
20
21

 I
E

E
E

/A
C

M
 4

3r
d 

In
te

rn
at

io
na

l 
C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
E

ng
in

ee
ri

ng
 (

IC
SE

) 
| 9

78
-1

-6
65

4-
02

96
-5

/2
0/

$3
1.

00
 ©

20
21

 I
E

E
E

 | 
D

O
I:

 1
0.

11
09

/I
C

SE
43

90
2.

20
21

.0
00

73

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

We’ll Fix It in Post: What Do Bug Fixes in Video 

Game Update Notes Tell Us?
Andrew Truelove

University o f California, Irvine 

Irvine, CA, USA 

truelova@uci.edu

Eduardo Santana de Almeida

Federal University o f Bahia 

Salvador, Brazil 

esa@rise.com.br

Iftekhar Ahmed

University o f California, Irvine 

Irvine, CA, USA 

iftekha@uci.edu

Abstract—Bugs that persist into releases of video games can 

have negative impacts on both developers and users, but particu-
lar aspects of testing in game development can lead to difficulties 

in effectively catching these missed bugs. It has become common 

practice for developers to apply updates to games in order to 
fix missed bugs. These updates are often accompanied by notes 

that describe the changes to the game included in the update. 
However, some bugs reappear even after an update attempts to 
fix them. In this paper, we develop a taxonomy for bug types in 

games that is based on prior work. We examine 12,122 bug fixes 

from 723 updates for 30 popular games on the Steam platform. 
We label the bug fixes included in these updates to identify the 

frequency of these different bug types, the rate at which bug 

types recur over multiple updates, and which bug types are 

treated as more severe. Additionally, we survey game developers 

regarding their experience with different bug types and what 
aspects of game development they most strongly associate with 

bug appearance. We find that Information bugs appear the most 
frequently in updates, while Crash bugs recur the most frequently 
and are often treated as more severe than other bug types. 
Finally, we find that challenges in testing, code quality, and bug 

reproduction have a close association with bug persistence. These 
findings should help developers identify which aspects of game 

development could benefit from greater attention in order to 

prevent bugs. Researchers can use our results in devising tools 

and methods to better identify and address certain bug types.

I. In t r o d u c t i o n

Similar to any regular software, the presence of bugs 

in video games can cause considerable problems for game 

developers, including lost sales, damaged public image, and 

even lawsuits [16], [20]. These bugs can also impact the users-

and their ability to enjoy the full range of game features-in a 

variety of ways. Certain bugs can cause players to lose hours 

of progress [14], while others can create misunderstandings 

between players that might result in receiving “abuse from 

angry teammates” [9]. Despite the negative consequences a 

bug can have on developers and users alike, it is common for 

games to release with bugs that are fixed through subsequent 

updates. In 2014, for example, over a third of big-budget 

games “released on Xbox One, Wii U and PS4” received an 

update within 24 hours of the game’s initial release [23].

The differences between the development of games and 

development of traditional software could explain the appear-

ance of these bugs. Prior research has focused on identifying 

these differences [22], [29]. For example, games typically do 

not have strict functional requirements [22]. Unlike traditional

software that is usually meant to accomplish a particular task, 

generally the primary requirement of a game is to simply 

be “fun” [22]. As a result, requirements tend to be more 

informal and subject to change as developers continually 

refine the game to be more enjoyable [22], [29]. Additionally, 

game development teams are often more diverse in terms of 

team member background and expertise [22]. For example, 

games often contain a large number of graphical assets, which 

requires greater participation from designers and artists [22].

one important difference that could explain why bugs may 

not get detected before releasing relates to the difficulty in 

comprehensively testing all aspects of a video game [22], [29]. 

Developers have difficulty writing comprehensive tests, be-

cause games can have a significantly large number of possible 

user interactions compared to other types of software [29]. 

Players can act unpredictably when playing games, and au-

tomated testing tools struggle to replicate the full range of 

interactions that human players might attempt when playing a 

game [29]. As a result, many games release with undiscovered 

bugs that only reveal themselves once customers begin playing 

the game [23].

one way developers address previously undetected bugs 

post-release is by applying updates to their games that fix these 

bugs [19]. These updates are usually accompanied by update 

notes, a textual description of the changes in the accompanying 

update [31]. These update notes are often published as news 

items on the game’s website (e.g., [10]) or on an official online 

game forum (e.g., [34]). While some updates might include 

content changes or additions, other updates might only attempt 

to fix a small number of severe bugs [19]. Some of these 

smaller updates are referred to as “hotfixes”; these updates 

are typically meant to remedy more pressing issues or bugs 

that need immediate attention [31].

Additionally, some bugs might reappear or recur in multiple 

updates. There exist cases in which developers have attempted 

to fix a bug in one update, only for that bug to reappear in the 

game anyway, necessitating another attempted fix in a later 

update [17]. For example, in the game Warframe, the notes 

for an update posted in August of 2019 included a bug fix 

statement that said, “Fixed inability to complete the Mastery 

Rank 12 test if  you fall off the starting platform” [13]. In 

September of 2019, the notes for a later update also included 

an identical line, which implies that the August update did not

978-1-6654-0296-5 /21 /$31 .00  © 2021 IEEE 

DOI 10.1109/IC SE 43902.2021.00073
736

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



successfully fix the bug [12].

Previous research has focused on creating a taxonomy for 

video game bugs [18]. While this taxonomy provides a solid 

basis for categorizing bugs in games, a cursory examination 

of bug fixes described in game update notes indicated that 

this taxonomy did not cover all the bugs addressed in these 

updates. Since the taxonomy developed by Lewis et al. was 

developed primarily by observing videos of game play and 

reading articles related to bug complaints from users [18], it 

fails to identify the bugs that are more subtle and less readily 

noticeable, such as bugs related to background variables that 

are not presented to the player.

To address the shortcomings of the existing taxonomy and 

to attain a deeper understanding of the types of bugs in games, 

in this paper, we expand the taxonomy of bug types. We posit 

that improving the taxonomy will improve the chances of 

identifying the types of bugs missed in testing and will also 

improve the development pipeline in order to better identify 

these bugs. This will allow us to gain a deeper understanding 

of the association between different bug types to different 

game development techniques and processes.

Using this expanded taxonomy, we collect update notes 

for 30 popular games on the Steam platform [4], [5] and 

categorize the bug fixes present in these updates. We analyze 

the frequency at which the different bug types appear in 

the update notes and investigate which types of bugs recur 

more often over multiple updates. Additionally, we investigate 

which types of bugs most frequently appear in urgent updates 

or hotfixes, as the bugs that appear in these updates are 

more likely to have a severe negative impact on users [31]. 

