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Abstract—Similarly to production code, code smells also occur
in test code, where they are called test smells. Test smells have a
detrimental effect not only on test code but also on the production
code that is being tested. To date, the majority of the research on
test smells has been focusing on programming languages such as
Java and Scala. However, there are no available automated tools
to support the identification of test smells for Python, despite
its rapid growth in popularity in recent years. In this paper, we
strive to extend the research to Python, build a tool for detecting
test smells in this language, and conduct an empirical analysis
of test smells in Python projects.

We started by gathering a list of test smells from existing re-
search and selecting test smells that can be considered language-
agnostic or have similar functionality in Python’s standard
Unittest framework. In total, we identified 17 diverse test smells.
Additionally, we searched for Python-specific test smells by
mining frequent code change patterns that can be considered as
either fixing or introducing test smells. Based on these changes,
we proposed our own test smell called Suboptimal Assert. To
detect all these test smells, we developed a tool called PYNOSE
in the form of a plugin to PyCharm, a popular Python IDE.
Finally, we conducted a large-scale empirical investigation aimed
at analyzing the prevalence of test smells in Python code. Our
results show that 98% of the projects and 84% of the test suites in
the studied dataset contain at least one test smell. Our proposed
Suboptimal Assert smell was detected in as much as 70.6% of the
projects, making it a valuable addition to the list.

Index Terms—Test smells, code smells, Python, empirical
studies, code change patterns, mining software repositories

I. INTRODUCTION

Code smells were introduced to identify potential main-

tainability issues in software systems [1], however, later they

have been used as a measure of design quality of software

projects [2], [3], [4]. Researchers found that code smells are

associated with bugs [3], [5], fault-proneness [6], [7], and

maintainability issues in the code base [1]. While investigating

the underlying reasons for introducing code smells, researchers

attributed various factors to this, including developers strug-

gling with deadlines [8] or not caring about the impact of the

applied design choices [1].

*The first two authors contributed equally to this work.

Similarly to production code, test code can also have code

smells, in which case they are called test smells. Van Deursen

et al. [9] defined test smells as being caused by poor design

choices (similarly to regular code smells) when developing test

cases.1 Just like the code smells, test smells make the impacted

test code harder to maintain and comprehend [10]. Moreover,

recent studies have shown that test smells also impact the

quality of production code [11].

Since test smells have a negative impact on the quality of

production code, it is of great interest and importance to study

and detect them. To date, the majority of the research on test

smells has been focusing on statically typed languages like

Java and Scala [10], [11], [12], [13], [14], [15]. However, in

recent years, Python has been growing in popularity due to

being the primary language used in Data Science and Machine

Learning in particular [16], [17]. Furthermore, despite the

empirical evidence against test smells, developers tend not to

be aware of the smells that exist in their tests [13], and the

lack of efficient tools can be one of the reasons for it. To

the best of our knowledge, there are no works that study the

existence and prevalence of test smells in Python code, and

no tools exist that specifically aim at identifying test smells in

this language.

In this paper, we aim to fill these gaps by curating a list

of possible test smells for Python, a tool for their detection,

and an empirical study of their pervasiveness in Python code.

We started by conducting a small-scale mapping study to find

different test smells studied in the literature and selecting

test smells that can be considered language-agnostic or have

analogous functionality in Python’s standard Unittest frame-

work. In total, we identified 17 diverse test smells. These

test smells were all adopted from other papers dedicated to

different programming languages, but it is natural to assume

that Python has its own specific test smells. To discover

them, we used a tool called PYTHONCHANGEMINER [18] to

1To avoid the ambiguity that exists in testing terminology between
languages and frameworks, in this paper, we will always refer to individual
tests or test methods as test cases and to classes that group them as test suites.
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search for frequent change patterns in test suites. We manually

evaluated 159 patterns that occur in at least three different

projects and identified 32 possible changes that are related to

assert functions in Unittest and are aimed at making the tests

more specific and simplify the understanding of the testing

logic. We bundled the less specific versions of these assertions

together into a single Suboptimal Assert test smell. Thus, a

total of 18 smells were identified for Python.

We developed PYNOSE, a plugin for PyCharm [19] that is

able to detect these smells in the Python code. Using the tool,

we performed an empirical study on the prevalence of test

smells in 248 Python projects. Our results indicate that test

smells are indeed common in Python test code, with 98% of

projects and 84% of test suites having at least one test smell.

Overall, our contributions are as follows:

• We conducted a small-scale mapping study and compiled

a list of test smells that are applicable to Python.

• We identified a new Python-specific test smell by ana-

lyzing Python test code changes.

• We developed a tool called PYNOSE as a plugin for

PyCharm that can detect test smells from Python projects

that use the standard Unittest framework. PYNOSE is

available for researchers and practitioners on GitHub:

https://github.com/JetBrains-Research/PyNose.

• We report the findings pertaining to the pervasiveness of

test smells from an empirical study conducted on 248

Python projects.

The rest of the paper is organized as follows. In Section II,

we discuss the existing works in the field of test smells

detection and analysis. Section III describes the choice of

test smells for Python and the search for Python-specific

test smells. In Section IV, we describe the development of

PYNOSE and its evaluation, and in Section V, we describe

the empirical study that we conducted using the tool, as well

as its results. In Section VI, we discuss threats to the validity

of our study, and, finally, in Section VII, we conclude our

paper and discuss possible future work.

II. RELATED WORK

Similarly to production code, test code should be designed

following proper established programming practices [20]. Van

Deursen et al. [9] defined the term test smells as code smells

that are caused by poor design choices when developing test

cases and also defined a catalog of 11 test smells. Later, several

researchers extended this catalog [14], [21], [22], [23]. While

the majority of the research focused on test smells occurring

in Java, several researchers investigated other languages and

domains. For example, Bleser et al. investigated test smells in

Scala [15], [24], while Peruma et al. [25] explored unit tests

in mobile applications and identified several new test smells.

