
Evaluating and Improving Static Analysis Tools Via
Differential Mutation Analysis

Alex Groce
School of Informatics, Computing and Cyber Systems

Northern Arizona University
Flagstaff, AZ, USA

agroce@gmail.com

Iftekhar Ahmed
Department of Informatics

University of California, Irvine
Irvine, CA, USA

iftekha@uci.edu

Josselin Feist
Trail of Bits

New York, NY, USA

josselin.feist@trailofbits.com

Gustavo Grieco
Trail of Bits

New York, NY, USA

gustavo.grieco@trailofbits.com

Jiri Gesi
Department of Informatics

University of California, Irvine
Irvine, CA, USA

fjiriges@uci.edu

Mehran Meidani
Department of Informatics

University of California, Irvine
Irvine, CA, USA

mmeidani@uci.edu

Qi ong Chen
Department of Informatics

University of California, Irvine
Irvine, CA, USA

chenqh@uci.edu

Abstract—Static analysis tools attempt to detect faults in code
without executing it. Understanding the strengths and weaknesses
of such tools, and performing direct comparisons of their ef-
fectiveness, is difficult, involving either manual examination of
differing warnings on real code, or the bias-prone construction
of artificial test cases. This paper proposes a novel automated
approach to comparing static analysis tools, based on producing
mutants of real code, and comparing detection rates over these
mutants. In addition to making tool differences quantitatively
observable without extensive manual effort, this approach offers
a new way to detect and fix omissions in a static analysis tool’s
set of detectors. We present an extensive comparison of three
smart contract static analysis tools, and show how our approach
allowed us to add three effective new detectors to the best of
these. We also evaluate popular Java and Python static analysis
tools and discuss their strengths and weaknesses.

Index Terms—mutation testing, static analysis, smart contracts

I. INTRODUCTION

Static analysis of code is one of the most effective ways to

avoid defects in software, and, when security is a concern, is

essential. Static analysis can find problems that are extremely

hard to detect by testing, when the inputs triggering a bug

are hard to find. Static analysis is also often more efficient

than testing; a bug that takes a fuzzer days to find may be

immediately identified. Users of static analysis tools often

wonder which of multiple tools available for a language

are most effective, and how much tools overlap in their

results. Tools often find substantially different bugs, making

it important to use multiple tools [32]. However, given the

high cost of examing results, if a tool provides only marginal

novelty, it may not be worth using, especially if it has a high

false-positive rate. Developers of static analysis tools also want

to be able to compare their tools to other tools, in order to see

what detection patterns or precision/soundness trade-offs they

might want to imitate. Unfortunately, comparing static analysis

tools in these ways is hard, and would seem to require vast

manual effort to inspect findings and determine ground truth

on a scale that would provide statistical confidence.

Differential testing [41], [29], [56] is a popular approach

to comparing multiple software systems offering similar func-

tionality, but the wide divergence of possible trade-offs, anal-

ysis focuses, and the prevalence of false positives in almost

all analysis results makes naı̈ve differential testing not appli-

cable to static analysis tools [14]. Mutation analysis[34], [15],

[7] uses small syntactic changes to a program to introduce

synthetic “faults,” under the assumption that if the original

version of a program is mostly correct, such changes will often

introduce a fault. For the most part, mutation analysis has been

used to evaluate test suites by computing a mutation score, the

fraction of mutants the suite detects, or “kills”. Groce et al.

[24], [25] proposed examining individual mutants that survive

a rigorous testing and verification effort to detect and correct

weaknesses in testing, and found bugs in a heavily-tested

module of the Linux kernel [2] and a widely used Python

file system. Recently, mutation analysis has been adopted in

industrial settings, though not for actual examination of all

surviving mutants [45], [33].

Combining a differential approach and mutation analysis

offers a novel way to compare static analysis tools, one useful

to users wishing to select a good tool or set of tools, to re-

searchers interested in the impact of precision/soundness trade-

offs or different intermediate languages, and to developers of

static analysis tools hoping to improve their tools.

We can say that a static analysis tool kills a mutant when

the number of warnings or errors, which we call findings,

increases with mutation. In order to make this definition useful,

we ignore informational or optimization related warnings (e.g.,

if a mutant is merely stylistically suboptimal this is not

“finding a fault”). That is, a mutant is killed when a tool “finds

more (unique) bugs” for the mutated code than for the un-

mutated code. This difference may be most easily interpreted

when the original code produces no findings; we call such

207

2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/21/$31.00 ©2021 IEEE
DOI 10.1109/QRS54544.2021.00032

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

on
 S

of
tw

ar
e 

Q
ua

lit
y,

 R
el

ia
bi

lit
y 

an
d 

Se
cu

rit
y 

(Q
RS

) |
 9

78
-1

-6
65

4-
58

13
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

Q
RS

54
54

4.
20

21
.0

00
32

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



code clean (by analogy with Chekam et al.’s notion [10]). For

non-clean code, a tool conceivably could detect the mutant,

but only change a previously generated finding, not add an

additional finding. However, even for non-clean code, most
detected mutants should produce a new warning. We count

findings, rather than consider their location or type, because

some mutants cause a fault at a far-removed location. Forcing

tools to produce an additonal warning is a conservative and

automatable estimate of mutant detection.

The value of the differential comparison lies in a few key

points. First, this is a measure that does not reward a tool that

produces too many false positives. The tool cannot simply flag

all code as having a problem or it will perform poorly at the

task of distinguishing the mutated code from non-mutated, and

presumably at least more correct, code. Based on verification

and testing uses of mutation, it is safe to say that usually at

minimum 40%, often 50-60%, and frequently up to 80%+ [2],

[25], [39], of mutants are not semantically equivalent to the

original code [42], [31], [49], so the task presented to a static

analysis tool is simply the core functionality of static analysis:

to distinguish faulty from correct code without execution.

Obviously, many faults cannot be identified statically without

a complete specification, or without unreasonable analysis cost

and precision, but the measure of performance here is relative
to other tools applied to the same code; this is primarily a

differential approach. While many mutants cannot be detected

statically, the ones that are tend to be true positives: if they

were real code changes, they would be faults. We manually
confirmed that for a large portion of the detected mutants in
our experiments, the changes were indeed ones that would be
real faults if present in the code.

Second, and critically, this is an automatable method that

can provide an evaluation of static analysis tools over a large

number of target source code files, without requiring human

effort to classify results as real bugs or false positives. It is not

clear that any other fully automatic method is competitively

meaningful; it is possible that methods based on code changes

from version control provide some of the same benefits, but

these require classification of changes into bug-fixes and non-

bug-fixes, and of course require version control history. Also,

history-based methods will be biased towards precisely those

faults humans or tools already in use were able to detect and

fix. Rather than the hundreds [35] or at most few thousand of

faults [53] in benchmark defect sets, our approach enables the

use of many tens of thousands of hypothetical faults.

It is the combination of differential comparison and mu-

tation that is key. Differential comparison of tools, as noted

above, is not really meaningful, without additional effort; naı̈ve

methods simply will not work [14]. Consider a comparison

of the number of findings between two tools over a single

program, or over a large set of programs. If one tool emits

more warnings and errors than another, it may mean that the

tool is more effective at finding bugs; but it may also mean that

it has a higher false positive rate. Without human examination

of the individual findings, it is impossible to be sure. Using

mutants, however, provides a foreground to compare to this

Fig. 1: Mutants killed by three static analysis tools.

background. In particular, for a large set of programs, the most

informative result will be when 1) tool A reports fewer findings

on average than tool B over the un-mutated programs but 2)

tool A also detects more mutants. This is strong evidence that

A is simply better all-around than B; it likely has a lower

false positive rate and a lower false negative rate, since it is

hard to construct another plausible explanation for reporting

fewer findings on un-mutated code while still detecting more
mutants. Our method (see the mutant ratio defined below)

provides a quantitative measure of this insight.

