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Computational notebooks, such as Jupyter, have been widely adopted by data scientists to write code for
analyzing and visualizing data. Despite their growing adoption and popularity, there has been no thorough
study to understand Jupyter development challenges from the practitioners’ point of view. This paper presents
a systematic study of bugs and challenges that Jupyter practitioners face through a large-scale empirical
investigation. We mined 14,740 commits from 105 GitHub open-source projects with Jupyter notebook code.
Next, we analyzed 30,416 Stack Overflow posts which gave us insights into bugs that practitioners face when
developing Jupyter notebook projects. Finally, we conducted nineteen interviews with data scientists to
uncover more details about Jupyter bugs and to gain insight into Jupyter developers’ challenges. We propose
a bug taxonomy for Jupyter projects based on our results. We also highlight bug categories, their root causes,
and the challenges that Jupyter practitioners face.
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1 INTRODUCTION
Due to the increased availability of data and computing resources over the past few years, data
science and analytics have become important areas of investigation [2]. Data science is an emerging
field that combines mathematics, statistics, computer science, and domain knowledge to derive
insights from data [5, 31]. Data analytics is the multidisciplinary science of quantitatively and
qualitatively examining data to draw new conclusions or insights (exploratory or predictive) or
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for extracting and proving (confirmatory or fact-based) hypotheses about that information for
decision-making and action [3].

Jupyter, a free, open-source web application that allows users to write documents composed of
text, equations, visualizations, and code snippets and their execution results [36], has become the
most widely-used system for exploring and analyzing data [15, 21]. Data analysts use computational
notebooks to write and refine code to understand unfamiliar data, test hypotheses, and build models
[8].
Even with the benefits and growing popularity of Jupyter Notebooks, it has presented some

problems. Wang et al. [36] analyzed a sample of 1982 Jupyter Notebooks and found that they contain
code with poorly respect to the Python style conventions, with unused variables which are defined
but never referenced, and accessing deprecated functions. Pimentel et al. [21] investigated the
reproducibility aspects of real notebooks using a corpus consisting of 1.159.166 unique notebooks
collected from 264.023 GitHub repositories. Out of 863.878 attempted executions of valid notebooks
(i.e, notebooks with defined Python version and execution order), only 24.11% executed without
errors.

Other recent studies [4, 8] have identified additional problems related to name-value inconsistency
where the name and the value of a variable do not match [20] and dependencies, which around 94%
of notebooks do not formally state or document dependencies [38]. Data analysts also have called
their code ad hoc, experimental, and throw-away code [11], besides describing notebooks as messy
[12, 26], containing ugly code and dirty tricks in need of cleaning and polishing [26].

In addition, with the popularity of the area (Glassdoor ranks data science as the #3 job in America
for 20221), and the serious consequences that a bug can bring in a data science project (UK lost
nearly 16,000 COVID-19 cases by exceeding spreadsheet data limit2), analyzing and improving
Jupyter notebook projects have potentially relevant impact.

This paper presents the first comprehensive study of bugs in Jupyter notebook projects and the
challenges that data scientists face in practice. Analyzing historical bugs that occurred in a system
is an important step to reduce bugs [32]. It can provide relevant knowledge to develop new tools
for bug detection, triage bug reports, locate likely bug spots, suggest possible fixes, and help to
monitor and improve quality along the development process.

The software engineering community has conducted a number of studies that investigate bugs
in different domains [7, 9, 18, 24, 32, 34, 40]. However, despite these efforts, the characteristics of
bugs in Jupyter notebook projects have never been systematically studied. The community has
also stressed "the strong need to analyze the quality of the notebooks" [4, 36, 38] to improve the
quality and reliability of the code.
To better understand bugs that appear in Jupyter notebook projects, we followed three steps.

First, we initially mined 14,740 commits from 105 GitHub open source repositories with Jupyter
notebook code. Next, we analyzed 30,416 Stack Overflow posts which gave us insights into bugs
that software developers face when developing Jupyter notebook projects. Finally, we conducted
semi-structured interviews with 19 data scientists to validate the findings identified in the previous
steps and understand how these bugs impact the daily life of data scientists working with Jupyter
notebook projects.