Researchers have also been investigating the negative im-

pacts of test smells on software development [10], [11],

[12], [13], [26]. By conducting two empirical studies, Bavota

et al. [10], [12] showed that test smells are widely spread

throughout software systems, and most test smells have a

strong negative impact on the comprehensibility of test suites

and production code. Spadini et al. [11] investigated the

relationship between the presence of test smells and the

change- and defect-proneness of test code, as well as the

defect-proneness of the tested production code. They found

that some test smells are more change-prone than others, and

they also found that production code tested by smelly tests is

comparatively more defect-prone. Tufano et al. [13] found that

test smells are usually introduced when the corresponding test

code is committed to the repository for the first time, and they

tend to remain in a system for a long time. Virgı́nio et al. [26]

investigated correlations between test coverage and test smells,

and found that test smells influence code coverage.

Investigating ways for an automated detection of test smells

has also received attention from the research community. Van

Rompaey et al. [27] proposed a set of metrics defined in terms

of unit test concepts and compared the proposed detection

techniques effectiveness with human review. Greiler et al. [14]

analyzed the relationship between the development of a test

fixture and possible test smells within it. They also designed

a static analysis tool to identify fixture-related test smells and

evaluated them by discovering test smells in three industrial

projects. Palomba et al. [28] developed an automated textual-

based approach for detecting several types of test smells.

Compared with the code metrics-based techniques proposed

by Greiler et al. and Van Rompaey et al., the textual-based

technique proved to be more effective in detecting certain test

smells. Peruma et al. [25], [29] recently developed a tool called

TSDETECT capable of detecting 19 test smells in Java.

More recently, researchers have been investigating ways to

help testers refactor test smells. Lambiase et al. [30] presented

an IntelliJ-based plugin that enables an automated identifica-

tion and refactoring of test smells using IntelliJ Platform’s

APIs. Santana et al. [31] proposed another tool that can be

used in an IDE, providing testers with an environment for

automated detection of lines of code affected by test smells,

as well as a semi-automated refactoring for Java projects.

Virgı́nio et al. [32] presented a tool designed to analyze test

suite quality in terms of test smells. Their tool is the first

one that relies on both code coverage and the presence of test

smells to measure the quality of tests.

Overall, the majority of the mentioned research has been

focusing on Java. However, in recent years, Python has been

growing more popular because of its important role in Data

Science and Machine Learning in particular [16], [17]. To the

best of our knowledge, no tools exist that specifically aim at

identifying Python test smells. PYNOSE addresses this gap.

Furthermore, there is no large-scale analysis regarding the

prevalence of test smells in Python code, and our study is

the first towards filling this gap in research.

III. SELECTING TEST SMELLS

The goal of our study is to build a tool that can identify

test smells in Python code as well as to assess to what

extent test smells are prevalent in Python test suites. The

general pipeline of our study is demonstrated in Figure 1. In

Section III, we curate the list of appropriate test smells by
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Fig. 1. The overall pipeline of the study.

conducting a systematic mapping study (Section III-A) and

then augmenting the list by identifying Python-specific test

smells (Section III-B).

A. Systematic mapping study of test smells

As a first step, we conducted a small-scale systematic map-

ping study on test smells to curate a list of test smells discussed

in the literature. According to Kitchenham et al. [33], the goal

of the mapping study is to survey the available knowledge

about a topic.

Search Question. Our search question was phrased as fol-

lows: What test smells have been studied in literature to date?
Search Keywords. To determine the optimal set of search

keywords, we conducted a pilot search on two well-known

digital libraries, IEEE and ACM. This process was intended

to identify relevant words utilized in test smell publications.

We conducted our query only on the title and abstract of the

publication to avoid false positives. The finalized search string

is presented below.

Title: (“test smell” OR “test smells”) AND Abstract:
(“test smell” OR “test smells”).

Data Source. To discover relevant publications, we used

three of the most popular online paper search engines: ACM

Digital Library, IEEE Xplore, and Scopus.

Search Period. To obtain as many related works as possible,

we queried all related studies before 2020. This resulted in a

list of papers that were published between 2006 to 2020.

Initial Results. Our initial search of the three digital libraries

resulted in 54 publications. To narrow down the search results,

next, we filtered out publications that were not part of our

inclusion criteria. A summary of the inclusion and exclusion

criteria used to filter the retrieved literature is shown in Table I.

The filtering process helped us to reduce the number of studies

significantly, however, this may have resulted in leaving out

some relevant studies. Thus, we conducted backward snow-

balling [34] (i.e., looking for additional studies in the reference

lists of the selected studies, as suggested by Keele et al. [35]).

In our work, we implemented a single iteration of backward

snowballing.

To ensure the reliability of the selected studies, each

study was evaluated by three authors of this paper. Each

TABLE I
INCLUSION AND EXCLUSION CRITERIA.

Inclusion Criteria

1. Publications that implement software engineering methodologies,

approaches, and practices in test smell detection and refactoring.

2. Available in digital format.

Exclusion Criteria

1. Publications that are not written in English.

2. Websites, leaflets, and grey literature.

3. Published in 2021.

4. Full-text not available online.

5. Tools not associated with peer-reviewed papers.

6. Duplicated publications.

selected study underwent an agreement process, and in case

of uncertainty and disagreement, we discussed it until we

reached consensus. We finally ended up with with a set of

29 studies. Next, we merged the lists of test smells mentioned

in these papers, which resulted in a list of 33 different test

smells encountered in Java, Scala, and Android systems. The

full list of papers and test smells is available online in the

supplementary materials [36].

Next, we considered the possibility of implementing each

test smell for Python. There were several reasons why some

of the test smells could not be implemented:

The test smell is not applicable to Python. For example, the

Resource Optimism [9] test smell in Java occurs if a File
object is used without checking for its existence. However,

in Python, files always associate with resources, because,

according to the Python official documentation, “open() is

the standard way to open files for reading and writing with

Python” [37].

The test smell detection relies on the production code that is
being tested. For example, to identify Eager Test [9] and Lazy
Test [9], we need to know what the corresponding production

files and production classes are. A lot of recent works study

test-to-code traceability [38], [39], [40] and a lot of different

approaches have been suggested. However, reliably making

a strict one-to-one connection between a test method and

a production method in the static analysis environment is

difficult [39], which is why leave the support of such test

smells for future work.
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The test smell detection is possible only when the test is
executed. For example, for the Test Run War [9], it is necessary

to actually run the test case, which is not possible in a static

analysis environment. Even after running, identifying such test

smells is non-trivial, and for practical purposes we had to

exclude them.