Finally, even when tools have similar quantitative results,

examining individual mutants killed by one tool but not by

another allows us to understand strengths and weaknesses of

the tools, in a helpful context: the difference between the un-

mutated code and mutated code will always be small and

simple. Moreover, simply looking at how much two tools agree

on mutants can answer the question: given that I am using tool

A, would adding tool B be likely be worthwhile? Interested

users, e.g. security analysts, can inspect the differences to

get an idea of the particular cases when a tool might be

most effective, but a more typical user can simply look at

a Venn diagram of kills like that shown in Figure 1. Consider

hypothetical tools A, B, and C. A and B produce similar

numbers of findings on the code in question, while tool C

produces an order of magnitude more findings. Tool A is

likely the most important tool to make use of; it detected more

mutants than any other tool, and more than twice as many

mutants were killed by A alone than by B alone. However,

also running tool B is well justifed. B does not do as well

as A, but it is the only tool that detects a large number of

mutants, and most mutants it detects are unique to it. Finally,

Tool C may not be worth running, since its poor performance

on mutants but high finding rate suggests it may be prone to

missing bugs and to false positives. It might be a good idea

to just look at the 27 mutants detected by C alone: if they

represent an important class of potential problems (perhaps

C specialized in detecting potentially non-terminating loops),

then C might be useful, but if the first few mutants inspected

are false positives, then C is likely not useful.

More concretely, consider the code in Figure 2 [1]. The

Universal Mutator tool [27], [28], which has been exten-

sively tuned for Solidity’s grammar (though not to target

any particular vulnerabilities), and is the only smart con-

tract mutation tool referenced in the Solidity documenta-

tion (https://solidity.readthedocs.io/en/v0.5.12/resources.html),

produces seven valid, non-redundant (by Trivial Compiler

208

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



contract SimpleStorage {
uint storedData;
function set(uint x) public {

storedData = x;
}
function get() public view returns (uint) {

return storedData;
}

}

Fig. 2: A simple example Solidity smart contract

Equivalence [42]) mutants for it. Both the public version of

Slither [19] and SmartCheck [51] (two popular smart contract

static analysis tools) produce a small number (three and two,

respectively) of low-severity, informational, warnings for this

code. Both tools also detect four of the seven mutants (here the

number of warnings increases, and the additional warnings are

clearly driven by the mutation change) . However, only one of

the mutants detected is common to both tools: both tools detect

changing the return statement in the get function to a call

to selfdestruct the smart contract, deleting it. Slither,

but not SmartCheck, also detects replacing the assignment

of storedData in set with either a selfdestruct or

revert, or simply removing it altogether. SmartCheck, on

the other hand, detects removing the return in get or re-

placing it with a revert, or removing the public visibility

modifier for get 1. If we restrict our analysis to findings with

a severity greater than informational, SmartCheck detects no

mutants of the contract, while Slither still reports that some

mutants allow an arbitrary caller to cause the contract to
destroy itself. Given that both tools, ignoring informational

results, detect no problems with the original code, and only

Slither detects any problems with the mutants, we can say that

Slither performs better for this contract.

Comparing mutant results also leads to the idea of improving
static analysis tools by examining mutants detected by another

tool, and thus known to be in-principle detectable. Improving

tools by adding detectors is useful because, even if all tools

had the same set of detectors, they would not all report the

same bugs; different choices in intermediate language and

tradeoffs made to avoid false positives may make the use

of multiple tools with similar detectors essential for thorough

analysis. And if one tool simply has a superior engine, it is

beneficial to users that the “best” tool incorporate all detection

rules. However, as with efforts to improve test suites, manu-

ally searching through all mutants can be an onerous task,

especially for large-scale evaluations. We therefore introduce

the idea of prioritizing mutants to make it easier to inspect

different weaknesses in tools.

A general objection to our approach is that mutants may

differ substantially from “real” faults, in some way. This

is certainly true, in a sense [23], but for static analysis

purposes we believe it does not matter. The real risk is that

some mutation operators align with patterns a particular tool

identifies, biasing the evaluation in favor of that tool. Such

1Slither’s “missing return” detector was only available in the private version
of Slither, at the time we performed these experiments.

faults may be dis-proportionately present in mutants vs. real

code. However, we consider this unlikely. The vast majority of

applied mutation operations for all of our experiments were

highly generic, and do not plausibly represent a pattern in

which some tool might specialize. Code deletions, the most

common kind of mutation by far, leave no “trace” for a

tool to match against, but only an omission, so cannot be

subject to this concern. Changing arithmetic and comparison

operators and numeric constants (incrementing, decrementing,

or changing to 0 or 1) account for most of the non-statement-

deletion mutants, and it is difficult to imagine how any tool

could unfairly identify these.

This paper offers the following contributions:

• We propose a differential approach to comparing static

analysis tools based on the insight that program mutants

are easy-to-understand, likely-faulty, program changes.

• We propose a definition of mutant killing for static analysis.

• We introduce a simple scheme for prioritizing mutants that

helps users understand and use the results of analysis.

• We apply our method to an extensive, in-depth comparison

of three Solidity smart contract analysis tools, and show

how prioritization allowed us to easily identify (and build)

three new detectors for the most effective of these tools.

• We also provide results for popular Java and Python static

analysis tools, further demonstrating our approach and

showing strengths and weaknesses of these tools.

While there are limitations to using differential mutation

analysis to compare/improve static analysis tools, it scales to

basing comparisons on many real software source files and

very many “faults,” but still offers some of the advantages of

having humans establish ground truth.

II. DIFFERENTIAL MUTATION ANALYSIS

The proposed approach is simple in outline:

1) Run each tool on the unmutated source code tar-

get(s), and determine the baseline: the number of (non-

informational/stylistic) findings produced.

2) Generate mutants of the source code and run each tool on

each mutant. Consider a mutant killed if the number of

findings for the mutated code is greater than the number

for the baseline, un-mutated code.

3) Compute, for each tool, the mutant ratio: the mutation

score (
|killed|

|mutants| ) divided by (mean) baseline. If it is zero,

use a baseline equal to either one or the lowest non-zero

baseline for any tool in the comparison set2.

4) (Optional): Discard all mutants not killed by at least one

tool and all mutants killed by all tools. What remains al-

lows differential analysis. Examine the remaining mutants

in the difference in prioritized order.

The most important step here is the computation of the

mutant ratio, which tells us about the ability of a tool to

produce findings for mutants, relative to its tendency to

produce findings in general. If a tool has a tendency to produce

large numbers of findings compared to other tools, and this is

2This problem seldom arises in practice.

209

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



paired with a tendency to detect more mutants as well, then

the tool will not be penalized for producing many findings.

Assuming that real faults are relatively rare in the original, un-

mutated code, the best result and best (highest) mutant ratio

will be for a tool that produces comparatively few findings for

un-mutated code, but detects a larger portion of mutants than

other tools; the worst result will be a tool that produces lots of

findings, but detects few mutants. We will actually see some

examples of this worst case.

A. Prioritizing Mutants

One goal of our approach is to make it easy for tool

developers to examine cases where one tool kills a mutant and

another fails to, in order to identify patterns for new detectors

or analysis algorithm problems. Dedicated developers may

also simply want to scan all mutants their tool does not kill,

for the same purpose, analogous to what Groce et al. have

proposed for automated verification and testing [24], [25].

Security analysts and other expert users who are not developers

may also wish to do this, to better understand tool strengths

and weaknesses.

Unfortunately the full list of unkilled mutants, or differen-

tially unkilled mutants, is likely to be both large and highly

redundant. In our results below, only one of 9 tools we

examined killed fewer than 1,000 mutants it alone detected.