Finally, we survey game developers on their experience with 

these different types of bugs as well as what challenges and 

techniques are involved in fixing these bugs.

While past research has investigated the content and timing 

of game updates [19], to the best of our knowledge, our work 

is the first to examine the frequency in which certain types 

of bugs appear and recur in game updates and the first to 

investigate the reasons why certain types of bugs appear more 

frequently than others. Specifically, this paper addresses the 

following research questions:

RQ1: What are the most frequently fixed types of bugs 

through game updates?

RQ2: What are the most frequently recurring types of bugs?

RQ3: Are all types of bugs equally severe in negatively 

impacting the game experience?

In addition to answering these research questions, we have 

provided our dataset of 12,122 labelled bug fixes and a report 

of the survey responses for the purpose of aiding future 

research on this topic [33].

II. Re l a t e d  W o r k

Prior research on video games have looked into creating 

a taxonomy of bugs, identifying design patterns and smells. 

Lewis et al. created a taxonomy for video game bugs after 

surveying online videos, articles and online communities ded-

icated to video game issues [18]. This taxonomy serves as

the basis for the taxonomy used in our study. As part of a 

broader investigation into the relationship between program-

ming languages and software quality, Ray et al. developed 

a taxonomy of bugs based on the cause and impact of the 

bug [26]. This taxonomy was used by Pascarella et al. when 

classifying faults in open source games [24]. However, we 

found that this taxonomy was not suitable for our purposes. 

For one, it is not specific to games, which limits their utility for 

aiding game developers with the issues that are more particular 

to their environment. Secondly, this taxonomy is based on non-

functional characteristics including Performance, Concurrency, 

Algorithm, Memory, Programming, and Security, and was 

developed by analyzing bug fix commit messages from open 

source projects [26]. This type of information is not available 

in release notes for popular non-open source games [26].

Ampatzoglou et al. performed a case study on a collection of 

open-source Java games to find possible correlations between 

the application rate of design patterns, the defect frequency and 

the debugging efficiency [8]. They found that certain patterns 

such as the Adapter pattern and observer pattern exhibited 

some correlations with defects and debugging, but could not 

identify causal relationships [8]. Borrelli et al. identified seven 

types of bad smells in game projects that were created with the 

Unity game engine and presented UnityLinter, a static analysis 

tool designed to help Unity developers detect these smells [11].

Some researchers have focused on identifying differences 

between game development and development of other soft-

ware. Murphy-Hill et al. conducted surveys and interviews 

with game developers [22]. Some of the findings were related 

to difficulties with testing; some game developers expressed 

difficulty in designing tests that could explore the state space 

in games, while others indicated that there was a lack of 

automated, low-level testing [22]. Santos et al. examined the 

particularities of software testing in game development, and, 

through the use of case studies and surveys, found a number 

of difficulties that game developers face while testing their 

software, which, in addition to challenges in test automation, 

included rapidly changing requirements and impracticality in 

testing interactive components [29].

There exists prior research on software release notes. Abebe 

et al. investigated the types of content that appear in release 

notes for updates to general software. They found six types 

of information that are generally in release notes, including a 

description of the issues addressed in the release [7].

Lin et al. performed an empirical analysis of urgent updates 

for games on the Steam platform-including which types of 

games released urgent updates, the timing of these updates, 

and the reasons for releasing urgent updates [19]. With respect 

to the reasons for releasing urgent updates, the authors created 

a taxonomy for these primary reasons [19]. However, this 

taxonomy was not tailored specifically to bugs and included 

reasons that were not strictly related to bugs [19]. When 

matching their taxonomy to the taxonomy of Lewis et al. some 

of the Lewis et al. categories fell under multiple categories 

proposed by Lin et al., while one of the Lin et al. categories 

was matched to seven of the 11 Lewis et al. categories [18],

737

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



[19]. In this paper, our taxonomy is focused on bug fixes rather 

than the general content of updates. Additionally, Lin et al. 

did not look into why certain types of bugs appear in updates, 

what kind of bugs recur over multiple updates and why, and 

how severe these different bug types are in comparison to 

each other. Furthermore, they did not survey game developers 

about their experience with game updates. These are all major 

components of our work.

III. M e t h o d o l o g y

The methodology for our study included two primary com-

ponents. The first source of information encompassed update 

notes for popular games. The second source of data were 

responses from a survey distributed to game developers.

A. Data Collection
For our dataset, we used update notes from the most 

popular games on the Steam platform [4]. We chose the Steam 

platform, because Steam is the largest vendor for games on 

the PC system [32]. To identify a selection of popular games, 

we found Steam’s list of games that had the highest number of 

players on June 23, 2020 [5]. We chose the top 30 games from 

this list, excluding items that were not really games (e.g., [6]). 

The list of games used for this paper can be found in Table I. 

This table also identifies the game’s primary genre, based on 

the genre tags displayed on the game’s Steam Store page [1].

once we had our collection of games, we manually ex-

tracted the update notes. For each game, we collected all 

update notes in the one-year period leading up to the date of 

the game’s most recent update. For example, the most recent 

update we collected for the game Counter Strike: Global 
Offensive was released on June 22, 2020, which meant the 

earliest update we collected for this game was released on July 

16, 2019. Another game on the list, Sid Meier’s Civilization 

V, was much older, with its most recent update being released 

on october 30, 2013, which meant the earliest update we 

collected was on March 13, 2013.

Each game on Steam had its own channel that displayed 

news and updates about the game, including some update 

notes. We found this source was incomplete for many games, 

however. Not all of the game’s updates were always posted 

to the Steam channel. For instance, smaller updates that only 

contained one or two lines-such as hotfix updates-seemed less 

likely to appear on the Steam channel. For most games, we 

used the updates notes from the official game or developer 

web site (e.g., [10]) or online forums (e.g., [34]), relying on 

the Steam update channel only if there was on other option.

once we collected the update notes, we used a script to 

collect the text from the updates related to bug fixes. The 

text of each update note was split into smaller segments of 

text based on the line breaks of the source page formatting 

(referred to as “lines” going forward). Under this scheme, each 

paragraph or list item was treated as an individual line. A 

formative analysis of the update notes revealed certain words 

or phrases that were frequently present in bug fix lines, such 

as “fix” and “corrected”. We applied a simple filtering scheme

that scanned through all our update notes and flagged lines 

with these terms. Each of these flagged lines was recorded 

in our data alongside supplemental information that included 

the game the update containing the line came from, the date 

of the update, and the ID of the update (for cases in which 

multiple updates were released in a single day). The number 

of analyzed updates for each game can be seen in Table I. An 

update was considered analyzed if it contained at least one 

labelled bug fix, as described in the following section.