Finally, we selected 17 test smells for implementing. We

list them below.

Assertion Roulette occurs when a test case has multi-

ple non-documented assertions. Multiple assertion statements

without a descriptive message impact the readability, under-

standability, and maintainability, as it becomes more difficult

to understand the reason why this test fails [9].

Conditional Test Logic runs against the rule that test cases

need to be simple and execute all statements in the production

code. Conditions within the test case alter the behavior of the

test and lead to situations where the test fails to detect defects

in the production code under some conditions [25].

Constructor Initialization is made by developers who are

unaware of the purpose of the setUp() method that contains

the preparation needed to perform test cases. As a result, they

would define a constructor for the test suite, which is not ideal

in practice [25].

Default Test occurs when an IDE creates default test suites

when the project is created and developers keep the default

name. For example, PyCharm by default names the test suites

MyTestCase. These suites are meant to serve as an example

for developers when writing unit tests and should be renamed.

Not renaming them upfront causes developers to start adding

test cases into these files, making the default test suite a

container of all test cases. This can also cause problems when

the suites need to be renamed in the future [25].

Duplicate Assert occurs when a test case tests for the same

condition multiple times [25].

Empty Test occurs when a test case does not contain

executable statements. Such tests are possibly created for

debugging purposes and then forgotten about or contain com-

mented out code [25].

Exception Handling occurs when passing or failing of a

test case is dependent on the production method explicitly

throwing an exception. Instead, developers should utilize spe-

cial functionality of testing frameworks for that, such as an

assertRaises() function [25].

General Fixture occurs when a test suite fixture is too

general and some test cases only access a part of it. The fixture

of a test suite is a special method that is executed before the

test cases in the suite and serves as a setup step. A drawback

of it being too general is that unnecessary work is being done

when a test suite is run [9].

Ignored Test is caused by ignored test cases when it is

possible to suppress some test cases from running. These ig-

nored test cases add unnecessary overhead by increasing code

complexity and making comprehension more difficult [25].

Lack of Cohesion of Test Cases occurs if test cases are

grouped together in one test suite but are not cohesive. Cohe-

sion of a class is a metric that indicates how well various parts

and responsibilities of a class are tied together. If test cases in

a suite are not cohesive, this can cause comprehensibility and

maintainability issues [14].

Magic Number Test occurs when assert statements in a test

case contain numeric literals (i.e., magic numbers) as param-

eters instead of more descriptive constants or variables [25].

Obscure In-Line Setup occurs when the test case contains

too many setup steps. This can hinder inferring the actual

purpose of the assertion in the test. Ideally, such preparation

should be moved to a fixture or a separate method [14].

Redundant Assertion occurs when a test case contains

assertion statements that are either always true or always false,

and are therefore unnecessary [25].

Redundant Print occurs when there is a print statement

within the test. Print statements are considered to be redundant

in unit tests as unit tests are usually executed as a part of an

automated process with little to no human intervention [25].

Sleepy Test occurs when developers need to pause the

execution of statements in a test case for a certain duration

(i.e., simulate an external event) and then continue with the

execution. Explicitly causing a thread to sleep can lead to

unexpected results as the processing time for a task can vary

on different devices [25].

Test Maverick was derived from the General Fixture de-

scribed above. If the test suite has a fixture with setup, but

a test case in this suite does not use this setup, this test case

is a maverick (outlier). The setup procedure will be executed

before the test case is executed, but it is not needed [14].

Unknown Test occurs when the test case has no assertion

in it. It is possible to create a test case that does not use

assertions, however, such a test is more difficult to understand

and interpret [25].

During this selection, we also decided to focus specifically

on the Unittest testing framework [41] that is included into

the Python Standard Library. Python also has a lot of popular

third-party testing frameworks like PyTest [42] and Robot [43],

however, certain test smells would look differently in different

frameworks, and it is out of the scope of this paper to support

them all. There are two reasons for choosing specifically

Unittest. Firstly, it remains one of the most popular testing

frameworks in Python while also being the default one [44].

Secondly, according to its documentation, Unittest was origi-
nally inspired by JUnit [41], which allows us to detect some

test smells from the literature that were originally proposed for

JUnit, for example, fixture-related test smells. Additionally,

several other frameworks support launching test suites from

Unittest, and can therefore also be detected in this case.

B. Identifying Python-specific test smells

In addition to the test smells identified above, our goal

was to include Python-specific test smells. To discover

Python-specific test smells, we used a tool called PYTHON-

CHANGEMINER [18] to search for frequent change patterns in

the histories of test suites. We explain the steps of this process

in detail in this section.
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1) Project selection: To carry out this research, we needed

to collect a dataset of mature open-source Python projects. As

a starting point, we took GHTorrent [45], a large collection of

GitHub data, more specifically, their latest dump at the time

of the compilation, compiled in July 2020 [46]. To process

it, we used a tool called PGA-create [47] that had been

previously used to create Public Git Archive (PGA) [48]. This

tool processes the SQL dump to create a CSV file with a list

of projects that facilitates their convenient filtering. Next, we

selected all projects with at least 50 stars, which allowed us to

filter out toy projects. We also only considered projects with

Python as the main language that are not forks. This resulted

in identifying 26,072 projects. Of them, we randomly selected

10,000. The reason for not simply picking top projects by stars

is that testing might be organized very differently in projects

of different scale, and simply picking the largest or the most

popular repositories could skew our data towards a specific

type of projects.

Next, we analyzed the history of the projects to find all

commits where at least one Python test file was changed. We

defined a Python test file as any file with the .py extension

that has the word test in its filename, since Unittest has a

naming convention of having the word test in the name of

the test file [41]. We have conducted a small manual analysis

by selecting 100 random Python files with the word test
in their name and checking whether they are actually related

to tests. In this random sample, all 100 files were related to

testing, with 96 explicitly containing test suites and test cases,

and another 4 containing auxiliary methods and testing utils.