Any cross-tool comparison is thus likely to involve hundreds

or thousands of mutants.

The problem of identifying unique “faults” (tool weak-

nesses) in this situation is very similar to the fuzzer taming
problem in software testing, as defined by Chen et al. [11]:

“Given a potentially large collection of test cases, each of

which triggers a bug, rank them in such a way that test

cases triggering distinct bugs are early in the list.” [11]. Their

solution was to use Gonzalez’ Furthest-Point-First [21] (FPF)

algorithm to rank test cases so that users can examine very

different test cases as quickly as possible. An FPF ranking

requires a distance metric d, and ranks items so that dissimilar

ones appear earlier. The hypothesis of Chen et al. was that

dissimilar tests, by a well-chosen metric, will also fail due to

different faults. FPF is a greedy algorithm that proceeds by re-

peatedly adding the item with the maximum minimum distance
to all previously ranked items. Given an initial seed item r0, a

set S of items to rank, and a distance metric d, FPF computes

ri as s ∈ S : ∀s′ ∈ S : minj<i(d(s, rj)) ≥ minj<i(d(s
′, rj)).

The condition on s is obviously true when s = s′, or when

s′ = rj for some j < i; the other cases for s′ force selection

of some max-min-distance s.

In order to apply FPF ranking to examining mutants, we

implemented a simple, somewhat ad hoc distance metric and

FPF ranker. Our metric d is the sum of a set of measurements.

First, it adds a similarity ratio based on Levenshtein distance

[40] for (1) the changes (Levenshtein edits) from the original

source code elements to the two mutants, (2) the two original

source code elements changed (in general, lines), and (3) the

actual output mutant code. These are weighted with multipliers

of 5.0, 0.1, and 0.1, respectively; the type of change (mutation

operator, roughly) dominates this part of the distance, because

it best describes “what the mutant did”; however, because

many mutants will have the same change (e.g., changing

+ to -, the other ratios also often matter. Our metric also

incorporates a measure of the distance in the source code

between the locations of two mutants. If the mutants are to

different files, this adds 0.5; it also adds 0.025 times the

number of source lines separating the two mutants if they are

in the same file, but caps the amount added at 0.25.

We do not claim this is an optimal, or even tuned, metric.

Devising a better metric is left as future work, we only wish

to show that even a hastily-devised and somewhat arbitrary

metric provides considerable advantage over wading through

an un-ordered list of mutants, and introduce the idea of using

FPF for mutants, not just for tests: FPF is useful for failures

in general, however discovered.

III. EXPERIMENTAL RESULTS

Our primary experimental results are a set of comparisons

of tools using our method, for three languages: Solidity (the

most popular language for smart contracts), Java, and Python.

We used the Universal Mutator tool for all experiments; for

Solidity and Python, we believe the Universal Mutator is

simply the best available tool. For Java, PIT [12] is more

popular, but does not produce source-level mutants, needed for

PMD and for manual inspection of results. Universal Mutator

includes a large set of mutation operators, some unconven-

tional (e.g., swapping order of function arguments) but based

on real-world bugs; the complete set is described by regular

expressions at https://github.com/agroce/universalmutator/tree/

master/universalmutator/static. However, most mutants that

were detected came from a small set of commonly-used

operators [3], particularly 1) code deletion and 2) operator,

conditional, and constant replacements.

We used our results to answer a set of research questions:

• RQ1: Does mutation analysis of static analysis tools pro-

duce actionable results? That is, do raw mutation kills serve

to distinguish tools from each other, or are all tools similar?

• RQ2: Does our approach provide additional information

beyond simply counting findings for the original, un-

mutated analyzed code? Do ratios differ between tools?

• RQ3: Do the rankings that raw kills and ratios establish

agree with other sources of information about the effec-

tiveness of the evaluated tools?

• RQ4: Do tools detect more mutants in programs for which

they produce no warnings, initially?

• RQ5: Are mutants distinguishing tools usually flagged due

to real faults, where the finding is related to the introduced

fault; that is, are our results usually meaningful?
• RQ6: Do individual mutants, prioritized for ease of exam-

ination, allow us to identify classes of faults that different

tools are good at/bad at, and use this information to improve

tools? How does this compare to using mutants that have

not been prioritized?

In particular, we consider RQ2 to be of critical importance;

if the mutant ratios for tools differ, then this is clear evidence

210

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



that our hypothesis that the tendency of mutants to be faults,

and to expect that mutated code will, by a more precise and

accurate tool, be flagged as problematic more often than non-

mutated code, holds. This expectation that (some subset of the)

mutants can serve as proxies for real, detectable faults is the

core concept of our approach. RQ4 addresses a concern briefly

mentioned in the introduction: it is possible that warnings for

the original code interfere with our definition of detection.

The ideal case for our approach is when a tool reports no

findings for un-mutated code, and reports a finding when the

mutant is introduced. Chekam et al. showed that the “clean

program assumption” for testing is a threat to the validity of

investigations of the relationship between coverage and fault

detection [10], but we show that this is unlikely to be the case

for our approach. Our answer to RQ5 is somewhat inherently

qualitative and incomplete; we cannot analyze all mutants

on which results are based manually, and understanding the

mutants and tool warnings completely would require deep

understanding of all the subject programs. However, in many

cases, the impact of a mutant is clear, and the reason for

warnings is obvious. This was often enough the case that, as

we discuss below, we are confident mutants that distinguish

tools are meaningful (missed) opportunities for static analysis

tools. For RQ6 we have only a preliminary answer.

A. Solidity Smart Contract Tools

1) Smart Contracts and Smart Contract Static Analysis:
Smart contracts are autonomous code instruments, usually op-

erating on a blockchain, that often have critical responsibilities

such as facilitating and verifying (large) financial services

transactions, tracking high-value physical goods or intellectual

property, or even controlling “decentralized organizations”

with multifarious aspects. Security and correctness are thus

critical in the smart contract domain, and static analysis is

a key way to ensure allocation of high-value resources is

not compromised. The most popular smart contract platform,

by far, is the Ethereum blockchain, and the Solidity smart

contract language [8], [55]; the Ethereum cryptocurrency has

a market capitalization as we write of over $100 billion dollars,

largely fueled by interest in the smart contract functionality.

Ethereum contracts have been the targets of widely publicized

attacks, with large financial consequences [50], [46]. A recent

paper examining results from 23 professional security audits

of Solidity contracts argues that effective static analysis is a

major key to avoiding such disasters in the future [26].

2) Static Analysis Tools Compared: We analyzed three

well-known tools for static analysis of Solidity smart contracts:

Slither [19], SmartCheck [51], and Securify [54]. Slither, based

on an SSA-based intermediate language (SlithIR [19]) is an

open-source tool from Trail of Bits. SmartCheck, developed by

SmartDec, translates Solidity source directly to an XML-based

representation, then uses XPath patterns to define problems.

Securify, from SRI Systems Lab at ETH Zurich, works at the

bytecode level, first parsing and decompiling contracts, then

translating to semantic facts in order to look for problems.

Fig. 3: Mutants killed by Solidity static analysis tools.

Findings Mutation Score Mutant
Tool Mean Median Mean Median Ratio

Slither 2.37 1.0 0.09 0.09 0.038
Clean (39) - - 0.11 0.11 -
SmartCheck 1.89 1.0 0.05 0.05 0.026
Clean (27) - - 0.03 0.01 -
Securify 24.65 17.0 0.03 0.02 0.001
Clean (5) - - 0.00 0.00 -

TABLE I: Solidity tool results over all contracts.