B. Types o f Bugs
The next step was to label the bug fixes in our data. Initially, 

our goal was to label the bug fixes based on the 11 bug 

types identified by Lewis et al. [18]. However, we identified 

that there were bug-fixes that did not fit in any one of the 

existing types. Hence, two of the authors jointly applied open 

coding [30]. First, we generated short descriptions of the initial 

11 bug types based on the descriptions from Lewis et al. [18]. 

As we labelled bug fixes from our data, if we found a bug fix 

that did not fall under a currently available label, we created a 

new label. Additionally, we would search through previously 

labelled bug fixes to check if any of these fixes better fit 

under the new label. This step additionally helped remedy 

instances in which a bug could conceivably fall under multiple 

categories, a problem Lewis et al. also encountered [18]. In 

cases like these, we chose which category best described the 

core impact of the bug. For example, one bug fix for the game 

Black Desert Online said, “fixed the issue where running left 
or right was impossible when transformed into an immortal 
persimmon knight”. While part of this bug related to incorrect 

position of a game object, the inability to perform an action 

seemed to be the core problem. Therefore, the Action label 

was applied instead of the Position o f Object label.

Finally, after labelling the full collection of bug fixes, we 

reviewed and consolidated our categories, combining cate-

gories that could be classified as sub-types of another category. 

During this step, we also discarded lines that did not actually 

contain bug fixes and lines in which the nature of the bug 

was unclear and could not be categorized. During the coding 

process, there were no disagreements between the authors. 

These bug types are described in Table II. The nine new bug 

types are marked in the table with an asterisk (*).

In total, 12,122 lines were labelled under this taxonomy; 

these labelled lines came from 723 different updates. The 

labelled dataset of these lines is available online [33].

C. Bug Recurrence
The next part of our process required us to identify all 

recurring bug fixes that appeared in multiple updates for a 

single game. Due to the large number of updates and the large 

number of bug fixes, manually searching through the data to 

find all recurring bugs would be prohibitively time consuming. 

At the same time, we discovered a purely automated approach 

could also lead to problems. A cursory analysis of repeating 

bug fixes in the data revealed that some repeating lines were 

generally written; it was unclear whether or not the fix was

738

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
M o s t  Po p u l a r  S t e a m  Ga m e s  o n  Ju n e  23, 2020

Game Title Primary Genre Number of Analyzed Updates
Counter-Strike: G lobal Offensive Shooter 36

D ota 2 m o b a 16

Destiny 2 Shooter 18

PLAYERUNKNOW N’S BATTLEGROUNDS Survival 24

Path o f Exile r p g 87

Grand Theft Auto V Action 3

Tom Clancy’s Rainbow  Six Siege Shooter 16

Football M anager 2020 Sim ulation 7

Team Fortress 2 Shooter 14

ARK: Survival Evolved Survival 80

Dead by Daylight Survival 23

Rocket League Sports 10

Terraria Survival 5

Rust Survival 14

Sid M eier’s C ivilization VI Strategy 3

W arframe Shooter 98

Total War: W ARHAM M ER II Strategy 6

PAYDAY 2 Shooter 10

Europa Universalis IV Strategy 8

The Elder Scrolls V: Skyrim  Special Edition r p g 1

The E lder Scrolls Online r p g 25

Hearts o f Iron IV Strategy 7

SM ITE m o b a 12

Unturned Survival 19

Sid M eier’s C ivilization V Strategy 5

Black Desert Online r p g 49

Brawlhalla Fighting 15

W ar Thunder Sim ulation 92

Euro Truck Sim ulator 2 Sim ulation 3

FINA L FANTASY X IV  Online r p g 17

applying to the same bug each time. For example, the game 

ARK: Survival Evolved had 5 updates that included the line 

“fixed a server crash”. In this case, it was not apparent whether 

this line was referring to the same bug each time or different 

bugs that each caused crashes. Conversely, two updates for the 

game Dead by Daylight both contain the same line: “fixed an 

issue that caused a crash when changing the graphic quality 

settings during a match in the red forest maps”. Here, the 

apparent cause and effect of the bug are identical; changing 

certain settings in a certain context causes the game to crash. 

In this case, both lines are likely referring to the same bug. 

We were skeptical that an automated tool would be able to

differentiate between these two types of recurring bug fixes, 

so we chose not to use a purely automated approach either.

We ultimately decided on a hybrid approach. We would 

use an automated approach to limit our analysis to a smaller 

collection of bug fixes and then manually evaluate these lines 

to find the true recurring bugs. For this first step, we performed 

cosine similarity analysis [28] between bug fix lines. For each 

bug fix line from a game’s updates, we compared that line 

to each line in all subsequent updates for the game. If two 

lines had a similarity score of at least 90%, they were treated 

as a potential match and grouped together for manual review. 

our small-scale formative analysis showed that a similarity

739

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
Ty p e s  o f  b u g s  f o u n d  i n  u p d a t e  n o t e s

Category Description Category Description
Action Errors in the ability/inability to per-

form actions.

Game Graphics A certain visual aspect of the game 

world is being rendered incorrectly.

Artificial Intelli-

gence

An NPC or AI does not behave in the 

intended manner.

Implementation

Response

There are errors regarding the game’s 

interactions with hardware or base 

software that ends up affecting perfor-

mance.

Audio* Game audio is not playing correctly. Information Information about the game world is 

not conveyed to the player correctly.

Bounds An object exists outside the intended 

game space, such as being outside the 

game map or in a location that should 

not be accessible.

Interaction 

Between Object 

Properties*

Two or more object properties do not 

behave properly when interacting with 

each other.

Camera* There is an issue with game camera 

through which the player views the 

game world.

Interrupted Event An action in game that was previ-

ously operating is terminated abruptly 

against expectations, or the action was 

not interrupted when it should have 

been.

Collision of Ob-

jects*

Objects do not behave properly when 

they collide or make contact with each 

other.

Object

Persistence*

Game objects do not correctly enter or 

exit the game world.

Context State Objects do not enter and exit states 

properly.

Position of Ob-

ject

An object is not in the correct position 

or orientation within the game space 

over time.

Crash* The game crashes or is otherwise 

forced to close.

Triggered Event* Improper triggering of game events 

(Event A causes Event B).

Event

Occurrence

Discrete events do not occur at the 

correct rate or order.

User Interface* The appearance/position/behavior of 

UI elements are incorrect.

Exploit* Players are able to improperly and 

unfairly gain game benefits through 

behavior unintended by developers.

Value An in-game variable is not set to the 

correct value.

threshold of 90% was sufficient to minimize false positives. 

