and OPENSTACK [3]. The
dataset contains 25,150 commits from the QT project and 12,374
commits from the OPENSTACK project. Table 1 presents summary
statistics of the dataset.

Table 1: Summary of the dataset

Timespan Commits
Start End Total Defect
OPENSTACK 11/2011 02/2014 12,374 1,616 (13%)

QT 06/2011 03/2014 25,150 2,002 (8%)

Dataset

3.2 Characteristics Selection

JIT defect prediction techniques predict whether a commit will
introduce defects in the future by identifying the most likely defec-
tive commits [63]. We focused on extracting characteristics relevant
to a commit since JIT prediction is performed after every new com-
mit. We relied on the study conducted by Motwani et al. [60] for
this purpose. They conducted a comprehensive study to identify
characteristics that are important for developers while fixing a bug.
Some of the characteristics are not available when a new commit is
pushed into the code base, such as Time to fix, Priority, Reproducible,
Triggering test count etc. Therefore, all defect characteristics pro-
posed by Motwani et al. [60] can not be directly used in our analysis.
The first and second authors carefully examined each characteristic
mentioned by Motwani et al. and selected the characteristics appli-
cable to JIT defect prediction after reaching a complete agreement.
Our selected characteristics are listed in Table 2.

To extract Edit Count and File Count, we first collected the in-
formation (e.g., added code lines, deleted code lines, the names of

Table 2: Commit characteristics used in this study

Commit ips
. Definition
characteristics
. Number of changed files that contain non-comment
File Count : R
and non-blank-line edits
. Number of lines edited that are non-comment or
Edit Count

non-blank

Multiline Com-
-ments Count
Outward Depen-  Total number of dependents modified files are

Number of new added multiline comment chunks

-dency Sum depended on.
Inward Depen- Total number of dependents depending on the modified files.
-dency Sum

Table 3: Regular expression implemented to filter out com-
ments

Single Line Comment (C/C++)  “(*[+-][[:blank:]]*\/\/)|(*[+-][[:blank:]]*$)"
Multi Line Comment (C/C++)  “\s*(V\*)(*?2)\*\/"

Single Line Comment (Python)  “(*[+-][[:blank:]]*#)|(*[+-][[:blank:]]*$)"
Multi Line Comment (Python) — “\s*([V\"])\I\1(*?)\1{3}"

the changed files) of commits in the dataset from Github by using
Github API'. However, the information gathered contains modified
files that only modified comments. According to [60], comment
changes play a negative role in characterizing changes since they
do not affect program behaviors. Therefore, we designed regular
expressions to filter out the modified files that only edited comments.
The resulting Edit Count is the sum of the number of non-comment
added and deleted code lines, while File Count is the number of
changed files in a commit that contain at least one line of non-
comment code change. In addition, git diff -w command is used to
ignore whitespace differences between commits and their parents
to ensure blank line changes do not impact the counting of Edit
Count and File Count. The detailed implementation of the regular
expressions is showed in Table 3.

Prior research identified comments when modified with source
can act as a significant feature for defect prediction [42]. Thus, we
also want to explore if multiline comment blocks in the source
code can impact the performance of JIT defect prediction. So we
extracted the number of multiline comment blocks as Multiline
Comments Count.

To ensure the reliability of results for Inward Dependency Sum
and Outward Dependency Sum, we used a widely adopted static
analysis tool, Understand?. The tool analyzes every reference in a
project and builds dependency data structures for every file and
architecture. This includes the nature of the dependency and the
references that cause the dependency. Therefore, we summed all
files that the edited files depend on and summed files that depend on
the edited files as Outward Dependents Sum and Inward dependents
Sum, respectively.

3.3 Investigating Difference in Characteristics
between Correct and Incorrect Prediction

Next, we investigated the impact of the selected characteristics
on prediction. We replicated Deep]IT [31] and CC2Vec [32] with
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their original training and testing datasets so that we can compare
the characteristics’ impact on these two techniques.

Deep]IT [31] relies on both commit message and code change
for prediction. We encoded commit messages and code changes
and fed them into the input layer of two separate Convolutional
Neural Network (CNN) [50] for feature extraction. Then, the two ex-
tracted feature vectors were concatenated to form a unified feature
representation. The new vector is then fed into a fully connected
layer, which outputs a probability score for a given commit being
defective.