3) Smart Contract Selection: We could have used a set

of high-transaction contracts, or known-important contracts to

validate our approach. However, we knew that one of our goals

in the Solidity experiments was to actually improve a mutation

analysis tool, and the developers of the static analysis tools use

exactly such benchmarks to validate their tools. Basing our

improvements on mutants of the contracts used for evaluation

of proposed detectors would introduce a serious bias in our

favor: we would be more likely to produce detectors that would

have true positives and few false positives on the benchmark

contracts. We therefore instead selected 100 random contracts

for which EtherScan (https://etherscan.io/) has source code,

and used this (quite arbitrary) set of contracts from the actual

blockchain to compare tools and identify opportunities for

improvement. The collected contracts had a total of 15,980

non-comment source lines, as measured by cloc, with a mean

size of 159.8 LOC and a median size of 108 LOC. The largest

single contract had 1,127 lines of code. The Universal Mutator

generated 46,769 valid mutants for these 100 contracts.

4) Analysis Results: Figure 3 shows the mutants killed by

the Solidity analysis tools. Table I provides numeric details

of the results, including the ratio for each tool, adjusting its

mutation scores by its’ general tendency to produce findings.

The second row for each tool shows the number of contracts

for which it reported no findings, and the mutation scores over

those contracts, only. A user examining these results would

suspect that Slither and SmartCheck are both useful tools, and

should likely both be applied in a high-risk security-sensitive

context like smart contract development. A user might also

suspect that the large number of findings produced, and smaller

number of mutants killed, for Securify, means that whether

to apply Securify is a more difficult decision. On the one

hand, Securify does detect nearly as many mutants it alone

can identify as SmartCheck. The large number of findings,

and very bad mutant ratio, however, lead us to suspect that

many of these “detected” mutants are false positives (or, at

211

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



least, that the problem is not the one Securify identifies).

Extracting the signal from Securify’s noise will be difficult.

We also note that while running Slither and SmartCheck on

all 46,769 valid mutants was relatively quick (it took about

6 days sequential compute time for Slither and 3 days for

SmartCheck, i.e., about 5-15 seconds per mutant for both

tools), Securify often required many hours to analyze a mutant,

and frequently required a few days to analyze a mutant; the full

analysis required over three months of compute time. However,

similar statistical results would almost certainly be produced

by running as few as 1,000 mutants, randomly selected, due to

the implications of Tchebysheff’s inequality [22], a technique

that should improve scalability for all such analyses.

If we consider results at the individual contract level, the

overall picture is in some ways even clearer. Slither detected

more mutants than Securify for 84 of the contracts, and more

than SmartCheck for 85 of the contracts. SmartCheck detected

more mutants than Securify for 83 of the contracts. Comparing

ratios instead, Slither was better than Security for 97 contracts,

but better than SmartCheck for only 75 of the contracts.

SmartCheck’s ratio was better than Securify’s for 95 contracts.

The standard deviation of contract raw scores was 0.05 for

Slither, 0.03 for SmartCheck, and 0.04 for Securify.

For our research questions, RQ1 is clearly answered in the

affirmative. Figure 3 shows that the tools address quite differ-

ent problems, with all tools reporting far more uniquely de-

tected mutants than mutants in common with other tools. There

are only 18 mutants detected by all tools, all of them involving

replacement of msg.sender (the caller of a smart contract,

which may be another smart contract) with tx.origin (the

original initiator of a sequence of blockchain calls, a “human”

account). Use of tx.origin is often (though not always)

a bad idea, and can lead to incorrect behavior, so it is not

surprising tools all recognize some misuses of it.

RQ2 is also answered in the affirmative. Counting findings

for un-mutated code might suggest that Securify is the best

tool, by a wide margin, but in the context of its near-zero

mutant ratio, we must suspect (and we partially manually

confirmed) that many of the warnings are false positives.

Slither has the best mutant ratio, but the margin between it

and SmartCheck confirms that both tools likely provide value;

we note there is a 25% chance that SmartCheck has a better

ratio than Slither for an individual contract.

For RQ3, there are only a few tool comparisons in the

literature; this is probably due to the fast-moving nature of

the blockchain analysis world; the oldest of these tools’ pub-

lication dates is 2018. The most extensive is that of Durieux

et al. [18], though it unfortunately was unable to provide

anything other than an implicit look at false positives, some-

what limiting its practicality. Slither detected 17% of known

vulnerabilities in their analysis, vs. 11% for SmartCheck and

9% for Securify. Slither and SmartCheck were also among the

four (out of 9) tools that detected vulnerabilities in the most

categories; Securify was not. The overall recommendation

of Durieux et al. was to use a combination of Slither and

Mythril [13] for contract analysis. Parizi et al. [43] also offer

a ranking of tools, and determined that SmartCheck was the

most effective, and far more so than Securify; unfortunately,

they did not include Slither in their set of evaluated tools.

The Slither paper [19] also provides an evaluation of all

three tools. Their findings counts differ from ours because of

different choices (we threw out merely informational results),

but these are unrelated to mutation analysis, in any case. The

evaluation only considered reentrancy faults [5], [26] (which

are sometimes, but only rarely, introduced by mutants). For

reentrancy, Slither performed best on two real-world large

contracts, finding subtle bugs in both, SmartCheck detected the

problem in one of the two, and Securify detected neither. For

a set of 1,000 contracts, SmartCheck had a high false positive

rate (over 70%) but detected more actual reentrancies (209)

than Slither (99) or Securify (6). On the other hand, Slither’s

low false positive rate of 11% makes its results possibly more

useful in practice.

For RQ4, on the changes seen when restricting analysis to

clean contracts, Slither did slightly better at detecting mutants

when the original contract was clean for Slither, and the other

two tools did somewhat worse on contracts for which they

reported no findings. For the three contracts clean for all tools,

Slither performed almost exactly as it did over contracts in

general, and the other tools performed worse, by about the

same margin as they did for their own clean contracts. For our

approach, we only need a weak version of the “clean program

assumption”: the threat is that kills may be under-reported

for non-clean programs, due to interference with findings for

the original code. It is not a problem if mutation scores are

worse for programs where a tool reports no findings for the

un-mutated code. We therefore, for smart contracts, find no

threat to our approach arising from the presence of findings on

un-mutated code. We speculate that “clean” results for some

tools result from contracts where the tool has trouble with

the contract code, but does not actually crash; Slither may do

better on clean code because it has fewer such failures, and

clean contracts are probably somewhat easier to analyze.

Following the method proposed in Section II, for RQ5
we focused on examining mutants detected by at least one

tool, but not detected by all tools, the only ones that actually

influence the comparison of tools. The vast majority of the

mutants in this set were meaningful semantic changes a static

analysis tool could be expected to detect, and the findings

produced by tools were relevant to the nature of the fault. We

do not believe that all mutants represent definite faults; some

are harmless but unusual code changes. Many cases where

use of tx.origin in place of msg.sender was flagged

seem to us to be strange, but not necessarily incorrect, code.

On the other hand, it is not at all unreasonable for tools to

report such notably strange code. Our estimate is that, ignoring

tx.origin cases, at least 70% of the mutants detected by
one, but not all, tools, represent realistic bugs, and failure

to detect is roughly equally due to missing detectors and

imprecise analysis.

Because our random contracts’ quality might be low, we

also checked our results on 30 contracts from the Solidity doc-

212

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



Mutant showing Boolean constant misuse.

if (!p.recipient.send(p.amount)) \{ // Make the payment
==> if (true) \{ // Make the payment
if (true) \{ // Make the payment

Mutant showing Type-based tautologies.

require(nextDiscountTTMTokenId6 >= 361 \&\& ...);
==> ...361...==>...0...
require(nextDiscountTTMTokenId6 >= 0 \&\& ...);

Mutant showing Loss of precision.

byte char = byte(bytes32(uint(x) * 2 ** (8 * j)));
==> ...*...==>.../...
byte char = byte(bytes32(uint(x) * 2 ** (8 / j)));

Fig. 4: Examples of mutants leading to new detectors.

umentation, the Mastering Ethereum book [4], and a handful

of selected, recent, higher quality blockchain contracts. Slither

had a mean mutation score of 0.11, vs. 0.04 for SmartCheck

and 0.01 for Securify. Associated mutant ratios were 0.38,

0.08, and 0.007. Mutant kill overlap was also similar; in fact,

Figure 1 shows the results: Slither is A, SmartCheck is B, and

Securify is C.