A line could have multiple matches if it appeared in more 

than two updates; all instances of these bugs were grouped 

together. Once we collected all potential matches, we manually 

inspected them and removed all false positives as well as 

those matches in which it was unclear whether the matching 

lines were really referring to the same bug. After filtering the 

potential matches, we were able to collect information on the 

types of bugs that recurred over multiple updates.

D. Bug Severity

To identify which bugs were treated as severe, we used 

metrics employed by Lin et al. to identify urgent updates [19]. 

Under these metrics, updates were considered urgent if they 

were: identified as hotfixes within the notes for the update, 0- 

day updates (same day as the last update), or deployed sooner 

than normal, based on the game’s regular update schedule [19].

In addition to these metrics, we also looked at the length of 

the update notes. Based on our own observations of the data, 

it appeared as if updates addressing urgent bugs typically had

shorter update notes than regularly scheduled updates. This 

is likely because urgent updates are only intended to fix a 

small number of critical issues that cannot wait until the next 

major update. To find the urgent updates in our data, we used 

a script to parse through each update in our data to check 

the following information: whether the update notes contained 

language referring to the update as a hotfix, the number of 

days between the current update and the last update, and the 

number of non-whitespace lines in the update notes.

For the self-identified hotfixes, we searched for updates that 

contained the word “hotfix” in the first twenty lines of the 

update text. This was to help avoid false positives, because 

updates that self-identified as hotfixes would use the language 

near the beginning of the update text. When the word appeared 

further into the text, this was typically because the update was 

referring to another hotfix update, such as a past update or 

a planned future update. After running our script, we then 

manually reviewed the resulting updates and filtered out any 

remaining false positive updates and marked the remaining 

updates as urgent. For the 0-day updates, we marked as urgent

740

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



all updates that had a value of 0 days since the last update.

For the last two metrics (number of days and number of non-

whitespace lines), we used Double MAD (Median Absolute 

Deviation) [19], [27] to find the outliers below the median for 

both the days since the last update and for the update size. 

Updates that fit either of these criteria were also marked as 

urgent. We used the same threshold value of 2 that was used 

by Lin et al. in their paper [19].

Once we identified all the urgent updates in our data, we 

flagged all the bug fixes lines from our data that appeared 

in an urgent update. An urgent update is generally intended 

to fix “problems that are deemed critical enough to not be 

left unfixed until a regular-cycle update” [19]. As such, the 

bug fixes included in these urgent updates are likely to have 

severe negative impacts on the game experience that require 

more immediate attention. For our purposes then, if a bug fix 

was included in an urgent update, we treated it as a severe bug. 

We used the findings from this process to calculate the severity 

rate of each bug type, as explained in Part C of Section IV.

E. Survey
Protocol: We created a 12-minute survey using the Qualtrics 

survey system [3] to assess game developer perceptions of the 

types of bugs that appear in game update notes. First, the 

survey asked participants certain demographic questions, such 

as the years of game development experience and the number 

of people in their organization. We also asked participants if 

they had experience fixing bugs for updates to video games. 

The next section asked participants about their experience with 

the different bug types in our taxonomy. For each of the twenty 

bug types, we asked participants to rate on a 5-point Likert 

scale their level of agreement that the bug type was likely 

to have a severe negative impact on the game experience. 

Participants were then informed of the three most frequent 

bug types across all updates and were asked if these results 

matched with their own experience. They were also offered 

to explain why they believed these bug types (and other bug 

types they commonly encounter) appear so frequently in game 

updates. Similar questions were also asked for the frequently 

recurring bug types. Finally, participants were asked about the 

aspects of game development related to bug recurrence and 

the challenges in identifying and fixing bugs.

Respondents: To find participants, we identified GitHub [2] 

repositories for games and game-related tools that had been 

marked as noteworthy by other GitHub users. We sent the sur-

vey to GitHub users who had contributed to these repositories 

and who had made their email addresses visible to other users. 

Additionally, we sent the survey to developers of the games 

examined for this study whose email addresses were publicly 

listed on the developers’ web sites. We also made the link to 

the survey available to a collection of game developers with 

the intention that they would apply snowballing to spread the 

survey to other developers [15].

The survey was sent to 630 contacts. 16 of these invitations 

were not delivered successfully. Three invitations generated 

automatic replies suggesting that the recipient was unable to

receive the survey, and one recipient indicated that he did 

not possess a game development background. Overall, 610 

survey invites were delivered, and we received 47 applicable 

responses. This gave us a response rate of 7.70%. Other im-

portant studies in the software engineering field have reported 

response rates ranging between 5.7% [25] and 7.9% [21], 

indicating that our response rate for this study is satisfactory. 

The report of the survey results is available online [33].

IV. Re s u l t s  

A. Frequent Bug Types in All Updates

Figure 1 shows the frequencies at which each of the 20 bug 

types appeared as a fix in any game update from our data.

Observation 1: The most frequently occurring bug types 

were Information, Game Graphics, and Action.

The three least frequent bug types were Camera, Interrupted 

Event, and Exploit. All three of the most frequent bug types 

were bug types identified by Lewis et al. [18]. Meanwhile, for 

the three least frequent bug types, only Interrupted Event was 

one of the bug types identified by Lewis et al. [18].

The two most frequent bug types, Information and Game 

Graphics cover largely non-interactive elements of the game. 

This runs somewhat contrary to findings found by Santos et al. 

that suggest some of the difficulties in testing games are due 

to challenges in testing interactive elements [29]. If the most 

frequent bug types are not necessarily interactive in nature, 

perhaps automated testing might be more effective at catching 

these more common types of bugs.

For each of the three most frequent bug types, survey 

respondents were asked if they frequently fixed bugs of that 

type in game updates. 57% of respondents said they frequently 

fixed Information bugs, 40% said they frequently fixed Game 

Graphics bugs, and 67% said they frequently fixed Action 

bugs.

741

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



When asked why certain bug types might appear frequently, 

respondents gave a variety of responses. For Information bugs, 

some respondents referenced priority concerns, such as the one 

in the following survey response.

• “Developing mechanics is the main focus and usually 

information related components are pushed down to the 

last o f the pipeline and as deadline approaches, they are 

not done right."
Other respondents noted that the correct information may be 

difficult to identify if that information is the result of various 

calculations involving “complex states and interactions". This 

information could also be “buried in datafiles" that testers 

may not be able to locate. Incorrect information might be 

missed, because the correct information may not be accessible.

Observation 2: Survey explanations for the frequency of 

Information bugs include: low priority compared to other 

aspects of the game and difficulties in finding the correct 

information. * •

With respect to Game Graphics bugs, the most cited reason 

by respondents to their frequency in updates was due to the 

complexity of the subject.