4,580 of the projects had at least one commit that changed
such files. As we were looking for code changes, we selected

these 4,580 projects. Since our goal was to analyze the

changes themselves, for practical purposes, we decided to

select a smaller set of projects using the criteria recommended

in literature [49]. We selected projects with at least 1,000

commits, 10 contributors, 2 years since the first commit and

no more than 1 year since the last push. This resulted in 450

projects. For the purposes of this paper, we will call this the

Primary dataset; the list is available online [36].

2) Change pattern mining: To identify Python-specific test

smells, we started by mining the histories of the collected

projects and finding patterns in the changes made to test files

that might be considered as either fixing or introducing a

test smell. We extracted all changes made to Python test files

from the identified 450 projects and processed these files using

PYTHONCHANGEMINER [18].

PYTHONCHANGEMINER is a tool that we developed for

mining code change patterns in Python code. The tool is

based on the algorithm developed by Nguyen et al. [50] for

Java. The parser in their tool is written specifically for the

syntax of the Java language, and their tool stores graphs and

works with them as Java objects, so we could not directly

reuse the tool. At the same time, the algorithm itself is not

language-specific, because it relies only on the abstract syntax

trees (AST) of code before and after the change, which is

why we implemented it for Python. The operation process

of PYTHONCHANGEMINER is similar to that of the tool by

Nguyen et al. Here, we briefly explain the procedure.

PYTHONCHANGEMINER works in two stages: building

change graphs and mining patterns. In the first stage, the

versions of code before and after the change are parsed into

a special representation introduced by Nguyen et al. called

fine-grained Program Dependence Graphs (fgPDGs). fgPDGs

are graphs with three types of nodes: data nodes (variables,

literals, constants, etc.), operation nodes (arithmetic, bit-wise

operations, etc.), and control nodes (control sequences like

if, while, for, etc.). These nodes are connected using two

types of edges: control edges represent a connection between

a control node and a node that it controls and data edges show

the flow of the data in the program, such edges also have labels

specifying the flow of data.

Then, unchanged nodes in the two fgPDGs of code before

and after the change are connected together by special map
edges, resulting in new graphs called change graphs. We used

GumTree [51] to detect corresponding unchanged nodes in the

versions before and after the change and connect them with a

map edge. This is carried out on a function level and therefore,

this way, we obtain a special change graph that represents each

change to each testing function from the history of projects in

our dataset. You can find an example of fgPDGs and a change

graph in the supplementary materials [36].

The second stage of PYTHONCHANGEMINER involves

searching these change graphs for patterns. This part is also

done similarly to the work of Nguyen et al. [50]. First, all pairs

of nodes representing function calls that are also connected

with the map edge are considered to be the initial patterns that

are then recursively expanded to contain new nodes. The pat-

tern is defined by two thresholds: minimum size, indicating the

minimum number of graph nodes in the pattern, and minimum
frequency, indicating the minimum number of repetitions of

the pattern in the corpus. Changing these parameters influences

what is considered to be a pattern and, therefore, how many

patterns are detected. This way, the patterns are expanding to

detect isomorphic subgraphs within our corpus of graphs.

In our work, we use the same thresholds as Nguyen et

al.: minimum size of 3 and minimum frequency of 3. It is

possible that studying specifically the testing code requires

different thresholds, we leave such analysis for future work.

We additionally add a maximum size threshold of 20. This is

done to make the process faster by stopping the patterns from

growing too large. Our own preliminary experiments and our

analysis of the results of Nguyen et al. demonstrated that the

majority of discovered patterns are small. More specifically,

the Depth pattern corpus provided by Nguyen et al. [50]

contains a total of 9,289 patterns, of which 8,697 (93.6%)

patterns are 20 nodes or smaller. Since smaller patterns are

much more frequent and are easier to analyze, we decided to

focus on them. An example of a discovered pattern is presented

in Figure 2.

3) Test smells detection: In total, PYTHONCHANGEMINER

was able to discover 8,239 different patterns in the Primary
dataset. Of them, 652 patterns were cross-project, meaning
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(a) Commit in the Obspy project [52].

(b) Commit in the Numba project [53].

(c) Commit in the Reviewboard project [54].

Fig. 2. An example of a change pattern identified in several projects on
GitHub.

they were encountered in at least two different projects, and

159 appeared in at least three different projects. Three authors

of the paper independently manually labeled all 159 of such

changes to discover changes that either fix or introduce possi-

ble test smells. The reason for focusing on these changes is that

they are inherently more universal among different developers.

Along with analyzing the code changes themselves, the authors

also looked at the corresponding commit messages, since

commit messages may contain the rationale for a change.

After individual labeling, the authors discussed their labels

and reached a perfect agreement.

Of the studied 159 patterns, 70 (44%) constituted various

changes to assertion functionality, similar to the example

shown in Figure 2. Three authors of the paper independently

came to a conclusion that the candidates for possible Python-

specific test smells can be found only within this group,

because other common changes in testing code correlate to

various other aspects of software engineering: data structures,

data processing, etc., that are not directly related to testing

itself. For example, popular changes include changing the level

of the logger (error, info, debug, etc.) or changing the shape

of a numpy array. Such patterns are important, but are not

directly related to testing or test smells.

We categorized assert-related change patterns into three

categories, which we describe below with specific examples.

i. Assertion changes that alter the logic. Often, when de-

velopers change an assertion in a test case, they do it to update

the logic behind the test. For example, a pattern that occurred

in six different projects is changing from assertEqual
to assertRegex. This way, instead of checking for an

exact equality between an object and a string, a regular

expression is passed that can support variations in strings. One

commit message reads: Use a more permissive comparison for
jsonschema.ValidationError messages [55].

Another common pattern involved changing from

assertEqual to assertIn, where instead of one

correct result, there is a list of values. Conversely, another

common example is changing from assertIsNone to

another function assertIsInstance. This makes the

check more specific: the object is not compared to None
but rather needs to be an object of a new specific class. One

commit message conveys a similar idea: NullSort instead of
None. A more descriptive placeholder for “don’t sort” [56].

ii. Assertion changes that do not alter the logic and use
more appropriate functions.