5) Improving Slither (RQ6): Based on the differential

mutation analysis, we identified three low-hanging fruit to

improve the performance of Slither. We chose Slither in part

because it seems to have a better underlying intermediate

language and analysis engine, and thus is likely to produce

better results for the same rule than the other tools. The process

was simple. First, we produced a list of all mutants killed

by either SmartCheck or Securify, but not killed by Slither.

We then applied the prioritization method based on the FPF

algorithm and the distance metric described in Section II-A,

and examined the mutants in rank order. Many of the mutants

were difficult to identify as true or false positives, absent

context. Some opportunities for enhancement were clear, but

seemed likely to require considerable effort to implement

without producing a large number of false positives. For exam-

ple, Securify often detected when an ERC20 token contract’s

guard preventing making the special 0x0 address the owner

of a contract was removed, and issued the error Violation
for MissingInputValidation. Detecting such miss-

ing guards is probably useful, but doing so without producing

false positives is non-trivial. We wanted to show that mutants

could identify useful but easy to implement missing detectors.

Examining only a few mutants, we identified three:

1) Boolean constant misuse: This detector flags code like

if (true) or g(b || true) (where g is a function

that takes a Boolean input). Constant-valued conditionals

tend to indicate debugging efforts that have persisted

into production code, or other faults; there are almost

no circumstances where a conditional should not vary

with state or input. This detector is actually split into

two detectors, one for this serious issue, and an infor-

mational/stylistic detector that flags code such as if (x
== true), which is merely difficult to read.

2) Type-based tautologies: A type-based tautology is again

a case where a Boolean expression has a constant value,

but this is not due to misuse of a Boolean constant,

but is instead due to the types in a comparison. For

example, if x is an unsigned integer type, the comparison

x >= 0 is always true and x < 0 is always false.

This detector is a generalization of the SmartCheck

detector https://github.com/smartdec/smartcheck/blob/

master/rule\ descriptions/SOLIDITY\ UINT\ CANT\
BE\ NEGATIVE/, modified to actually compute the

ranges of types and identify other cases such as y <
512 where y’s type is int8.

3) Loss of precision: Solidity only supports integer types, so

performing division before multiplication can introduce

avoidable rounding. This is a fairly important problem,

given Solidity code often performs critical financial cal-

culations. SmartCheck provides a detector for such preci-

sion losses https://github.com/smartdec/smartcheck/blob/

master/rule\ descriptions/SOLIDITY\ DIV\ MUL/.

All three of these detectors were submitted as PRs, vetted

over an internal benchmark set of contracts used by the Slither

developers to evaluate new detectors, and accepted for release

in the public version of Slither. All three detectors produce

some true positives (actual problems, though not always ex-

ploitable) in benchmark contracts, have acceptably low false

positive rates, and were deemed valuable enough to include as

non-informational (medium severity) detectors. Moreover, the

loss of precision detector has, to date, detected two real-world

security vulnerabilities: https://github.com/crytic/slither/blob/

master/trophies.md — search for “Dangerous divide before

multiply operations.”
The first mutants in prioritized rank exhibiting the issues

inspiring these detectors, shown above, were the 2nd, 9th, and

12th non-statement-deletion mutants ranked for SmartCheck,

out of over 800 such mutants. Using our prioritization, it

was possible to identify these issues by examining fewer

than 20 unkilled mutants. Without prioritization, on average

a developer would have to look at more than 200, 80, and

400 mutants, respectively, to find instances of these problems.

Interestingly, the very fact that these instances are “needles in

a haystack” among the mutants not killed by Slither means

that the results in Figure 3 and Table I are almost unaltered

by our improvements to Slither: our analysis is fairly robust to

modest tool improvements, unless added detectors account for

a large number of mutants not detected by the tool. Adding

such detectors will also only improve mutation ratio if they

do not add many false positives. Substantial changes in results

therefore require adding very effective (for mutants) detectors

that seldom trigger for correct code (or at least trigger much

less than for mutants). “Cheating” with respect to a mutation

benchmark is thus, we hope, very difficult.
There were 92 separately ranked statement deletion mutants

also. These, however, could all be ignored, as they were almost

entirely duplicates related to the missing-return statement

detector. If this detector were not already present as a private

Slither detector, it would also be a good candidate for addition

213

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



to the tool. Our three submitted detectors were not present

as private detectors, and only one (the type-based tautology

detector) had even been identified, via a GitHub issue, as

a potential improvement (and only in the private version of

Slither). Combining statement deletion mutants with other

mutants only moved the mutants we used down to 3rd, 11th,

and 14th positions. By default we rank statement deletions

separately, since such mutants are usually easier to understand

and evaluate, and in testing (but not static analysis) they are

likely to be the most critical faults not detected.

Examining the first 100 mutants in the unprioritized lists

for SmartCheck and Securify, ordered by contract ID and

mutant number (roughly source line mutated) we were unable

to identify any obviously interesting mutants, suggesting that it

is indeed hard to use mutation analysis results without prioriti-

zation. A large majority of the mutants we inspected involved

either the missing return problem noted in the introduction,

or replacing msg.sender with tx.origin; Slither has a

detector for misuses of tx.origin. SmartCheck and Secu-

rify tend to identify most (though not all) uses of tx.origin
as incorrect, while Slither has a more selective rule, intended

to reduce false positives. It is hard to scale our efforts here to

a larger experiment, since writing and submitting changes to

static analysis tools is always going to be a fairly onerous task,

but we believe that our successful addition of new detectors,

and the ease of identifying candidate detectors using mutant

prioritization supports a limited affirmative answer to RQ6.

B. Java Tools

1) Static Analysis Tools Compared: For Java, we again

compared three tools. SpotBugs (https://spotbugs.github.io/) is

the “spiritual successor” of FindBugs [6], [47]. PMD (https:

//pmd.github.io/) [47] is an extensible cross-language static

code analyzer. FaceBook’s Infer (https://fbinfer.com/) [16]

focuses on diff-related detection of serious errors (concurrency,

memory safety, and information flow).

2) Project Selection: For Java and Python, we did not

have to worry about invalidating tool improvements by basing

our results on benchmark code. We therefore aimed to use

realistic, important source code. We selected top GitHub

projects (defined by number of stars) for each language, and

removed projects with fewer than 5 developers or less than

six months of commit history (as well as projects that did not

build). For Java, we analyzed the top 15 projects satisfying our

criteria, with a maximum of 623,355 LOC and a minimum of

3,957 LOC, and a total size of 1.8 million LOC. Because the

Universal Mutator does not “know” Java syntax, and Java is

very verbose, the Java compiler rejected a large number of the

generated mutants (e.g., deleting declarations). We still, due to

the huge size of the source files and thus number of mutants

(and time to compile full projects), restricted our analysis to

files where Universal Mutator’s implementation of TCE [42]

for Java was useful, i.e. individual files that could be compiled

and the bytecode compared, leaving us with just over 70,000

mutants, ranging from 136 to 10,016 per project.

Fig. 5: Mutants killed by Java static analysis tools.