• “Computer graphics is one o f the most complex disci-
plines to work with and need highly experienced pro-
grammers to make sure that everything just work."

Respondents also cited the large number of cases that need 

to be tested.

• “I t’s fairly simple to miss visual corner cases in testing." 

Additionally, some responses seemed to speak to the diffi-

culties in properly assessing the quality of game graphics. One 

respondent pointed out that game graphics can be subjective. 

What looks like a graphical bug to one tester may not look like 

a bug to another tester. Another respondent mentioned that the 

correct graphical qualities of the game might be highly specific 

and require fine-tuning to get them right.

• “Graphics can be delicate. It can take a lot o f tweaking 

to get something to look just right"
One response noted that graphics are considered a lower 

priority to fix before production than other game elements.

Observation 3: Survey explanations for the frequency of 

Game Graphics bugs include: complexity, large size of 

testing state space and evaluation of graphics quality.

For Action bugs, many of the respondents spoke to complex-

ity in testing as a reason these bugs might appear frequently 

in updates. Each possible action gives the player a new way 

to interact with the game world. As the number of possible 

interactions increases, there is a greater chance that these 

interactions might conflict with each other. Testing all possible 

conflicts can be difficult to do within the development timeline, 

especially when dealing with actions that may or may not be 

executable depending on the game state.

• “Games often have a large number o f available actions, 
only some o f which are available at a given time; the

results o f actions often depend on context (and some-
times randomness); and actions may depend on or be 

changed by previously-performed actions. While testing 

every possible action might be feasible, testing every 

possible sequence o f actions in every possible sequence 

o f contexts is usually combinatorially impossible."

Observation 4: Survey explanations for the frequency 

of Action bugs include: increasing complexity with ad-

ditional possible actions and large size of testing state

Respondents were also asked if they frequently fixed bugs of 

any other type from our taxonomy and why these bugs might 

be frequent. Crash bugs were identified as frequent by two 

respondents, with one respondent attributing this frequency to 

“not properly checking for input sanity". Another respondent 

mentioned Exploit bugs, stating “players are good at finding 

them". Another respondent who worked with multiplayer 

games referred to bugs related to desynchronization of players. 

Under our taxonomy, this bug would fall under the Implemen-
tation Response label. Another user mentioned Bounds bugs as 

a frequent concern, especially for 3D games, explaining that 

the collision and physics systems in a game tend to produce 

edge cases somewhere that leads to bounds issues.

B. Recurring Bugs

Fig. 2. Frequency of Recurring Bug Types

Figure 2 shows the frequency in which bugs of a certain 

type would recur over multiple updates.

Observation 5: The bug types that recurred the most fre-

quently over multiple updates were Crash, Game Graph-
ics, and Triggered Event.

The bug types that recurred over multiple updates the least 

frequently were Camera, Event Occurrence, and Interrupted 

Event; none of these bug types had any instances of bugs that

742

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



recurred over multiple updates. One of the most frequently 

recurring bug types-Game Graphics-and two of the least 

frequently recurring bug types-Interrupted Event and Event 
Occurrence-came from the taxonomy of Lewis et al. [18].

Regarding the top three frequently recurring bug types, sur-

vey respondents were asked if they frequently fixed recurring 

bugs that fell into each of these categories. 48% of respondents 

said they frequently fixed recurring Crash bugs, 21% said they 

frequently fixed recurring Game Graphics bugs, and 24% said 

they frequently fixed recurring Triggered Event bugs.

For each of these top three bug types, survey respondents 

were offered to explain why these bug types recur over 

multiple updates more frequently. When it came to Crash bugs, 

multiple respondents cited the difficulties in identifying the 

actual root cause of the crash.

• “When fixing a crash bug, it is easier to find the single 

caller that passed bad data in the crash report than it is 
to ensure that all callers pass good data."

Other respondents spoke to how other changes to the game 

can easily cause the crash to reappear even after fixing it.

• “Due to how interconnected most things in games are, it 
is easy to reintroduce a crash after initially fixing it"

Observation 6: Survey explanations for the frequent 

recurrence of Crash bugs include: reproducing bugs and 

reappearance after other changes.

With respect to why Game Graphics bugs would recur 

frequently, the responses were more mixed. One respondent 

mentioned that game graphics can be “inter-dependent and 

cascade through fixes", while another expressed experience 

with having to deal with unforeseen edge cases.

A different respondent reiterated the delicate nature of game 

graphics. A previous fix to a graphical component of the game 

might not have been sufficient, and further tweaking might be 

required to get the graphics just right. Another user pointed 

out that “Graphics bugs are the most apparent thing for the 

player to notice". Building off these responses, it is possible 

that-since the quality of game graphics can be subjective, 

and because players more readily notice the quality of game 

graphics-these kinds of bugs recur more frequently because 

players are more likely to notice graphics that do not meet 

their personal quality standards, which could mean they are 

more likely to express this dissatisfaction to developers.

Observation 7: Survey explanations for the frequent 

recurrence of Game Graphics bugs include: inter-

dependence of graphics, unforeseen edge cases, and the 

specific nature of graphical components. •

Because few respondents claimed to see frequently recurring 

Triggered Event bugs, there were not many explanations as to 

why these bugs might recur frequently over multiple updates. 

Still, some responses speak to the large size of the test space.

• “Events can often be triggered in many different ways; 
making sure every way works is tricky and time-
consuming."

Observation 8: Survey explanations for the frequent 

recurrence of Triggered Event bugs include: large size of 

testing state space.

When asked if respondents had seen any other frequently 

recurring bug types, one respondent pointed to Action bugs, 

stating that these bugs recur often for the same reasons as 

Crash bugs. Other respondents spoke more broadly, identify-

ing reasons why bugs in general might recur over updates.

• “Sometimes bugs recur because some careless guy re-
moves your fix when merging his/her code."

• “It has to do with whether management allows us the 

time for testing before they push out the newest code."

C. Bug Severity

Fig. 3. Severity o f Bug Types

We calculated the severity of each bug type by finding the 

proportion of bug fixes from the data that appeared in an 

update marked as urgent. For each bug type, we divided the 

frequency of the bug type in an urgent update by the frequency 

of the bug type in all updates, as expressed below:

B u g T  ypeS  everity
BugTypeFreq(U rgentU pdates)  

B u g T  ypeFreq (AllUpdates)
(1)

Figure 3 shows the resulting severity rates of each bug type.

Observation 9: Based on the update data, the bug type 

with the highest severity was Crash. The next most severe 

bug types were Object Persistence and Triggered Event.

Crash bugs appeared 580 times across all updates and 219 

times in urgent updates. 38% of the occurrences were in urgent 

updates, the greatest proportion for any bug type.