Our study has led to multiple findings. In particular, we identify eight classes of bugs, ten types of
root causes, the frequent impact of bugs, and a taxonomy which can help practitioners understand
the nature of bugs, and define possible strategies to mitigate them. These findings can be used by

150 Best Jobs in America for 2022 - https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm
2Thousands of coronavirus cases were not reported for days in the UK because officials exceeded the data limit on their Excel
spreadsheet - https://www.businessinsider.com/uk-missed-16000-coronavirus-cases-due-to-spreadsheet-failure-2020-10

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Bug Analysis in Jupyter Notebook Projects: An Empirical Study 111:3

researchers and practitioners to gain a better understanding of bugs in Jupyter notebook projects
and point out new direction for future research.

Overall, the paper makes the following contributions:
• We perform a quantitative study to investigate the classes and root causes of bugs, which
could aid future studies on testing and debugging techniques for Jupyter Notebook projects.

• We complement this study with a qualitative study on how data scientists professionals
perceive the bugs in Jupyter Notebook projects and features missing in the platform.

• A taxonomy that includes eight bug categories for Jupyter Notebook projects.
• Based on a set of observations from the mining software repository study (GitHub and
Stack Overflow) and interviews, we provide some recommendations for researchers, and
practitioners.

• For replication and reproducible research, we make our materials available on our project
website. These include a dataset of Jupyter Notebook bugs collected from GitHub and Stack
Overflow, and all interview data (prompt, summary of professional and demographic infor-
mation from Participants, and codebook). Our artifacts can be found at the accompanying
website3.

2 METHODOLOGY
This section describes the methodology used in our study to characterize Jupyter Notebook bugs
which involve GitHub repository mining, StackOverflow posts analysis, and semi-structured inter-
views with data scientists. To fulfill this purpose, our study aims to answer the following research
questions (RQs):

• RQ1. What types of bugs are more frequent? Motivation: It aims to identify the types of bugs
and how often they appear. It is the first step toward better understanding and building a
taxonomy of bugs in Jupyter Notebooks projects.

• RQ2. What are the root causes of bugs?Motivation: The root cause of bugs provides additional
information to understand the bugs better. Comprehending these causes can help understand
what is needed to work around, fix, or improve the Jupyter environment.

• RQ3. What are the frequent impacts of bugs? Motivation: Understanding and quantifying the
impact of a bug can help prioritize and scale how severe it is.

• RQ4. What challenges do data scientists face in practice on Jupyter Projects? Motivation:
The Jupyter Notebook is commonly adopted by data scientists from different domains, from
finance systems to the car industry. Despite their growing adoption and popularity, there has
been no study to understand Jupyter Notebook usage challenges from practitioners’ points
of view. The current environmental limitations can also be analyzed.

In order to answer these questions, the following steps were performed. Firstly, a (i) GitHub4
Repository Mining analysis was performed to characterize bugs in the context of Jupyter Note-
books5 projects. In this analysis, only commits related to bug fixing were considered by inspecting
the commit message [7, 9, 18, 34]. Next, (ii) the StackOverflow6 posts analysis was performed to
characterize data science difficulties/issues/questions when using Jupyter Notebooks. Next,(iii)
manual labeling and classification were performed to identify the main bug types, root causes, and
impact. Finally, (iv) semi-structured interviews were conducted with data scientists to obtain and
validate insights on the main issues when developing using Jupyter Notebooks projects. Figure 1

3https://github.com/bugs-jupyter/empirical-study
4https://github.com
5https://jupyter.org
6https://en.stackoverflow.com
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shows the overall research methodology used in our study. All the quantitative and qualitative data
is available online at the accompanying website7.

Fig. 1. Research Methodology.

2.1 Repositories and Posts Selection and Mining
We chose GitHub repositories predominantly written in the "Jupyter Notebook" language in the
initial step since we are interested in Data Science projects using this environment. Next, in order to
filter out the most relevant and active projects, some inclusion and exclusion criteria were applied
as recommended by [19].