A large portion of the patterns involved keeping the asser-

tion logic the same, but replacing the assertion function with

a more appropriate one to make the code succinct. In total,

eight such patterns were identified. These changes are Python-

specific in the sense that they rely heavily on a wide range of

assertion functions that Unittest supports.

The most popular pattern is shown in Figure 2. It oc-

curs in seven different projects and moves from using

assertTrue(X in Y) to assertIn(X, Y). One com-

mit message describes this change in great detail: Use more
specific assertions for ‘in’ checks. A lot of old code used
‘assertTrue(blah in blah)’, or variants on that, which didn’t tell
you much if there was a failure. Nowadays, we have assertIn
and assertNotIn, which we can use instead. This switches our
tests to use these [54]. This commit message indicates that

the original code (before the change) can be considered a test

smell since using general assertions can make it difficult to

infer the reason of failure by “hiding” the actual assertion in

its body, whereas using specific assertions can make it easier.

Another change that strives to remove the ambigu-

ity of a general assertion occurs in four repositories,

and it moves from using assertFalse(X == Y) to

assertNotEqual(X, Y). Sometimes assertTrue is

changed to another specific assertion. For example, in three

different projects assertTrue(X <= Y) is changed to

Unittest’s assertLessEqual(X, Y). One commit mes-

sage expectedly comments this: Use more specific asserts in
unit tests [57].

In Python, it is considered bad practice to check the equality

of a boolean value when you can check the value itself,

so in this case a boolean assertion is more correct and

more interpretable, which is reflected in a common change

pattern where assertEqual(X, False) is changed to

assertFalse(X).

In this section, we have given examples of some commit

messages that describe the changes along with the change

pattern. We believe that these commit messages justify con-

sidering the wrong choice of an assertion function in Unittest
as a test smell. We called this smell Suboptimal Assert.

iii. Assertion changes that do not alter the logic and use
less appropriate functions.

Interestingly, we also discovered seven change patterns that

move from an appropriate assertion function to a more general

one. Following the logic of the previous section, these can be

treated as introducing a test smell.

The most popular such change is moving from a

more specific assertIsNotNone(X) to a more general

assertNotEqual(X, None). One commit message de-

scribes this change as a Fix in test for Python 2.6 compatibil-
ity [58]. However, the changes in this pattern were made in

2014–2015, and since Python 2 is deprecated from 2020, this

is no longer a problem.

A similar message described commits in two dif-

ferent projects that moved from assertNotIn(X, Y)
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Fig. 3. The pipeline of PYNOSE operation in two regimes: GUI mode and CLI mode.

to assertTrue(X not in Y) and two more dif-

ferent projects that moved from assertLess(X, Y)
to assertTrue(X < Y). The same changes can be

found for functions like assertGreater(X, Y) and

assertIsNone(X), with one commit message saying: re-
move fancy test assertions that are unavailable on 2.6 [59].

In total, we encountered 12 different suboptimal asserts (ei-

ther fixed, introduced, or both). We extrapolated them to simi-

lar functions and opposite cases where necessary: for example,

if there is a suboptimal assert that contains assertLess,

it can also be formulated for assertGreater, etc. This

resulted in a total of 32 different assertions that can be

considered a part of the Suboptimal Assert test smell, the full

list is available online [36].

IV. PYNOSE

Once we curated the list of test smells (explained in Sec-

tion III), our next goal was to implement a tool to identify them

in actual Python code. We developed a tool called PYNOSE

that currently identifies 18 test smells (17 language-agnostic

from the existing literature and one Python-specific elicited by

us as described in Section III-B), and can be run from both

the graphical user interface and the command line. Figure 3

shows the operating pipeline of PYNOSE. In this section, we

explain it in greater details.

A. Tool internals

PYNOSE is implemented as a plugin for PyCharm [19], a

popular IDE for Python developed by JetBrains. The plugin

supports two different modes of operation: Graphical User
Interface (GUI) mode and Command Line Interface (CLI)
mode. Internally, PYNOSE uses Program Structure Interface

(PSI) [60] from JetBrains’ IntelliJ Platform (that PyCharm is

built upon) to parse Python source code and build syntactic

and semantic code models for analysis. When the project is

opened and the interpreter is set up, the tool uses PSI and other

related PyCharm API to gather all .py files in the project in

the form of PSIFile objects.

Next, the tool extracts all Python classes that are

sub-classes of unittest.TestCase. With the help of

PSI, PYNOSE can deal with importing unittest or

unittest.TestCase under alias or test cases that are

not direct sub-classes of unittest.TestCase. After col-

lecting individual test suites, each detector class (correspond-

ing to each test smell) invokes PsiElementVisitor to

create a custom visitor for the necessary PsiElement,

which allows PYNOSE to identify test smells. For ex-

ample, for the Magic Number Test, we use a custom

visitor of PyCallExpression to find all assertions,

and then check if one of the provided arguments is a

PyNumericLiteralExpression. If there is a match, the

Magic Number Test smell is declared to be found.

For the test smells from the literature, we implemented

their detection in the same way as they are described in the

original papers, using the mentioned thresholds. For example,

we detect Obscure In-Line Setup the same way as Greiler

et al. [14], by counting the number of local variables in a

test case and flagging the case as smelly if this number is

larger than a threshold of 10, and detect Lack of Cohesion
of Test Cases the same way as Palomba et al. [28], by

calculating pairwise cosine similarities between test cases.

Detection rules for all the supported test smells are presented

in Table II, the citations mark the works, from where the

detection rules were adapted from. Where necessary, we used

code entities analogous to their counterparts in Java, for

example, @unittest.skip() decorator in the place of the

@Ignore annotation. If there were several different heuristics

to detect the same smell in different papers, we selected one

based on its recency and its convenience to implement using

the PSI and the IntelliJ platfrom.

When the analysis is done, PYNOSE can show the detected

test smells inside the IDE or save them to a JSON file for

further analysis.

B. Evaluation

We conducted an experimental evaluation of the effective-

ness of PYNOSE in correctly detecting test smells. As there

are no existing datasets containing information for all the sup-

ported smells, we decided to construct our own validation set.