Figure 4 depicts the perceptions of bug severity among 

survey participants. For each bug type X, respondents were 

asked to state the level of agreement with the statement “X

743

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



Value-
User Interface- |

Triggered Event- |
Position of Object - |

0  bject Persiste nee - 
Interrupted Event-

Interaction of Object Properties -
Information - H

^  Implementation Response- 

^  Game Graphics- H
o) Exploit-

CD Event Occurrence-
Crash -

Context State - |

Col lisi on of Obj ects - |
Camera - I I  
Bounds- 

Audio- H  
Artificial Intelligence- |

Action -

0 25 50 75

Percentage

Fig. 4. Agreement Level to Whether Selected Bug Types are Likely to Have 

a Severe Negative Impact on Game Experience

bugs are likely to have a severe negative impact on the game 

experience.”

Observation 10: The bug types that generated the largest

number of Strongly Agree responses were Crash, Action,
and Exploit.

With respect to Crash bugs, the results from the update data 

and from the survey appear to match; Crash bugs appear to 

be the most severe bugs in both data sources. Action bugs, 

the second-most severe type from the survey, do not rank 

as highly when looking at the mined data seen in Figure 3, 

however. Interestingly, Exploit was the bug type that received 

the third-most Strongly Agree responses, yet it had the lowest 

severity rate from the mined update data. The reason for this 

discrepancy is not readily clear. It could be due to a difference 

between the perceived impacts of these bugs versus the actual 

impact. This may be a worthwhile avenue for future research.

D. Bug Fix Association with Game Development Processes
Survey respondents were asked “In your opinion, what 

aspects o f game development (i.e. testing, designing, etc.) are 

associated with bug recurrence in your current project or in 

other game projects in which you participated?" 16 respon-

dents mentioned testing as a component of game development 

that had a strong association with bug recurrence. Some of 

these responses mentioned how a lack of testing in general 

was linked to bug recurrence, while other responses spoke 

about the lack of certain kinds of testing, such as automated 

testing, integration testing, and cross-platform testing.

• “Lack o f automated testing definitely increases bugs in 

general"
• “The testing only checks the current feature/bugfix and 

not how it interacts with everything else"
Four respondents claimed that game design had a strong 

link to bug recurrence.

• “Good design helps avoid bug recurrence in the first 
place. Testing can be used as a fail-safe"

Four respondents pointed to code quality/coding as an 

important component connected with bug recurrence.

• “Code quality is often a huge factor for bugs. Badly 

designed code interacts badly with other pieces o f code, 
and conflicts can result easily, causing bugs."

Other aspects of game development provided in the re-

sponses included the game architecture, quality assurance, a 

lack of consistency checks, and the addition of new features.

• “In my experience, new gameplay features often lead to 

bug recurrence, when a previous bug was "solved" by 

addressing the particular feature interaction that caused 

the bug rather than making those features more robust in 

general."

Observation 11: The aspects of game development most 

frequently linked to bug recurrence were: testing, game 

design, and code quality.

Finally, respondents were asked what they believed were 

the main challenges in identifying and fixing bugs in video 

game development. Like the previous question, 22 respondents 

provided answers. Eight responses pointed to challenges with 

conducting adequate testing.

• “too many possibilities o f interaction/combination to test 
them all thoroughly"

Seven responses mentioned difficulties in identifying the 

origin of bugs or reproducing bugs.

• “Reproducing a bug often requires a large time invest-
ment to reach the state in which it is apparent. Games 

specifically are huge loosely connected systems; bugs 

often depend on more than one o f these systems having 

a certain state."
Six responses focused on code quality. There was a particu-

lar emphasis on the importance of well-written code that does 

not cause conflicts elsewhere in the game.

• “The hardest part is finding an appropriate solution to a 

bug that isn’t hacky and is future-proof to later additions 

to the code that might break the bugfix again."
Two responses mentioned development schedules.

• “Lack o f QA, faulty development schedule, low focus on 

code quality."
Two responses mentioned unforeseen bugs that only appear 

in particular situations, such as bugs arising out of specific 

hardware setups.

• “Bugs that occur only with some OSes or hardware" 

Two responses explained that the choice of programming

language can lead to issues.

• “Using languages with a weak memory model such as 
C++ makes it hard to identify bugs caused by memory 

corruption errors such as use-after-free."

Observation 12: The most frequently mentioned main 

challenges to identifying and fixing bugs in video games 

were: inadequate testing, reproducing bugs, and code 

quality.

744

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



V. D i s c u s s i o n

A. For Researchers

Prioritizing of Bug Types: Our results identify which 

types of bugs appear in updates more frequently than others, 

which bugs recur over multiple updates more frequently, and 

which bug types are more severe in negatively impacting the 

game experience for players. When comparing frequency to 

severity, these results could help illuminate which types of 

bugs researchers might prioritize when devising techniques 

to prevent or fix certain types of bugs. For example, though 

Information bugs were the most frequently occurring bug type 

across all the update notes, this bug type was not as highly 

ranked with respect to recurrence and severity, as seen in 

Figures 3 and 4. The results seem to indicate that even if 

Information bugs are common in game updates, they do not 

seem to recur as often as other bugs, and they are not seen 

as having as much of a severe negative impact on the game 

experience. Our results imply that Crash bugs could probably 

use a greater focus from researchers. Though these bugs were 

not the most frequent bug type in general, this was the bug type 

that had the highest recurrence rate and the highest severity 

rate in our data. Additionally, the survey results also indicate 

that this bug has a high level of severity. using the findings 

from this paper, researchers can develop specialized tools and 

methods to specifically target the more problematic bug types.

Our survey results also provide some explanations as to 

why some of these certain bug types stand out more than 

others. From our results, we have found that some explanations 

appear multiple times and in multiple contexts for different bug 

types. The large size of the testing state space, for example, 

is provided as an explanation for why both Game Graphics 

bugs and Action bugs are fixed frequently in game updates and 

for why Triggered Event bugs recur frequently over multiple 

updates. A deeper investigation into these common causes of 

bug issues and approaches into remedying them might be a 

worthwhile subject for future research.

Game Development Processes: The findings regarding bug 

frequency, recurrence, and severity also have implications re-

lating to the game development process. Testing, code quality, 

game design, and bug reproduction were all aspects of game 

development that seemed to have a strong association with 

bugs, according to the survey results. While some research 

exists on the testing process in game development [29], there is 

room to dig even deeper. Multiple respondents cited how issues 

could arise when different components of the game interact 

with each other in an unintended manner. Researchers could 

focus on this issue of testing the interactions between game 

components in future research. Additionally, there does not ap-

pear to be much research into the other three processes within 

the game development context. Future research can focus on 

devising approaches and methods focused on improving these 

aspects of the game development process so that they are less 

likely to lead to the appearance of bugs.