We followed the process described by Hoang et al. [32] to repli-
cate CC2Vec. Specifically, we took information from the code change
of the given commit as an input and output a list of files, including
a set of removed code lines and added code lines. Each changed
file is then encoded as a three-dimensional matrix to be given as
input to a hierarchical attention network (HAN) for extracting
features. The resulting features are then concatenated to form a
vector representation of the code change. Then, we map the vector
representation of the code change to a word vector extracted from
the log message; the word vector indicates the probabilities with
which various words describe the commit. Finally, we concatenated
the vector representation of the code change extracted by CC2Vec
with two embedding vectors extracted from the commit message
and code change to form a new feature, which is fed into Deep]IT’s
feature combination layers to predict if a commit is buggy.

Next, we split the classification results into correctly and incor-
rectly classified groups. Then for each characteristic, we compare
between correctly and incorrectly classified groups. Since we per-
form multiple tests, we have to adjust the significance value ac-
cordingly to account for multiple hypothesis correction. We use
the Bonferroni correction [13], which gives us an adjusted p-value
of 0.01. For all five characteristics, we find significant differences
(Mann-Whitney test, #<0.01) between the means of correctly and
incorrectly classified commits. We use the non-parametric Mann-
Whitney test since our population is not normally distributed. We
also calculated Cliff’s Delta between the mean values to check the
effect size, where a delta less than 0.147 is considered “negligible”,
less than 0.33 is considered “small”, less than 0.47 is considered
“medium”, and a delta greater than 0.47 is considered “large” [69].

3.4 Investigating Impact of Characteristics on
Prediction

To measure how much the characteristics affect the performance
of DL defect prediction techniques, we leveraged the mean values
of characteristics identified for correctly and incorrectly classified
commits in the previous step.

We posit that for any characteristic, a value close to the mean
value of the wrongly classified group will have a more negative im-
pact on prediction performance. Whereas a commits characteristic
value close to the mean value of a correctly classified group does
not have a significant negative impact on DL predictions.

Following the above intuition, we divided OPENSTACK and QT
datasets using the previously calculated mean values for correctly
and incorrectly predicted groups, separately for each characteristic.
In this study, we tried multiple threshold calculation approaches,
such as calculating the mean of mean or median of mean values.

However, through our empirical investigation, we found that pre-
dictions based on different threshold calculation approaches were
similar because the difference between the mean values of char-
acteristics for correctly and incorrectly classified groups was big.
So we use the median of mean values for calculating the threshold
using the following equation:

Threshold = median[z Z mean(CVCfZ)
i

+ 303 mean(CVWE)] (1)
i

In the equation above, CVW is a Characteristic Vector for Wrongly
classified data, CVC is a Characteristic Vector for Correctly classi-
fied data, m is DL model (i.e., DeepJIT, CC2Vec), d is dataset (i.e.,
OPENSTACK, QT). For example, mean values calculated for File
Count characteristic in OPENSTACK data is 2.71 for correct clas-
sification, and 8.58 for wrong classification on Deep]JIT (Table 6).
For CC2vec, the values are 3.09 for correct classification and 8.28
for incorrect classification. Thus, the threshold of File Count char-
acteristic in the OPENSTACK dataset is 5.68. The thresholds for
each characteristics for OPENSTACK is shown in second column
of table 4, and for QT is in Table 5.

Table 4: Training and testing data of OPENSTACK dataset
calculated based on thresholds

Divide Smaller than Bigger than
Characteristics Threshold threshold threshold
(train/test) (train/test)

Edit Count 14335 84.29%/82.34%  15.71%/17.66%
File Count 5.68 85.84%/84.07% 14.16%/15.93%
Multi-line 8.84 87.92%/86.03%  12.08%/13.97%
Comments Count
Inward Depen- ) o) 81.45%/79.79% 18.55%/20.21%
-dency Sum
Outward Depen-

utward DEpenT 4678 77.75%/74.98%  22.25%/25.02%
-dency Sum

Table 5: Training and testing data of QT dataset based on
thresholds

Divide Smaller than  Bigger than
Characteristics threshold threshold

Threshold . .