Findings Mutation Score Mutant
Tool Mean Median Mean Median Ratio

SpotBugs 28.93 14.00 0.07 0.07 0.002
Clean (3) - - 0.05 0.06 -
PMD 53.73 32.00 0.07 0.07 0.001
Clean (0) - - - - -
Infer 11.60 3.00 0.00 0.00 0.000
Clean (6) - - 0.00 0.00 -

TABLE II: Java tool results over all projects.

3) Analysis Results: Figure 5 shows the mutants killed by

the Java analysis tools, and Table II provides numeric results

for projects and clean projects, respectively. At the individual

project level, Infer was never best; PMD had a better raw score

than SpotBugs for 10/15 projects, but SpotBug had a better

ratio for 11. There is likely a tradeoff between verbosity and

precision. Standard deviation in project scores was 0.05 for

SpotBugs, 0.04 for PMD, and 0 for Infer.

In terms of RQ1, the raw kills results suggest there is

considereable value in running both SpotBugs and PMD. Both

produce a large number of unique detections, though PMD

produces about 20% more than SpotBugs. Infer on the other

hand, is only able to detect two mutants, but these are unique;

both were, however, spurious concurrency warnings. It may be

that the diff sizes in our code were simply too small for Infer’s

approach. RQ2 is also answered in the affirmative. While the

raw kills for SpotBugs are not as good as for PMD, it had

fewer findings, giving it a mutant ratio approximately twice

that of PMD.

We note that SpotBugs crashed for many more Java pro-

grams than PMD and Infer (neither crashed for any original

file in our experiments). SpotBugs “failed to detect” 23,000

of the mutants because it did not process the un-mutated file

for 383 files, over 12 of the 15 projects—just over 23% of the

1,664 total files. Removing files for which SpotBugs failed,

however, did not dramatically change results; SpotBugs’ mean

mutation score rose to 0.09, and mutant ratio rose to 0.003,

but PMD’s mean score rose to 0.10, and mutant ratio to 0.002.

For RQ3, to our knowledge there is no academic compar-

ison of all three tools; one study dates from 2004 [47], used

https://stackoverflow.com/questions/4297014/
what-are-the-differences-between-pmd-and-findbugs
https://www.sw-engineering-candies.com/blog-1/
comparison-of-findbugs-pmd-and-checkstyle
https://www.reddit.com/r/java/comments/3i7w6n/checkstyle vs pmd vs findbugs for
dummies why/

Fig. 6: Discussions of Java static analysis tools.

214

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



FindBugs, not SpotBugs, and reached no strong conclusions

with respect to FindBugs vs. PMD; a more recent study

found that SpotBugs outperformed Infer for Defects4J [35]

bugs [32], but did not compare to PMD. However, the user

postings listed in Figure 6, plus personal communications

with security analysts who use these tools [20] supported

some basic conclusions. SpotBugs is perhaps the best tool

for finding bugs; PMD focuses more on stylistic issues and

has a weaker semantic model. Running both is definitely

recommended, as neither is extremely effective. Infer is closer

to a model checker focusing on resource leaks than a truly

general-purpose tool, arguably. In fact, we suspect Infer would

perform much better if we used mutation operators targeting

some important subtle Java bugs; Infer is probably not a good

general-purpose static analysis tool for Java. Note that we did

not use Infer’s experimental detectors. For RQ4 there were

very few clean projects, but we see no evidence that non-clean

code is a source of degradation in mutation detection.

For Java, again, the large majority (> 75%) of randomly

chosen mutants in the tool difference set we inspected for

RQ5 were definitely meaningful, essentially “real faults.” In

particular, for Java, the large majority of mutants involved

either deleted method calls or changes to conditionals (e.g.,

== null to != null) that would clearly introduce potential

null pointer exceptions (NPEs), and such a possible NPE was

the produced finding. While the differences between Solidity

tools were often due to different detectors, the Java differences

seemed mostly rooted in analysis engine methods; all tools aim

to warn about potential NPEs. Because the number of mutants

we could examine and understand was smaller, we are less

confident in making a probabilistic estimate than with Solidity,

but it was clear the basis of the comparison was primarily

realistic faults, which some tools detected and others did not.

C. Python Tools

1) Static Analysis Tools Compared: We compared three

widely used and well-known Python tools: Pylint https://

www.pylint.org/ (probably the most widely used of Python

bug finding tools), pyflakes https://pypi.org/project/pyflakes/,

designed to be faster, lighter-weight, and more focused on

bugs (without configuration) than Pylint, and PyChecker http:

//pychecker.sourceforge.net/, an older, but still used tool.

2) Project Selection: For Python, we analyzed the top 25

GitHub projects by our criteria (see above), due to the smaller

size of Python projects. These ranged in size from 137 LOC

to 29,339 LOC, with a total size of about 75 KLOC, and a

mean size of 3,185 LOC. We analyzed 158,418 valid, non-

TCE redundant, mutants taken from these programs.

3) Analysis Results: Figure 7 shows the mutants killed by

the Python analysis tools, and Table III provides numeric

results for projects and clean projects, respectively. At the

project level, Pylint was better than pyflakes and PyChecker

for 21 and 24 projects, respectively, by raw score; pyflakes

was better than Pylint and PyChecker for 3 and 24 projects,

respectively; PyChecker was never better than another tool by

raw score. Switching to ratio measures, Pylint was better than

Fig. 7: Mutants killed by Python static analysis tools.

Findings Mutation Score Mutant
Tool Mean Median Mean Median Ratio

Pylint 10.63 5.50 0.31 0.34 0.03
Clean (4) - - 0.49 0.47 -
pyflakes 1.46 0.00 0.14 0.12 0.09
Clean (14) - - 0.14 0.12 -
PyChecker 11.6 0.00 0.01 0.00 0.00
Clean (4) - - 0.00 0.00 -

TABLE III: Python tool results over all projects.

pyflakes and PyChecker for 11 and 23 projects, respectively;

pyflakes was better than Pylint and PyChecker for 13 and 24

projects, respectively. PyChecker was better than Pylint for one

project, by ratio. Standard deviations in mutation scores were

sometimes high for Python: 0.17 for Pylint, 0.08 for pyflakes,

and 0.01 for PyChecker.

For RQ1, there is a clear difference between tools. Pylint

uniquely kills almost an order of magnitude more mutants

than the next-best tool. There is a large overlap between Pylint

and pyflakes, while PyChecker is both much less effective and

doing something fairly different than the other tools. From the

diagram, one might think that pyflakes acts, to some extent,

as a less verbose “subset” of Pylint, in that most mutants

detected by pyflakes are also detected by Pylint (however,

the nearly 3,500 killed mutants unique to pyflakes suggest

it is a useful tool, perhaps most useful after problems also

reported by Pylint are fixed). PyChecker performs poorly in

part because it crashed (due to changes in Python since the

last update to the tool) for 19 of the 25 projects; however, it

also performed poorly on programs where it worked.

The mutant ratios RQ2 show that pyflakes is more compet-

itive than is obvious from raw kill comparisons. The mutant

ratio is almost three times as good as for Pylint! That is,

some of Pylint’s advantage may be due to general verbosity,

even once stylistic warnings are turned off. Combining the

results from raw kills and ratios, a strategy of using pyflakes

as a quick check for problems, then using both pyflakes and

Pylint for more in-depth analysis makes sense. Whether to

use both pyflakes and Pylint in CI is a rquestion of tolerance

for handling false positives, but it is clear that the “price”

of additional warnings from Pylint is (1) high but (2) not

without ereturn on investment (in terms of additional real

finds). PyChecker is probably too outdated, and sometimes

too verbose when it works, to be useful.