For example, reproducing bugs was one of the most widely 

cited challenges in identifying and fixing bugs in video games.

Reproduction is difficult, because bugs might be caused by a 

specific interaction of game states and properties that may 

not be evident to whomever experiences the bug. The lack of 

information about the bug’s true cause leads to challenges in 

fixing the bug and a greater chance that the bug will reappear 

in a future release. Indeed, this challenge with reproducing 

bugs was one of the major reasons from respondents for why 

Crash bugs recur frequently over updates. To combat this 

problem, researchers could focus on devising tools to better 

collect information about the game state so that developers are 

better equipped to find the true cause of these bugs.

B. For Practitioners
Prioritizing of Bug Types: The results can help game 

developers identify which types of bugs may need more 

attention than others. As described above, developers can 

evaluate the frequency, recurrence, and severity information 

from this paper to decide which bugs may need more attention 

when testing or fixing bugs.

Game Development Processes: Similar to researchers, 

game developers can take advantage of the results relating 

to aspects of the development process that have a link to 

the bug occurrence. For instance, the results suggest that 

difficulties in the testing process are linked with the appearance 

of bugs. While the size of the game state space can make 

comprehensive testing difficult, the responses also seem to 

indicate that testing may also be too narrow in scope. Many 

respondents mentioned issues where testing does not involve 

broader interactions with other components of the system. 

Furthermore, the interactions between system components was 

was given as a reason for the recurrence of Crash bugs. These 

results suggest that developers might benefit from a greater 

focus on multi-component interaction testing. The game space 

might be too large to test everything, but developers can 

focus on creating more tests targeting high-priority bug types. 

Additionally, they could emphasize using tests that incorporate 

multiple interacting components of the system, as opposed to 

testing components in isolation.

code quality was also provided both as an aspect of game 

design associated with bug recurrence and as a challenge in 

identifying and fixing bugs in video games. Poor code quality 

increases complexity of the program, and it also can lead 

to conflicts with other components of the system, ultimately 

resulting in bugs. The interaction of code modules in games 

seems to be an important component of game development that 

is related to both the testing process and the coding process. 

Implementing practices to enforce higher code quality could 

end up benefiting both of these processes.

Our results point to different possible parts of the game 

development process associated with bugs. By implementing 

practices to improve these processes, developers might be able 

to mitigate the rate at which bugs appear or recur.

VI. Th r e a t s  t o  Va l i d i t y

With the intent to make sure our results could be general-

ized, we tried to collect a large amount of update notes from a

745

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



high number of games. We collected the top 30 games with the 

highest player counts on the Steam platform in order to collect 

a sample of games that represents the range of video games 

currently available. It is possible however, that the games 

studied and the update notes analyzed are not representative 

to the entire body of game update notes.

It is possible that survey respondents may not have un-

derstood the different bug types when answering questions 

regarding their experiences with these bugs. To avoid this, we 

provided an explanation of each bug type in the survey that 

described the bug and included an example bug fix from the 

update notes that belonged to that category.

There was a risk that the bug types in our taxonomy might 

be influenced by bias or that they might not account for all 

types of bugs. To reduce this bias, we created a taxonomy that 

was based on prior work [18]. Additionally, the large number 

of bug fixes (12,122) we analyzed should help ensure that our 

final taxonomy is complete.

In identifying severe bug fixes in the update notes, there 

is a possibility that our mechanisms to identify urgent up-

dates might not have captured the correct number of relevant 

updates. Our methods could have been under-inclusive or 

over-inclusive. To avoid this, we based our approaches off of 

approaches used in prior research [19].

Additionally, our script to identify the bug fixes in our 

update notes might not have identified all bug fixes. From our 

own manual analysis, we found common repeating words and 

phrases that were used in the lines containing bug fixes. We 

accounted for these terms when creating our script. In order to 

test the script’s efficiency, we inspected the code of our script, 

ran tests with the script, and tested the script on update notes 

with known results. It is possible, however, that some bug fix 

lines may not have included these terms.

VII. CO NCLUSIO NS A N D  FUTURE WORK

In this paper, we collected the update notes from popular 

games on the Steam platform. We created a taxonomy of 

bug types that we used to label the bug fixes included in 

the update notes. We found that the bug types that appeared 

the most frequently in update notes were Information, Game 

Graphics, and Action. The bug types that recurred the most 

often over multiple updates were Crash, Game Graphics, and 

Triggered Event, and the bug types with the highest rate of 

severity were Crash, Object Persistence, and Triggered Event. 
We surveyed game developers who corroborated that Crash 

bugs were likely to have a severe negative impact on the 

game experience. The survey responses also suggested that 

challenges in testing, bug reproduction, and code quality had 

a strong association with the occurrence of bugs in game 

updates. In particular, problems arising from the interaction 

between different components was a widely cited issue.

These results can help game developers identify which types 

of bugs to pay more attention to when testing and fixing bugs. 

Developers can also use these results to help adjust practices 

related to game development process in order to better prevent, 

identify, and fix bugs. In addition, we have made our dataset

of labelled bug fixes and survey responses available online to 

aid in future research on this topic [33].

Researchers can take advantage of these results in order to 

develop tools or methods that can target specific bug types that 

are more likely to severely impact the game. There is room for 

future work that can identify aspects of game development that 

might benefit from specialized tools or methods that address 

some of the challenges provided in the survey. For example, 

multi-component interaction testing is one area that could 

benefit from future research. Our study takes the first step 

towards fulfilling these goals.

Re f e r e n c e s

[1] “Browse steam your way: Introducing steam tags, a powerful new way 

to shop for games,” https://store.steampowered.com/tag, accessed: Feb.
5, 2021.

[2] “Github,” https://github.com/, accessed: Aug. 1, 2020.
[3] “Qualtrics,” https://www.qualtrics.com/, accessed: Aug. 5, 2020.
[4] “Steam,” https://store.steampowered.com/, accessed: Jun. 20, 2020.
[5] “Steam & game stats,” https://store.steampowered.com/stats/, accessed: 

Jun. 23, 2020.
[6] “Wallpaper engine,” https://store.steampowered.com/app/431960/ 

Wallpaper_Engine/, accessed: Jul. 7, 2020.
[7] S. L. Abebe, N. Ali, and A. E. Hassan, “An empirical study o f software 

release notes,” Empirical Software Engineering, vol. 21, no. 3, pp. 1107— 

1142, 2016.
[8] A. Ampatzoglou, A. Kritikos, E.-M. Arvanitou, A. Gortzis, F. Chatzi- 

asimidis, and I. Stamelos, “An empirical investigation on the impact of 

design pattern application on computer game defects,” in Proceedings 

of the 15th International Academic MindTrek Conference: Envisioning 

Future Media Environments, 2011, pp. 214—221.
[9] M. Beckwith, “Apex legends game breaking revive bug returns in sea-

son 6,” https://gamerant.com/apex-legends-season-6-revive-bug/, Aug. 
2020, accessed: Aug. 24, 2020.