(train/test) (train/test)

Edit Count 247.35 92.25%/93.38%  7.75%/6.62%
File Count 13.22 94.39%/94.32%  5.61%/5.68%
Multiline 58.13 93.37%/93.81%  6.63%/6.19%
Comments
Inward Depen-

71.71 88.23%/86.84% 11.77%/13.16%
-dency Sum

D N

Outward Depen- ¢, 82.41%/84.11%  17.59%/15.89%
-dency Sum

After splitting, we observe that for each characteristic, the group
with values smaller than the threshold always occupies the majority
parts of data (third column in table 4 and table 5). For example, in
the case of File Count, the group below threshold in OPENSTACK
contains 84.29% of training data and 82.34% of testing data. The



majority group based on Outward Dependency Sum occupies a rela-
tively low percentage of total data, but it still occupies 77.75% of
training and 74.98% of testing data. A similar pattern is observable
for the QT dataset. Table 5 shows that the data below the File Count
threshold occupies 94.39% of all QT training data and 94.32% of all
QT testing data. Thus, we call the divided data below the threshold
as Majority Class. Furthermore, the group with a value bigger than
the threshold is named as Few-shot Class since a smaller part of the
dataset belongs in this group. Next, we trained both Deep]JIT and
CC2Vec for both of the Majority Class and Few-shot Class. We did
the training for each characteristic and compared the AUC score
to investigate the impact of characteristics on prediction. To deal
with variance in DL prediction results, we validated each dataset
15 times and reported the mean values in the results.

3.5 Improving Defect Prediction Considering
Few-shot class

Sifter]IT aims to improve the state-of-the-art DL defect prediction
models, specifically by improving the prediction on the few-shot
class. The intuition behind our approach is that focusing on the
few-shot class will help improve the overall performance since DL
models tend to perform worse for the few-shot class compared to
the majority class when trained together.

The Sifter]JIT schema is shown in Figure 2. First, we divide the
training dataset into majority and few-shot classes based on their
characteristics (Section 3.4). Then, we trained a Siamese network
on the few-shot class since state-of-the-art DL models (Deep]IT,
CC2Vec) perform poorly on the few-shot class as they have fewer
training instances compared to the majority class. We selected the
Siamese network since Koch et al. [46] and Neculoiu et al. [62]
showed that Siamese networks are suitable for few-shot learning
where a little data is available. The trained Siamese network was
then used for testing commits that belonged to the few-shot class.
For the majority class, we continue using Deep]IT since it is a
state-of-the-art technique. Below we present the details of Siamese
networks and Sifter]IT.

Majority classes with DeeplIT
respect to significant O
impact characteristics O O m
Total O O O Major class \%
data O classifier Prediction
O O b
o 8 O Siamese Network
(o} o}
090 -
o . Few-shot A
Similarity class <
Sharing weights o Prediction
Measure classifier
Few-shot classes with o) 1-p) Score
respect to significant SR
impact characteristics 959
O o o

Figure 2: Overview of SifterJIT

3.5.1 Siamese network. The Siamese network consists of two iden-
tical base networks which process the same training instances in
pairs. However, the weights of the two networks are shared. This
model accepts distinct inputs and joins them by a similarity measure
function. This similarity measure function measures the distance
d; between the learned features h; and hy on each side. Figure 3
shows a Siamese network with three hidden layers, and each layer
contains two neurons. The depicted Siamese network performs

binary classification with a similarity function s = Z?:l d;, where
n is the number of learned attributes.

Input Hidden Hidden Hidden Distance
Layer Layer 1 Layer 2 Layer 3 Layer 3

Similarity
Measure

Figure 3: Siamese network with three hidden layers

3.5.2  Similarity measure. Siamese network measures the distance
between learned features on each side. If X; and X3 are two input
vectors, w represents shared parameter vector, and the mapping
of X; and X3 in the feature space are represented by H,,(X;) and
H,,(X>3). Then the Siamese networks can be considered as a scalar
similarity function D,, (X1, X2) to measure the distance between X3
and X», and the distance is defined as:

Doy(X1,X2) = [[Hw(X1) = Hw(X2)|
Sifter]IT uses Euclidean distance to learn the metric of similarity
features from input pairs of data.