We randomly selected eight projects that did not make it into

the Primary dataset. We then used the definitions of test smells

to identify and tag test files with the information regarding the

types of smells they exhibit. This process resulted in a total

of 37 annotated files. The list of projects, together with some

statistics about their testing files, is shown in Table III. To

ensure an unbiased annotation process, three authors of the

paper individually did the labelling and discussed their results

afterwards to reach a consensus. All the three authors have

experience with Python development ranging from two to five

years, which includes exposure to developing unit tests.

Next, we ran PYNOSE on the same set of projects and com-

pared our results against the oracle. We calculated precision,

recall, and F1 score for each test smell. We also calculated
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TABLE II
THE DETECTION RULES FOR SUPPORTED TEST SMELLS. CITATIONS INDICATE WORKS WHERE THE RULES WERE ADOPTED FROM.

Assertion Roulette A test case contains more than one assertion statement without an explanation/message. [29]
Conditional Test Logic A test case contains one or more control statements (i.e., if, for, while). [29]
Constructor Initialization A test suite contains a constructor declaration (an __init__ method). [29]
Default Test A test suite is called MyTestCase. [29]
Duplicate Assert A test case contains more than one assertion statement with the same parameters. [29]
Empty Test A test case does not contain a single executable statement. [29]
Exception Handling A test case contains either the try/except statement or the raise statement. [29]
General Fixture Not all fields instantiated within the setUp() method of a test suite are utilized by all test cases in this test suite. [29]
Ignored Test A test case contains the @unittest.skip decorator. [29]
Lack of Cohesion of Test Cases The mean of the pairwise cosine similarities between test cases in a test suite ≤ 0.4. [28]
Magic Number Test A test case contains an assertion statement that contains a numeric literal as an argument. [29]
Obscure In-Line Setup A test case contains ten or more local variables declarations. [14]
Redundant Assertion A test case contains an assertion statement in which (1) the expected and actual parameters of equality are the

same, e.g., assertEqual(X, X) or (2) the assertion of truth is carried out on the unchangeable object, e.g.,
assertTrue(True). [29]

Redundant Print A test case invokes the print() function. [29]
Sleepy Test A test case invokes the time.sleep() function with no comment. [29]
Suboptimal Assert A test case contains at least one of the suboptimal asserts.
Test Maverick A test suite contains at least one test case that does not use a single field from the SetUp() method. [14]
Unknown Test A test case does not contain a single assertion statement. [29]

TABLE III
EIGHT PROJECTS SELECTED FOR THE EVALUATION OF PYNOSE. THE

COLUMNS INDICATE THE NUMBER OF TESTING FILES, SUITES, AND CASES

WITH Unittest.

Project T. Files T. Suites T. Cases

ali1234/vhs-teletext 12 23 56
cea/sec ivre 1 1 13

davidhalter/jedi 3 4 17
demisto/content 9 10 203
justiniso/polling 1 1 4
Lagg/steamodd 6 13 45
plamere/spotipy 3 17 114

pygridtools/drmaa-python 2 4 16

Total 37 73 468

the weighted average of these three metrics for all test smells

with the weights being the number of instances of each test

smell in the projects. The results of the conducted evaluation

are presented in Table IV.

Several test smells were encountered very rarely in the

validation projects, with three of them having only a single

example. This has to do with the fact that these test smells are

just rare in Python in general (see Section V-C2). However,

these test smells have very robust definitions that are easy

to detect: Default Test requires the tool to simply check the

name of the test suite, Constructor Initialization requires the

tool to simply check the presence of an __init__ method,

and Sleepy Test simply looks for the sleep() function in

the body of the test case.

As shown in Table IV, PYNOSE achieves a high level of

correctness with F1 scores ranging from 81.5% to 100% for

different test smells. For the cases where the tool did not

achieve 100%, we investigated the mismatch.

In one instance, Assertion Roulette was not detected because

of a non-conventional name of the test case, where the name

started with a _ symbol instead of the word test* as is

the convention. A human rater could tag such a test case as

TABLE IV
THE RESULTS OF THE EVALUATION. INST. STANDS FOR INSTANCES AND

INDICATES A TRUE NUMBER OF TEST SUITES WITH A GIVEN SMELL IN

THE VALIDATION DATASET.

Test Smell Inst. Precision Recall F1

Assertion Roulette 42 100% 97.6% 98.8%
Conditional Test Logic 20 80% 100% 88.9%
Constructor Initialization 1 100% 100% 100%
Default Test 2 100% 100% 100%
Duplicate Assertion 6 100% 100% 100%
Empty Test 1 100% 100% 100%
Exception Handling 10 100% 100% 100%
General Fixture 11 100% 100% 100%
Ignored Test 3 100% 100% 100%
Lack of Cohesion 13 78.6% 84.6% 81.5%
Magic Number Test 23 100% 82.6% 90.5%
Obscure Inline Setup 3 100% 100% 100%
Redundant Assertion 2 100% 100% 100%
Redundant Print 2 100% 100% 100%
Sleepy Test 1 100% 100% 100%
Suboptimal Assert 10 100% 100% 100%
Test Maverick 5 100% 100% 100%
Unknown Test 10 83.3% 100% 90.1%

Weighted average — 94.0% 95.8% 94.9%

having the Assertion Roulette test smell, however, PYNOSE

failed to do so. PYNOSE also incorrectly identified several

Conditional Test Logic test smells. Conditional Test Logic
is detected by the presence of control statements (i.e., if,

for, etc.) irrespective of their impact on the assertion. For

example, the for statement can be used simply to assign a

variable and such cases are incorrectly tagged as Conditional
Test Logic by PYNOSE. Lack of Cohesion relies on the

cohesiveness of test cases in a test suite. PYNOSE measures

cohesiveness using cosine similarity, whereas human raters

used their subjective judgement, which resulted in a mismatch

between the output of PYNOSE and the opinion of the human

raters in several cases. Several Magic Number Tests were

not detected because the comparison to a literal occurred in
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assertions with complex parameters that are not yet supported.