For RQ3, there were again no academic comparisons we

could find. However, opinions on the web were quite common

(see Figure 8, which lists ones we examined). It is hard to sum-

215

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



https://stackoverflow.com/questions/1428872/pylint-pychecker-or-pyflakes
https://www.reddit.com/r/Python/comments/ii3gm/experience with pylint pychecker
pyflakes/
https://www.slant.co/versus/12630/12631/∼pylint vs pyflakes
https://news.ycombinator.com/item?id=12748885
https://doughellmann.com/blog/2008/03/01/static-code-analizers-for-python/

Fig. 8: Discussions of Python static analysis tools.

marize the overall opinion here, since it ranges considerably.

There is probably general agreement that PyChecker is old and

maybe less useful, but also terse and sometimes helpful. Pylint

is the most recommended tool, and the general complaint that

it is too picky was somewhat mitigated in our results by turning

off warnings that are clearly purely stylistic. Pyflakes is also

well liked, and is considered much less verbose than Pylint;

this was definitely reflected in our results, where Pyflakes

underperformed in raw kills, but had a much better mutant

ratio than Pylint. For RQ4, Pylint performed significantly

better on clean projects. Performance for the other two tools

was essentially unchanged.

For Python, all but three of the mutants we examined for

RQ 5 (a random sample of 100 mutants with a kill difference)

involved code changes we agreed were definitely buggy, and

would cause incorrect behavior if executed (the exceptions

were deletions of code with no effect on state, e.g., strings as

comments). The large majority involved statement deletions,

detected via 1) unused variables/arguments, 2) instances lack-

ing a member field, or 3) undefined variables. Interestingly,

this seems to be an engine issue more than a detector issue,

as pyflakes and Pylint both basically support all of these kinds

of checks. In some cases the two tools both detected a problem

(but PyChecker did not) but differed as to which variable

was not used or defined, again suggesting an engine rather

than detection rule difference. Pylint’s better performance was

mostly, in the sample, due to detecting more of these issues,

though it also was the only tool in the sample that detected

arithmetic operation changes, due as far as we could determine

to constant index changes. Pylint also detected a few mutants

no other tool did, due to the presence of unreachable code.

In one case, it also noticed a protected member access via a

change in constant index, a surprisingly complex problem to

find, in our opinion. PyChecker was never the sole detecting

tool for any mutants in our sample.

D. Threats to Validity

The primary threat to validity in terms of generalization is

that we only examined nine static analysis tools, and our anal-

yses were restricted to 100 smart contracts, 15 Java projects,

and 25 Python projects. Because it is hard to identify a ground

truth to compare with (the motivation for our approach), we

cannot be certain that our rankings of tools are correct even for

these tools and this code. However, where there are existing

discussions of the tools, our results seem to agree with these,

but add substantial detail.

We used the Universal Mutator [27], [28], which aggres-

sively produces large numbers of mutants, but does not target

any particular software defect patterns, to generate all mutants.

There is no room in the paper to present the exact set of

projects analyzed, but we have provided an (anonymized)

github repository containing raw results for inspection by

reviewers, or further analysis by other researchers (https:

//github.com/mutantsforstaticanalysis/rawdata).

IV. RELATED WORK

The goal of “analysing the program analyser” [9] is intu-

itively attractive. The irony of using mostly ad-hoc, manual

methods to test and understand static analysis tools is apparent;

however, the fundamentally incomplete and heuristic nature of

such tools makes this a challenge similar to testing machine

learning algorithms [30]; most tools will not produce “the right

answer” all the time, as a result of both algorithmic constraints

and basic engineering trade-offs. While comparisons of static

analysis tools [47], [18], [43], [19], [44] have appeared in

the literature for years, these generally involved large human

effort and resulting smaller scale, did not make a strong effort

to address false positives, or restricted analysis to, e.g., a

known defects set [32], [17]. Defect sets are vulnerable to tools

intentionally overfitting/gaming the benchmark; our approach

makes it easy to compare tools on “fresh” code to avoid this

risk. Compared to well-known studies of Java tools [32], [47]

our approach used a larger set of subject programs (1.8 MLOC

total vs. 170-350KLOC) and thousands of detected faults, vs.

e.g., about 500 known defects [32]. Results not using defect

sets are even more limited in that humans can only realistically

examine a few dozens of each type of warning [47].

Cuoq et al. [14] proposed the generation of random pro-

grams (á la Csmith [56]) to test analysis tools aiming for

soundness, in limited circumstances, but noted that naı̈ve

differential testing of analysis tools was not possible. This

paper proposes a non-naı̈ve differential comparison based on

the observation that the ability to detect program mutants

offers an automatable comparison basis. We essentially adopt

the approach of the large body of work on using mutants in

software testing [34], [15], [7], [24], [25], [45], [33], [2], but

re-define killing a mutation for a static analysis context.

Klinger et al. propose a different approach to differential

testing of analysis tools [36]. Their approach is in some ways

similar to ours, in that it takes as input a set of seed programs,

and compares results across new versions generated from

seeds. The primary differences are that their seed programs

must be warning-free (which greatly limits the set of input

programs available), and that the new versions are based on

adding new assertions only. We allow arbitrarily buggy seed

programs, and can, due to the any-language nature of the

mutation generator we use, operate even in new languages.

On the other hand, their approach can identify precision issues,

while we offer no real help with false positives (in theory, you

could apply their majority-vote method to mutants only a few

tools flag, but mutants are usually faults. in contrast to their

introduction of checks that may be guaranteed to pass). Most

importantly, however, their approach only applies to tools that
check assertions, rather than the much more common case of

tools that identify bad code patterns.

216

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



V. CONCLUSIONS AND FUTURE WORK

In this paper, we showed that program mutants can be

used as a proxy for real faults, to compare (and motivate

improvements to) static analysis tools. Mutants are attractive

in that a large body of work supports the claim that at least 60-

70% of mutants are fault-inducing. This allows us to assume

detected mutants are faulty, and escape the ground-truth/false

positive problem that makes comparing static analysis tools so

labor-intensive. We evaluated 9 popular static analysis tools,

for Solidity smart contracts, Java, and Python, and offer advice

to users of these tools. Our mutation results strongly confirm

the wisdom of using multiple tools; with the exception of

one Java tool, all tools we investigated uniquely detected

over 1,000 mutants, and for Java and Python there were no

mutants detected by all tools. For Solidity, academic research

evaluations of the tools generally agreed strongly with our

conclusions, but lacked the detail mutant analysis contributed.

We were also able to use our methods, plus a novel mutant

prioritization scheme, to identify and implement three useful

new detectors for the open source Slither smart contract

analyzer, the best-performing of the tools.
As future work, we would like to further validate our

approach and improve our admittedly ad hoc mutant distance

metric. Allowing user feedback [37], [30], or applying metric

learning methods [38] (particularly unsupervised learning [48],

[52]) are the most obvious and interesting possibilities.
Acknowledgements: A portion of this work was funded by

the National Science Foundation under CCF-2129446.

REFERENCES

[1] Solidity 0.4.24 introduction to smart contracts. https://solidity.
readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html.

[2] Iftekhar Ahmed, Carlos Jensen, Alex Groce, and Paul E. McKenney.
Applying mutation analysis on kernel test suites: an experience report.
In International Workshop on Mutation Analysis, pages 110–115, March
2017.

[3] James H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In International Conference
on Software Engineering, pages 402–411, 2005.

[4] Andreas M Antonopoulos and Gavin Wood. Mastering Ethereum:
building smart contracts and DApps. O’Reilly Media, 2018.

[5] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on Ethereum smart contracts SoK. In International Conference
on Principles of Security and Trust, pages 164–186, 2017.

[6] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, Sep.
2008.

[7] Timothy A Budd, Richard A DeMillo, Richard J Lipton, and Freder-
ick G Sayward. Theoretical and empirical studies on using program
mutation to test the functional correctness of programs. In Principles of
Programming Languages, pages 220–233. ACM, 1980.