3.5.3 Loss function. : For the Siamese network loss function, we
use the most popular Contrast loss function [81]. The loss function
is defined as:

1 N .
Lcontr(W, y,X1,X2) = N Z((l - yi) * (D(wl)z
i=1

+yi * (max(m - D{),0)2)  (2)

where y is a binary label, y = 0 if a pair of data(X3, X2) belongs to
the same class and y = 11ifit is different. m > 0 is a pre-set threshold,
D,, is the Euclidean distance. The minimum of Leonsr(w, y, X1, X2)
will decrease D, when pairs of data come from the same character
class and increase D,, when pairs of data come from a different
class. More concisely, the minimization of L¢onsr(w, y, X1, X2) would
result in low values of D,, for similar pairs and high values of D,,
for dissimilar pairs. Using this loss function, two commits will have
low Euclidean distance if they introduce similar defect, and non-
defect introducing commits have large Euclidean distances with a
defect introducing commits.

3.5.4 SifterJIT Model Training. The SifterJIT’s base network is
similar to Deep]JIT [31], which includes a convolutional layer with
multiple filters and a nonlinear activation function (i.e., Relu). This
paper uses a normal distribution with zero mean and a standard
deviation 0f 1072 to initialize all neural network weights. We set
the dimension of word vectors and the number of filters to 64
since Hoang et al. [31] showed they got the best performance at
these values. We set the batch size to 32 and the size of the fully
connected layer to 512. Since our goal was to compare performance,



we used same hyperparameters settings that were used by prior
work [31, 33].

3.5.5 Data Oversampling: To evaluate if SifterJIT can outperform
state-of-the-art techniques, we compared with original DL defect
prediction techniques and applied oversampling on the dataset
for original DL techniques. Previous studies [22, 55] show that
oversampling is an effective approach to improve performance on
imbalanced data. Thus, we also compared SifterJIT with models
trained on over-sampled data. SMOTE [18] has been proved as one
of the most popular oversampling techniques. SMOTE works by se-
lecting examples close in the feature space, drawing a line between
the examples in the feature space, and drawing a new sample at
a point along that line [18]. However, the input data we used is
the representation of code changes and commit messages, and it
is difficult to draw a meaningful line between data samples of this
type. Thus, we did not use SMOTE for oversampling; instead, we
implemented a random oversampling scheme [22]. The random
over-sampling technique randomly duplicates examples from the
few-shot class and adds them to the training dataset [22]. We ap-
plied oversampling on Deep]JIT and CC2Vec but not on Sifter]IT.
Because SifterJIT compares pairs of inputs and predicts via calculat-
ing their distance. If random over-sampling with SifterJIT is used,
the duplicates will have no distance between them, and it will not
improve SifterJIT’s performance. On top, it will increase training
time. So we did not use over-sampling with Sifter]JIT.

3.5.6 Evaluation Metric: We report the standard precision, recall,
and AUC (Area Under the receiver operating characteristic Curve)
to assess the performance of the prediction models because it is in-
dependent of prior probabilities [10]. Also, AUC is a better measure
of classifier performance than accuracy because it is not biased by
the size of test data. Moreover, AUC provides a “broader” view of
the performance of the classifier since both sensitivity and speci-
ficity for all threshold levels are incorporated in calculating AUC.
Other work related to JIT prediction have used AUC for comparison
purposes [19, 24, 25, 31, 32, 86].

We list the formula used for calculating precision, recall, and
F-measure below. AUC Computes the area under the curve plotting
the true positive rate against the false positive rate, while applying
multiple thresholds to determine if a commit is defective or not.
The AUC curve is created by plotting the recall against the false
positive rate (FPR) at various threshold settings.

e Precision (P): A measure of whether the commits classified as
defect are actually defective commits.

Ip
3
Ty ®3)

e Recall (R): A measure of the percentage of defect instances that
the approach managed to correctly predict.

precision =

ip
tp + fn @)

e F1score (F1): The F1 score is the harmonic mean of the precision
and recall.

recall =

Precision = Recall
Fl=24% — ———— (6)]
Precision + Recall

o False positive rate (FPR): A measure of the ratio of the number
of defects wrongly categorized and the total number of actual
defect commits.

Jp

FPR =
ﬁ,+tn

(6)

4 RESULTS

Here we discuss the results of our study by placing them in the
context of three research questions, which investigate the impact
of characteristics on prediction performance (RQ1), which charac-
teristic affects prediction performance the most (RQ2), and whether
we can improve the prediction of defects by explicitly considering
few-shot classes identified using the aforementioned characteristics

(RQ3).