For example, assertEqual(df.shape, (1, )) was

tagged as a Magic Number Test test smell by a human rater,

however, PYNOSE failed to do so, because the literal is located

in a tuple. Finally, two cases of Unknown Test turned out to be

false positives. The tool considered the test case to not have

assertions, when in reality an assertion was present, but it was

from the unsupported pytest framework.

For all test smells together, PYNOSE achieves the precision

of 94% and the recall of 95.8%. Table V shows the comparison

between the obtained values and the reported numbers of

TSDETECT [29], a similar tool for Java. It can be seen that

the values are similar, however, we plan to conduct a more

thorough and direct comparison of tools in the future.

TABLE V
THE COMPARISON OF PERFORMANCE BETWEEN PYNOSE AND TSDETECT.

Detector Language Precision Recall F1

TSDETECT [29] Java 96.0% 97.1% 96.5%
PYNOSE Python 94.0% 95.8% 94.9%

V. PREVALENCE OF TEST SMELLS

After developing and validating PYNOSE, we conducted an

empirical study on test smell prevalence in open-source Python

projects. In this section, we present the details and the results

of this study.

A. Selecting projects to analyze

The goal of our study was to analyze test smell prevalence

in Python projects using PYNOSE. This was done to increase

the subject diversity among the existing empirical studies on

test smells, as well as to gain an understanding of how test

smells are diffused in Python code. We decided to study the

presence of test smells in the same Primary dataset that was

used for mining code change patterns. We decided to do so

because the Primary dataset represents mature open-source

Python projects that use testing within them.

However, to make sure that the results of the study are

robust and do not depend on the results from Section III-B3,

we decided to also run the tool on an additional dataset.

To gather it, we used the same procedure as described in

Section III-B1, but with one condition being slightly relaxed:

we gathered projects with the number of commits between 500

and 1,000, instead of at least 1,000 commits. This resulted in

239 additional projects; the full list is available online [36]. We

will refer to this dataset as the Secondary dataset. While we

draw our general conclusions from the Primary dataset, since

it contains more projects with larger histories, the purpose of

the Secondary dataset is to make sure that the reported results

are unbiased.

B. Methodology

We ran PYNOSE on all the projects in the Primary and

Secondary datasets separately. We dropped the results where

not a single test suite was found, and only considered test

suites with at least one test case and test files with at least

one test suite. Test smells can occur on various levels of

granularity: Constructor Initialization, Default Test, General
Fixture, and Lack of Cohesion manifest at the level of a test

suite as a whole, while other test smells such as Conditional
Test Logic are formulated at the test case level.

We analyzed the test smells using their appropriate granular-

ity. A test suite is considered smelly if it contains at least one

test case with a given smell. A test file can also be considered

a valid object for comparison, however, even though in Python

and in Unittest it is possible to have several test suites in one

test file, this granularity is still largely similar to a test suite,

and often a test file contains just one or two test suites. We also

calculated the distribution of test smells among projects to get

a more coarse-grained picture of the test smells prevalence.

We studied the most common and the least common test

smells, as well as the prevalence of the newly proposed

Suboptimal Assert. Additionally, we studied the co-occurrence

of different test smells in individual test suites and discussed

the correlations between test smells.

C. Results

In this section, we discuss the results of the empirical study

of the test smells prevalence in Python code.
1) General information: In total, at least one Unittest

test case was found in 248 projects out of the 450 in the

Primary dataset (55.1%). From here on out, all percentages are

calculated based on these 248 projects. In total, in these 248

projects, PYNOSE detected 9,158 test files, 16,681 test suites,

and 96,736 test cases. More detailed statistics are presented

in Table VI. It can be seen from the table that even mature

projects vary greatly by the amount of testing within them. In

our dataset, one test file on average had 1.8 test suites, and

one test suite on average had 5.8 test cases.

TABLE VI
THE SUMMARY OF THE AMOUNT OF TESTING ENTITIES PER PROJECT.

Test files Test suites Test cases

Minimum 1 1 1

Mean 36.9 67.3 390.1

Maximum 323 870 5,121

2) Test smells distribution: The distribution of 18 detected

test smells is presented in Figure 4. In general, it can be seen

that the studied test smells are prevalent in Python code. There

are only 5 projects (2%) that have no smells, however, all of

them are very small projects, with the largest having only 13

test cases. All the other projects (98%) have tests smells in

one way or another. Test smells such as Assertion Roulette
and Conditional Test Logic are among the most common test

smells and occur in almost 90% of projects that use Unittest in

the Primary dataset. Also among the most popular test smells

are Magic Number Test, General Fixture, and Unknown Test.
On the other end of the spectrum, we can see test smells that

rarely occur in Python code. Empty Test occurs in just 0.7%

of the test suites, although, interestingly, even these instances
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Fig. 4. The prevalence of different test smells among all projects and test suites in Primary and Secondary datasets. The percentages relate to projects that
use Unittest, the numbers near bars are shown for the Primary dataset.

are spread out among as much as 17.7% of the projects.

Constructor Initialization occurs in 9.7% of the projects and

0.3% of the test suites. Finally, the rarest of all test smells that

occurs in only two projects and only three test suites within

them, is Default Test. Figure 4 also shows that our introduced

Suboptimal Assert smell constitutes an important addition to

Python test smells: it occurs at least once in 70.6% of the

projects and 15.4% of the test suites.

In comparison with previous works that study Java and An-

droid code [25], it can be said that the lists of the most popular

test smells generally look similar. It seems that Python code

has larger percentages by projects, however, direct comparison

here should be carried out in future work. One specific test

smell that seems to be less prevalent in Python is Exception
Handling that occurs in 64.9% of the projects and only in 8.6%

of the test suites. Unittest supports a convenient list of as-

sertions like assertRaises, assertRaisesRegex and

others that may prevent the users from using try/except
keywords in tests.

It can also be seen that the results for the Primary dataset

and the Secondary dataset are similar to each other, with the

only noticeable exception being the Obscure In-Line Setup,

which is rarer in the Secondary dataset. The values for

Suboptimal Assert are also similar. This demonstrates that our

results obtained for the Primary dataset are unbiased.