[10] Blue Mammoth, “Brawlhalla’s new battle pass sea-
son 1 - patch 4.00,” https://www.brawlhalla.com/news/
brawlhallas-new-battle-pass-season-1-patch-4-00/, May 2020, 
accessed: Jul. 2, 2020.

[11] A. Borrelli, V. Nardone, G. A. Di Lucca, G. Canfora, and M. D i Penta, 
“Detecting video game-specific bad smells in unity projects,” in 17th 

International Conference on Mining Software Repositories (MSR ’20), 
October 5-6, 2020, Seoul, Republic o f Korea, 2020.

[12] [DE]Megan, “Prime vault: Hotfix 25.7.5,” https://forums.warframe.com/ 
topic/1127427-prime-vault-hotfix-2575/, Sep. 2019, accessed: Jul. 11, 
2020.

[13] ------ , “Saint of altra: Update 25.7.0,” https://forums.warframe.com/
topic/1123841-saint-of-altra-update-2570/, Aug. 2019, accessed: Jul. 
10, 2020.

[14] R. Gilliam, “Paper mario: The origami king has a game-breaking bug 

near the end,” https://tinyurl.com/yydjp7ey, Jul. 2020, accessed: Aug.
28, 2020.

[15] K. Kelley, B. Clark, V. Brown, and J. Sitzia, “Good practice in the 

conduct and reporting of survey research,” International Journal for  

Quality in health care, vol. 15, no. 3, pp. 261-266, 2003.
[16] I. Khan, “Bethesda facing possible class-action lawsuit

over fallout 76,” https://www.gameinformer.com/2018/11/27/ 
bethesda-facing-possible-class- action-lawsuit-over- fallout-76, Nov.
2018, accessed: Aug. 22, 2020.

[17] S. Lantz, “Call of duty: Warzone demon gun glitch
makes an unfortunate return,” https://gamerant.com/ 
call-of-duty-warzone-demon-gun-texture-glitch/, Aug. 2020, accessed: 
Aug. 25, 2020.

[18] C. Lewis, J. Whitehead, and N. Wardrip-Fruin, “What went wrong: a 

taxonomy of video game bugs,” in Proceedings o f the fifth international 
conference on the foundations o f digital games, 2010, pp. 108-115.

[19] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of 

popular games on the steam platform,” Empirical Software Engineering, 
vol. 22, no. 4, pp. 2095-2126, 2017.

746

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 



[20] E. Makuch, “Battlefield 4 ’s rocky launch ’’absolutely” damaged 

player trust, producer says,” https://www.gamespot.com/articles/ 
battlefield-4s-rocky-launch-absolutely-damaged-pla/1100-6422805/, 
Oct. 2014, accessed: Aug. 20, 2020.

[21] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kastner, B. Ferreira, 
L. Carvalho, and B. Fonseca, “Discipline matters: Refactoring of pre-
processor directives in the #ifdef hell,” IEEE Transactions on Software 

Engineering, vol. 44, no. 5, pp. 453-469, 2018.
[22] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle 

sprains, and keepers of quality: How is video game development 
different from software development?” in Proceedings o f the 36th 

International Conference on Software Engineering, 2014, pp. 1-11.
[23] E. Narcisse, “More than a third of 2014’s big-

budget games got day-one patches,” https://kotaku.com/
more- than- a- third- of- 2014- s-big-budget- games-got- day-on-1686398805, 
Feb. 2015, accessed: Aug. 27, 2020.

[24] L. Pascarella, F. Palomba, M. D i Penta, and A. Bacchelli, “How is 

video game development different from software development in open 

source?” in 2018 IEEE/ACM 15th International Conference on Mining 

Software Repositories (MSR). IEEE, 2018, pp. 392^-02.
[25] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki, 

and J. Padilla, “A  study of feature scattering in the linux kernel,” IEEE 

Transactions on Software Engineering, 2018.
[26] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A  large scale study of 

programming languages and code quality in github,” in Proceedings of 
the 22nd ACM SIGSOFT International Symposium on Foundations of 
Software Engineering, 2014, pp. 155-165.

[27] P. Rosenmai, “Using the median absolute devi-
ation to find outliers,” http://eurekastatistics.com/ 
using-the-median-absolute-deviation-to-find-outliers/, Nov. 2013, 
accessed: Aug. 17, 2020.

[28] G. Salton and C. Buckley, “Term-weighting approaches in automatic 

text retrieval,” Information processing & management, vol. 24, no. 5, 
pp. 513-523, 1988.

[29] R. E. Santos, C. V. Magalhaes, L. F. Capretz, J. S. Correia-Neto, 
F. Q. da Silva, and A. Saher, “Computer games are serious business 

and so is their quality: particularities of software testing in game 

development from the perspective of practitioners,” in Proceedings of 
the 12th ACM/IEEE International Symposium on Empirical Software 

Engineering and Measurement, 2018, pp. 1-10.
[30] C. B. Seaman, “Qualitative methods in empirical studies of software 

engineering,” IEEE Transactions on software engineering, vol. 25, no. 4, 
pp. 557-572, 1999.

[31] J. Svelch, “Resisting the perpetual update: Struggles against protocolog-
ical power in video games,” New Media & Society, vol. 21, no. 7, pp. 
1594-1612, 2019.

[32] E. J. Toy, J. V. Kummaragunta, and J. S. Yoo, “Large-scale cross-country 

analysis of steam popularity,” in 2018 International Conference on 

Computational Science and Computational Intelligence (CSCI). IEEE, 
2018, pp. 1054-1058.

[33] A. Truelove, “Additional material for “w e’ll fix it in post: What do bug 

fixes in video game update notes tell us?”,” https://github.com/truelova/ 
ICSE_2021_UpdateNotes, Feb. 2021, accessed: Feb. 5, 2021.

[34] ZOS_GinaBruno, “Pc/mac patch notes v6.0.5 - greymoor up-
date 26,” https://forums.elderscrollsonline.com/en/discussion/528633/ 
pc-mac-patch-notes-v6-0-5-greymoor-update-26, May 2020, accessed: 
Jul. 8, 2020.

747

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 26,2023 at 01:30:54 UTC from IEEE Xplore.  Restrictions apply. 