4.1 RQ1: Do commit characteristics have an
impact on defect prediction performance?

To answer this question, we replicated the work of Deep]IT and
CC2Vec using their original training and testing data. Then we split
the classification results into two groups based on whether they
were correctly or incorrectly classified. Next, we investigate if char-
acteristics (i.e., Edit Count, File Count, Multiline Comments Count,
Inward Dependency Sum, and Outward Dependency Sum) have any
impact on classification performance. The calculated mean charac-
teristic values for correctly and incorrectly classified instances are
shown in table 6 and in table 7. For example, in terms of File Count
characteristic, the mean number of the modified files is 2.71 for
the correctly classified group and 8.58 for the incorrectly classified
group.

The next column on table 6 and 7 shows the P-values from the
Mann-Whitney test, indicating whether there is a statistically signif-
icant difference between the characteristic’s value between correct
and incorrect classification groups. Our results indicate that for
OPENSTACK, the distribution of mean values between correctly
and incorrectly classified groups are significantly different for all
characteristics (Table 6). The Ciff’s Delta of the these characteris-
tics’ mean values between correctly and wrongly classified data
is 0.42, when using Deep]IT and 0.38, when using CC2Vec, both
of which show a medium difference in effect size. However, for
the QT dataset, only Outward Dependency Sum has a statistically
significant difference between correctly and incorrectly classified
groups (Table 7).

Table 6: Comparison between correct and incorrect predic-

tion’s mean values of characteristics in OPENSTACK dataset.
* indicates statistical significance.

Dataset OPENSTACK
Model Deep]IT CC2vec + Deep)IT
Correct  Wrong Correct  Wrong
Classifi- Classifi- P-value Classifi- Classifi- P-value
-cation  -cation -cation  -cation
File Count 2.71 8.58 9.64e-14*  3.09 8.28 1.95e-09*
Edit Count 65.71 227.26 3.38e-13*  82.03 204.68 2.36e-10
Multiline N B
3.50 15.04 3.40e-08 4.94 12.74 3.26e-05
Comments
InwardDep- ) 00 3350 192e-08* 1428 3134  1.99-05%
-endents Sum
OutwardDep- ) 07 (4136 36e-12* 2041 6416  1.97e-09*

-endents Sum




Table 7: Comparison between correct and incorrect predic-

tion’s mean values of characteristics in QT dataset. * indi-

cates statistical significance.

Dataset QT

Model DeepJIT CC2Vec + Deep]JIT
Correct  Wrong Correct  Wrong
Classifi- Classifi- P-value Classifi- Classifi- P-value
-cation  -cation -cation  -cation

File Count 4.88 21.57 0.03 479 27.22 0.12

Edit Count 16898 32572 0.14 15390 58526  0.14

Multiline 41.80 7447 0.28 3483 15052 0.06

Comments

Inward Depend- o 1004y gos 6249 7688 021

-ents Sum

Outward Depen- 151.16  1.98e-07* 40.53  90.36  6.79e-09*

-dents Sum

Observation: DL defect prediction technique’s prediction per-
formance is affected by characteristics such as File Count, Edit
Count, Multiline Comments, Inward Dependency Sum and Out-
ward Dependency Sum.

4.2 RQ2: Considering different commit
characteristics, which one affects defect
prediction performance the most?

To answer this research question, we needed to measure how
much the characteristics affect the defect prediction performance.
After training the state-of-the-art DL defect prediction techniques
using their original training data, we evaluated the models on all
testing data. Their AUC score is shown in table 8. Then, we divided
training and testing data into two groups using the threshold shown
in table 4 for OPENSTACK and table 5 for QT. We call the group
with values less than the corresponding threshold as Majority class
since they always occupied most of the data. Another group that
is bigger than the threshold is named as few-shot class since they
always contain a small portion of the data.