Overall, our results show that various test smells are preva-

lent in Python code, even some of the rarer ones still occur in

more than a quarter of all projects. While some of them can be

considered more subjective, others make it significantly harder

to maintain the code base and to interpret the results of testing

in case of failure. We hope that in the future PYNOSE can be

used to help developers and researchers to combat the spread

of test smells in their repositories.

3) Co-occurrence of test smells: In the previous section, we

discussed how prevalent different test smells are. However,

such an approach considers test smells independently from
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Fig. 5. The distribution of the number of different test smells among
individual test suites.

each other and does not fully describe the actual “smelliness”

of code. To get a better understanding, we also analyzed the

co-occurrence of test smells.

Figure 5 shows the distribution of how many different smells

co-exist within individual test suites. It can be seen that only

16% of all test suites are free from smells. The remaining 84%

of the test suites have at least one smell: 23.1% have exactly

one smell, 20.6% have two smells, 16.3% have three smells,

and this number gradually decreases with the amount of co-

occurring test smells. The highest occurring number in the

Primary dataset appears in a single test suite with 12 distinct

test smells. This large test suite with 25 test cases, in addition

to all the most popular test smells, contains commented out

empty test cases, catching errors with try/except instead

of using specific assertions of error messages, and sleepy

tests. It also uses assertEqual(X, True) instead of

assertTrue(X). We believe that helping developers find

such suites might be useful for the maintenance of the project.

Figure 5 also sheds a new light on the prevalence of test

smells in Python code. With more than half of all test suites
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having two different test smells or more, their effect on the

maintainability of code can become more complex.

We also additionally studied the co-occurrence of specific

pairs of test smells. For all pairs of test smells, we calculated

the following value: what percentage of test suites that have

test smell X also have test smell Y. Two pairs of test smells are

completely connected. Firstly, if the test is Empty (i.e., contains

no executable statements), it is automatically Unknown (i.e.,
has no direct assertions). Secondly, if there is a Test Maverick
in a test suite, this test suite automatically has a General Fix-
ture. Test Maverick occurs when the test suite has a setUp()
method with fields and the given test case does not use any

of the fields in it. Of course, this automatically means that

there is at least one method that does not use all of the fields,

which is the definition of a General Fixture. Other strongly

connected pairs are all associated with Assertion Roulette due

to its popularity. If a test suite has a Duplicate Assert, it has

an Assertion Roulette in 93.1% of the cases. It might not

be the case if the duplication has explicit messages (because

Assertion Roulette is only considered if assertions have no

messages), but since it is very common to not write error

messages, duplicated assertions can become a roulette. The

same goes for Redundant Assertion, 83.5% of the test suites

with which also have an Assertion Roulette. This also makes

sense, because if there is a redundant assertion, there probably

should be some other assertion that is more meaningful.

This co-occurrence of test smells demonstrates that test

smells have relationship with one another that should be

explored in greater detail in the future.

VI. THREATS TO VALIDITY

While we structured our study to avoid introducing bias and

worked to eliminate the effects of random noise, it is possible

that our mitigation strategies may not have been effective. This

section reviews the threats to validity to our study.

It is possible that during the systematic mapping study of

test smells we missed some test smells that are applicable

to Python. Also, Python grammar is rather large, and is

being actively updated, so PYTHONCHANGEMINER does not

support all Python language constructs, and it is possible that

we may have missed potential test smell changes because

of this. We also relied on pattern detection thresholds from

the original paper by Nguyen et al. [50], while it is possible

that they could be different for Python and for testing code.

However, the tool supports all the main features of Python

and still produced a large number of code change patterns. In

addition, PYNOSE is built in such a way that it is simple to

add new test smells in the future.

The results of both parts of our study—searching for

Python-specific test smells and analyzing the prevalence of

test smells in Python code—rely on a specific set of open-

source projects that we selected and might not generalize to

all projects, including proprietary ones. However, we analyzed

two moderately large datasets (Primary and Secondary) for our

tasks that were curated using various conditions suggested in

the literature. We believe that the similarity of results from

both datasets demonstrates the reproducibility of the results

of the empirical study.

It is possible for PYNOSE to have some unnoticed errors in

its implementation. However, we tested the tool rigorously on

synthetic data and performed manual evaluation on real-world

data to minimize the risk as much as possible.

One threat to validity is related to the detection of specific

test smells. Some of the implementations of test smells rely

on specific thresholds that were picked from the literature. It

is possible that these thresholds are different for Python, and

this requires further study.

VII. CONCLUSIONS AND FUTURE WORK

Test smells are prevalent in commonly used programming

languages such as Java and have a detrimental effect not only

on the quality of test code but also on the production code [11].

In this work, we presented PYNOSE, the first tool for test

smell detection in Python code that is capable of identifying

18 test smells. 17 out of these 18 test smells were adapted

from test smells for other programming languages described

in the literature, and we added one test smell called Suboptimal
Assert by analyzing the most frequent changes made to test

files in 450 open-source Python projects. Experiments on

a set of eight real-world projects showed that PYNOSE is

capable of detecting test smells with 94% precision and 95.8%

recall, which is on par with other publicly available tools for

test smell detection. Our empirical analysis shows that test

smells are prevalent in Python code, with 98% of the projects

and 84% of the test suites having at least one test smell in

them. The most frequent detected test smells were Assertion
Roulette, Conditional Test Logic, and Magic Number Test. We

also observed that the proposed Python-specific Suboptimal
Assert smell occurs in the code rather often, being present in

as much as 70.6% of the projects.

Future research directions for this work include:

• Supporting more test smells, including those that rely on

production code.

• Discovering more Python-specific smells, which requires

a specific analysis of the optimal pattern searching

parameters for Python.

• Conducting a more thorough comparison of PYNOSE

to other tools, for example, to TSDETECT that works

with Java. It would also be of interest to employ the

tools together to carry out a comparison of large Python

and Java datasets from the standpoint of test smell

distribution.

• Analyzing test smell prevalence in Python on a larger

dataset of projects and in other dimensions, for example,

it would be of great interest to see how test smells

correlate with test coverage [26].

PYNOSE is available on GitHub for use in the IDE and

for research: https://github.com/JetBrains-Research/PyNose,

all the research artifacts of this study are also publicly avail-

able: https://zenodo.org/record/5156098.
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