[8] Vitalik Buterin. Ethereum: A next-generation smart contract and de-
centralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2013.

[9] Cristian Cadar and Alastair F Donaldson. Analysing the program
analyser. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 765–768, 2016.

[10] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman. An empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pages
597–608, May 2017.

[11] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli
Fern, Eric Eide, and John Regehr. Taming compiler fuzzers. In
Programming Language Design and Implementation, pages 197–208,
2013.

[12] Henry Coles. Pit mutation testing: Mutators. http://pitest.org/quickstart/
mutators.

[13] ConsenSys. Mythril: a security analysis tool for ethereum smart
contracts. https://github.com/ConsenSys/mythril-classic, 2017.

[14] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John
Regehr, Boris Yakobowski, and Xuejun Yang. Testing static analyzers
with randomly generated programs. In NASA Formal Methods Sympo-
sium, pages 120–125. Springer, 2012.

[15] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints
on test data selection: Help for the practicing programmer. Computer,
11(4):34–41, 1978.

[16] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.
O’Hearn. Scaling static analyses at facebook. Commun. ACM,
62(8):62–70, July 2019.

[17] Lisa Nguyen Quang Do, Michael Eichberg, and Eric Bodden. Toward
an automated benchmark management system. In Proceedings of the 5th
ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, pages 13–17, 2016.

[18] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. Empirical
review of automated analysis tools on 47,587 ethereum smart contracts.
In International Conference on Software Engineering, 2020. Available
as arXiv preprint at https://arxiv.org/abs/1910.10601.

[19] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analyzer
for solidity. In International Workshop on Emerging Trends in Software
Engineering for Blockchain, pages 8–15, 2019.

[20] Omitted for blinding. Discussion of Java static analysis tools. Slack
communication, January 21, 2020.

[21] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293–306, 1985.

[22] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and
Alex Groce. How hard does mutation analysis have to be, anyway?
In 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), pages 216–227. IEEE, 2015.

[23] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How
close are they to real faults? In International Symposium on Software
Reliability Engineering, pages 189–200, 2014.

[24] Alex Groce, Iftekhar Ahmed, Carlos Jensen, and Paul E McKenney.
How verified is my code? falsification-driven verification. In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Con-
ference on, pages 737–748. IEEE, 2015.

[25] Alex Groce, Iftekhar Ahmed, Carlos Jensen, Paul E McKenney, and
Josie Holmes. How verified (or tested) is my code? falsification-
driven verification and testing. Automated Software Engineering Journal,
25(4):917–960, 2018.

[26] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. What
are the actual flaws in important smart contracts (and how can we find
them)? In International Conference on Financial Cryptography and
Data Security, 2020. Accepted for publication.

[27] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming
Zhang. Regexp based tool for mutating generic source code across
numerous languages. https://github.com/agroce/universalmutator.

[28] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming
Zhang. An extensible, regular-expression-based tool for multi-language
mutant generation. In International Conference on Software Engineer-
ing: Companion Proceeedings, pages 25–28, 2018.

[29] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized dif-
ferential testing as a prelude to formal verification. In International
Conference on Software Engineering, pages 621–631, 2007.

[30] Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini Shamasunder,
Margaret Burnett, Weng-Keen Wong, Simone Stumpf, Shubhomoy Das,
Amber Shinsel, Forrest Bice, and Kevin McIntosh. You are the only
possible oracle: Effective test selection for end users of interactive
machine learning systems. IEEE Transactions on Software Engineering,
40(3):307–323, March 2014.

[31] B. J. M. Grün, D. Schuler, and A. Zeller. The impact of equivalent
mutants. In 2009 International Conference on Software Testing, Verifi-
cation, and Validation Workshops, pages 192–199, April 2009.

[32] Andrew Habib and Michael Pradel. How many of all bugs do we find?
a study of static bug detectors. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, page 317–328, New York, NY, USA, 2018. Association for
Computing Machinery.

217

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 



[33] Goran Petrović Marko Ivanković, Bob Kurtz, Paul Ammann, and René
Just. An industrial application of mutation testing: Lessons, challenges,
and research directions. In Proceedings of the International Workshop
on Mutation Analysis (Mutation). IEEE Press, Piscataway, NJ, USA,
pages 47–53, 2018.

[34] Yue Jia and Mark Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[35] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440. ACM, 2014.

[36] Christian Klinger, Maria Christakis, and Valentin Wüstholz. Differ-
entially testing soundness and precision of program analyzers. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 239–250, 2019.

[37] Todd Kulesza, Margaret M. Burnett, Simone Stumpf, Weng-Keen Wong,
Shubhomoy Das, Alex Groce, Amber Shinsel, Forrest Bice, and Kevin
McIntosh. Where are my intelligent assistant’s mistakes? A systematic
testing approach. In End-User Development - Third International
Symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7-10, 2011.
Proceedings, pages 171–186, 2011.

[38] Brian Kulis. Metric learning: A survey. Foundations & Trends in
Machine Learning, 5(4):287–364, 2012.

[39] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce.
MuCheck: An extensible tool for mutation testing of Haskell programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 429–432. ACM, 2014.

[40] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10:707–710, 1966.

[41] William McKeeman. Differential testing for software. Digital Technical
Journal of Digital Equipment Corporation, 10(1):100–107, 1998.

[42] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial
compiler equivalence: A large scale empirical study of a simple fast
and effective equivalent mutant detection technique. In International
Conference on Software Engineering, 2015.

[43] Reza M. Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo, and
Amritraj Singh. Empirical vulnerability analysis of automated smart
contracts security testing on blockchains. In Proceedings of the 28th
Annual International Conference on Computer Science and Software
Engineering, CASCON ’18, page 103–113, USA, 2018. IBM Corp.

[44] Ivan Pashchenko, Stanislav Dashevskyi, and Fabio Massacci. Delta-
bench: differential benchmark for static analysis security testing tools.

In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 163–168. IEEE, 2017.

[45] Goran Petrović and Marko Ivanković. State of mutation testing at
google. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE-SEIP ’18, pages
163–171, New York, NY, USA, 2018. ACM.

[46] Phil Daian . Analysis of the dao exploit. http://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/, June 18, 2016 (acceded on Jan
10, 2019).

[47] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison
of bug finding tools for Java. In Proceedings of the 15th Interna-
tional Symposium on Software Reliability Engineering, ISSRE ’04, page
245–256, USA, 2004. IEEE Computer Society.

[48] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Non-
linear component analysis as a kernel eigenvalue problem. Neural
computation, 10(5):1299–1319, 1998.

[49] Ben H Smith and Laurie Williams. Should software testers use mutation
analysis to augment a test set? Journal of Systems and Software,
82(11):1819–1832, 2009.

[50] SpankChain. We got spanked: What we know so far. https://medium.
com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe,
Oct 8, 2018 (acceded on Jan 10, 2019).

[51] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In International Workshop
on Emerging Trends in Software Engineering for Blockchain, pages 9–
16, 2018.

[52] Michael E Tipping and Christopher M Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):611–622, 1999.

[53] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-
Chuan Liu, Premkumar T. Devanbu, Bogdan Vasilescu, and Cindy
Rubio-González. BugSwarm: mining and continuously growing a dataset
of reproducible failures and fixes. In International Conference on
Software Engineering, pages 339–349. IEEE / ACM, 2019.

[54] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In ACM SIGSAC Conference on Computer and
Communications Security, pages 67–82, 2018.

[55] Gavin Wood. Ethereum: a secure decentralised generalised transaction
ledger. http://gavwood.com/paper.pdf, 2014.

[56] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Programming Language Design
and Implementation, pages 283–294, 2011.

218

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:23:31 UTC from IEEE Xplore.  Restrictions apply. 