Table 8: The AUC results on all testing data

OPENSTACK QT
Deep]IT 75.1 76.8
CC2vec + Deep]IT 80.9 82.2

From Table 9, we can observe that few-shot classes with respect to
Edit Count, File count, Multiline Comment Count, Inward Dependency
Sum and Outward Dependency Sum have a significant performance
drop. When using the Deep]IT technique on OPENSTACK, the
AUC score on few-shot classes is between 52.4 to 65.3, a 22.7 drop
compared to the AUC achieved when all data is used (shown in
table 8). Interestingly, the AUC scores on majority classes increased,
ranging between 76.8 to 79.1. When using CC2vec, for the majority
classes AUC score ranged between 80.1 and 83.2 (Table 9). Similar
to Deep]IT, in the case of CC2vec, few-shot classes saw a significant
performance drop with AUC score ranging between 64.9 to 68.3.
This is a 10.2 average drop compared to the AUC achieved when
all data is used in table 8. We also checked whether the difference
in AUC score between the majority class and the few-shot class is
statistically significant. The results are statistically significant for
both Deep]IT (Mann-Whitney test, p<0.011) and CC2vec (Mann-
Whitney test, p<0.008).

Table 10 shows that for QT, Deep]IT have similar drop in AUC
scores on few-shot classes for Inward Dependency Sum character-
istic. For Edit Count, File Count, and Multiline Comment Count the
drop is comparatively lower. However, both techniques have signif-
icantly worse performance on the few-shot class than the majority
class with respect to Outward Dependency Sum characteristics. We
also checked whether the difference in AUC score between the
majority class and the few-shot class is statistically significant.
The results are statistically significant for CC2vec (Mann-Whitney
test, p<0.007). However, for Deep]JIT the results are not statistically
significant(Mann-Whitney test, p<0.119).

Observation: AUC score for few-shot classes are significantly
lower than corresponding majority classes, up to 25.9 for Deep-
JIT and 19.4 for CC2vec.

From our results, we see that DL techniques are effective on ma-
jority classes since their AUC scores are close to aggregated classes
AUC in table 8. However, few-shot classes have poor classification
performance, and several of them even close to random classifica-
tion since AUC scores of few-shot classes for Multiline Comment
Count and Edit Count are 52.4 and 55.2 when using Deep]IT, which
are close to 0.5.

When ranking the characteristics based on the total drop in AUC,
we see that Edit Count, Multiline Comment Count, and Outward
Dependency Sum are the top three characteristics affecting the per-
formance most for OPENSTACK. However, for QT, Edit Count, File
Count, and Outward Dependency Sum are the top three characteris-
tics affecting the performance negatively.

Observation: All characteristics negatively affect the AUC,
however, Edit Count, and Outward Dependency Sum are the
most affecting characteristics for both datasets used in the
experiment.

Table 9: AUC variance of divided classes on OPENSTACK

Deep]IT CC2vec + Deep]IT
Few-shot Majority Delta Few-shot Majority Delta
class class class class
Edit Count 55.2 76.8 21.6 65.1 80.1 15
File Count 59.1 78.2 19.1 67.2 81.2 14
Multiline Com= 5, 783 259 6638 803 135
-ment Count
Inward Depend- /¢ 5 79.1 138 683 82.9 14.6
-ents Sum
Outward Depend- ;. ) 783 201 649 83.2 183
-ents Sum

Table 10: AUC variance of divided classes on QT

Deep]IT CC2vec + Deep]IT
Few-shot Majorit Few-shot Majorit
ew-sho ajority . Few-sho ajority
class class class class
Edit Count 65.9 732 73 745 832 8.7
File Count 64.8 73 82 732 82.9 97
Multili -
ultiline Com 70.1 743 42 755 84.2 8.7
-ment Count
I Depend-
nward Depend- ¢ , 74.8 19 80.2 845 43
-ents Sum
D -
Outward Depend- 74.8 155 641 835 19.4
-ents Sum




4.3 RQ3: How well can DL techniques predict
defects by explicitly considering few-shot
classes?

Previous research questions show that both Deep]IT and CC2vec
perform poorly on few-shot classes. Thus, to improve prediction per-
formance on these few-shot classes, we propose a Siamese network-
based few-shot learning framework for JIT defect prediction (Sifter-
JIT).

Table 11 shows the comparison of defect prediction results on the
OPENSTACK dataset using CC2vec with and without random over-
sampling and Sifter]IT framework. From this table, we can see that
Sifter]IT improves the AUC score on few-shot classes from 57.88%
t0 69.19% (an improvement of 11.31%). SifterJIT also improves preci-
sion and F1 score by 10.48% and 4.07%. Oversampling also improves
compared to the original performance, but the improvement is only
2.51% for AUC, 1.24% for precision, and 1.56% for F1 score. The
SifterJIT’s recall is worse than the original and oversampling. A
closer look reveals that Sifter]IT is more conservative than original
and oversampling methods, and since it predicts less number of
samples as “defect”, the recall is lower. Prior study shows that too
many false positive warnings can discourage developers from using
a tool [30]. Thus, it is important to reduce the false positives.

To better understand the improvement, we looked into the AUC
distribution of few-shot classes for individual characteristics, shown
in Figure 4. From Figure 4 we can observe that Sifter]JIT outperforms
original and oversampling results for most characteristics.

Table 11: Prediction Performance Comparison on OPEN-
STACK few-shot classes

Deep]IT + Deep]IT + . .
CC2vec CC2vec SifterJIT Slft?TJIT Sifter]IT .
- . Original ~ Oversampling
(Original)  (Oversampling)
AUC Score (%) 57.88 60.39 69.19 11.31 8.80
Precision (%) 32.09 33.33 42.57 10.48 9.24
Recall (%) 95.56 95.56 65.15 -30.41 -30.41
F1 Score (%) 47.43 48.99 51.50 4.07 2.51
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Figure 4: AUC distribution for different characteristics us-
ing OPENSTACK

Table 12: Prediction Performance Comparison on QT few-
shot classes

Deep]IT + Deep]JIT +

CCavec CC2vec  Sifter]IT Sgt.eq”l’ o S‘ﬂerJITlf
(Original)  (Oversampling) rigina versampiing
AUC Score (%) 63.14 64.71 69.12 5.98 4.41
Precision (%) 25.53 25.79 35.48 9.95 9.69
Recall (%) 88.33 90.00 63.16 -25.17 -26.84
F1 Score (%) 38.74 39.20 4528 654 6.08

Table 12 shows the aggregated defect prediction results on QT
dataset. From the table, we can see that the Sifter]JIT classification
AUC score improves from the original’s 63.14% to 69.12% (5.98%
improvement), and Sifter]JIT also improves the precision by 9.95%
and F1 score by 6.54%. Compared to oversampling, the AUC score
increased by 4.41%, and it improves precision by 9.69% and F1 by
6.08%.

Figure 5 shows the AUC score distributions for few-shot classes
for individual characteristics. From the figure, we can see that
Sifter]JIT outperforms for characteristics Outward Dependency Sum
and File Count. However, unlike the OPENSTACK dataset, Sifter]IT
did not outperform in the case of the other three characteristics,
even though the overall improvement using Sifter]IT was non-
trivial as shown in Table 11 and Table 12.
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Figure 5: AUC distribution for different characteristics us-
ing QT

Observation: Sifter]IT significantly improves the original de-
fect prediction AUC score by 11.31% and 5.98% for OPEN-
STACK few-shot classes and QT few-shot classes, respectively.

5 DISCUSSION

To the best of our knowledge, we are the first to investigate
whether and to what extent the imbalance of commit characteris-
tics impacts JIT defect prediction. We find that characteristics such
as File Count, Edit Count, Inward Dependency Sum, Outward Depen-
dency Sum, Multi-line Comment Count are some of the characteris-
tics that impacted the performance of the classifiers significantly,
up to 25.9%.



Our analysis finds that along with other characteristics Inward
Dependency Sum, Outward Dependency Sum impact the performance
of the classifiers. These two factors are related to dependency. We
posit that a commit that modifies files with high dependency is
likely to be highly coupled with other parts of the code and has a
high impact. Our results also identified that the Edit Count signifi-
cantly impacts the performance of the classifiers. Since classifiers
are sensitive to change size [40, 56, 59], such impact of Edit Count
is not surprising. Since we studied a small number of character-
istics, one important direction for researchers is to identify other
characteristics and investigate their impact.

One interesting finding is that not all characteristics equally
impact the classifier’s performance across all datasets. Our results
in RQ2 indicate that a characteristic can have varying levels of
impact, even for the same technique depending on the dataset.
For example, Multi-line Comment Count for Deep]IT applied on
OPENSTACK resulted in a 25.9% drop in AUC, however, for QT
dataset, it resulted in a 4.2% drop, as shown in Table10. Another
interesting observation is that the impact is not always negative.
For example, in case of Inward Dependency Sum, few-shot class
had a higher AUC compared to majority class as shown in Table10.
Further investigation is required to understand the underlying
reason for this. Also, the varying impact of characteristics can
be leveraged to examine different ranking schemes. An effective
ranking scheme can help practitioners prioritize their effort to more
impactful characteristics when trying to minimize the imbalance.

Our results also highlight that different DL techniques have vary-
ing resistance to the imbalance of commit characteristics. Table9
and 10 show that CC2vec on an average is more resistant to the
imbalance which is backed by the Mann-Whitney test (U = 22, p-val
= 0.03756). This similar to other researchers’ findings where they
showed that different machine learning classifiers have varying
resistance to noise [44].

Our findings have implications for software practitioners and
tool builders as well. Practitioners should pay more attention to the
imbalance of commit characteristics to achieve the best prediction
performance, which would allow them to save their effort while
sifting through incorrect predictions. Also, it will reduce the number
of bugs making it to the production system.

There are tools to detect data imbalance issues for normal ma-
chine learning tasks to avoid unfairness issues, such as in computer
vision and natural language processing [1, 5]. However, to the best
of our knowledge, no such tools exist for defect prediction tasks.
Thus, it is also necessary to build tools to detect data imbalance in
the defect prediction dataset.

6 THREATS TO VALIDITY

We have taken care to ensure that our results are unbiased and
have tried to eliminate the effects of random noise, but it’s possible
that our mitigation strategies may not have been effective.

Bias Due to Dataset: Our findings may not generalize to all
software projects since we evaluated our approach on two datasets
(QT and OPENSTACK). However, we evaluated our approach on a
publicly available dataset that has been used in previous JIT defect
prediction research [31, 32, 56, 63]. On top, our considered projects
are large and significantly different in size, programming language,

complexity, and revision history. So we believe that the selected
projects adequately address the concern.

Bias Due to Characteristics: Our set of characteristics are se-
lected from literature [60]. However, results may differ depending
on the characteristics used for evaluation. Also, we did not compare
our results with the effects of other widely-used software metrics
for ML defect prediction models.

Bias Due to Threshold Selection: Our threshold selection in
RQ2 may threaten the internal validity. In order to mitigate this, we
empirically investigated different formulas for threshold calculation
and found that the results do not significantly differ.

Bias Due to Implementation: To mitigate this bias, we reused
existing implementations of the DeepJIT and CC2Vec techniques
whenever possible. We also tested our code and data to ensure that
there are no implementation errors; however, errors may remain. In
addition, the regular expressions used to identify comments might
fail to identify all types of comments in the source code.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we investigated whether and to what extent commit
characteristics can impact JIT defect prediction. Our results show
that the performance of DL techniques got negatively impacted by
the imbalance of commit characteristics. Deep]IT’s performance
on OPENSTACK dropped down to 52.4% compared to the original
performance of 75.1% (22.7% drop). A similar pattern was observed
for CC2Vec, where performance dropped down to 65.1% compared
to the original 80.9 (19.53% drop). On the QT dataset, Deep]IT s per-
formance dropped down to 59.3% from 76.8% (17.5% drop), CC2vec’s
performance dropped to 64.1% from 82.2% ( 18.1% drop)

To improve their overall performances, we propose a Siamese-
based Few-shot learning framework named Sifter]JIT. Our choice of
investigating the Siamese network was motivated by the Siamese
network’s power to learn from a limited number of training in-
stances, which can help to boost the model performance on few-
shot classes with respect to commit characteristics and boost the
overall model performance. Our results show that SifterJIT out-
performs state-of-the-art CC2vec by an improvement of 11.31%
AUC score, 11% improvement in precision, and 5% improvement in
F1-score on OPENSTACK dataset. Similar improvements were seen
for the QT dataset with a 5.98% improvement of AUC score, 10%
improvement of precision, 6% improvement of F1-score.

In this work, we analyzed five characteristics. However, prior
defect-prediction research has identified a plethora of characteris-
tics which is yet to be investigated. Our results identify the need
for further research to understand the impact of the imbalance of
these characteristics on the prediction model’s performance and
understand the underpinning of why different characteristics have
varying levels of impact.
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