• Exclusion Criteria:
– The repository must have a description of its main proposal;
– Repositories that did not have their artifacts and description in English were not considered
in the study; and

– Repositories corresponding to tutorials, books, and classroom materials were also removed
from our analysis.

• Inclusion Criteria:
– The repository has been updated at least once in 2020;

7https://github.com/bugs-jupyter/empirical-study
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– The repository must have at least 24 commits in 2020 (corresponding to two commits per
month in 2020). This criterion was used to filter out inactive repositories;

– The repository must have at least ten contributors in 2020. This criterion was used to
eliminate irrelevant repositories, c.f., [1], [16], [23]; and

– Finally, the repository must have commits in .iphnb files with the following keywords
in the commit message: ’fix’, ’fixes’, ’fixed’, ’fixing’, ’defect’, ’defects’, ’error’, ’errors’, ’bug’,
’bug fix’, ’bugfixing’ ’bugfix’,’bugs’, ’issue’, ’issues’, ’mistake’, ’mistakes’, ’mistaken’, ’incorrect’,
’fault’, ’faults’,’flaws’, ’flaw’, ’failure’, ’correction’, ’corrections’. This criteria was used to
filtered out commits related to bug fixing. [7, 18].

After filtering, we selected the top 105 Jupyter repositories, resulting in 14740 valid commits in
our GitHub raw dataset. Next, the StackOverflow posts were retrieved using the query8 applied to
the StackOverflow API resulting in 30416 posts in our StackOverflow raw dataset.

2.2 Classifying and Labeling Bugs
We created a spreadsheet with all GitHub commits and StackOverflow posts filtered, containing
the bug type, root cause, and impact. The bug type refers to errors found in Jupyter Notebook
projects and grouped into categories. The grouping process was iteratively performed by classifying
and validating the results. In order to analyze them, we investigated the title, body, pull requests,
and other information that can assist us with gaining a comprehensive understanding of issues
on GitHub commits. Regarding StackOverflow, we analyzed the title, body, the comments of the
selected posts, and also the accepted answers [9, 18, 24, 32]. To explore the root cause, we analyzed
the reason that triggered the error by analyzing the changes made in the bug fixing commits, and
the answers that provide a solution in the StackOverflow [7, 18, 39, 40]. Finally, regarding impact,
we analyzed major effects of bugs by reading the commit message, pull request messages and the
associated issues. In the ScakOverflow, the question description was important to understand the
impact [7, 9, 32].

Once the 14740 commits and 30416 posts were collected, the first and second authors started the
open coding process [18] to evaluate and label the dataset. It was performed until the categories
(bug type, root cause, and impact) reached a saturation state where no new categories appeared
[6]. This saturation was achieved when analyzing 855 of 14740 commits, giving us a margin of
error of less than 4% at 95% confidence level. In addition, analyzing 2585 of 30416 posts gave us a
margin of error of less than 2% at a 95% confidence level. Finally, having established the reliability of
judgment, new commits and posts were classified by a single author. This reliability and saturation
of judgment was achieved with 855 commits and 2585 posts. During this step, some commits were
discarded since they were not related to bugs or reported "typo" errors and improvements not
related to bug fixing. Some StackOverflow posts were also discarded since they mentioned some
hacking or only questions related to Jupyter Notebook usage. Next, three authors (2nd, 3rd and 4th)
independently classified 145 commits randomly, and 137 posts were selected to validate the first
author classification. We measured the inter rater agreement among the authors using Cohen’s
Kappa coefficient [30]. A training session was performed among the authors to clarify the labeling
and what they mean. After that, the Cohen’s Kappa coefficient was more than 81% for bug type,
95% for root cause and 95% for impact, which according to Landis and Koch [17], is ‘substantial
agreement’.

8("select Id, PostTypeId, AcceptedAnswerId, ParentId, CreationDate, DeletionDate, Score, ViewCount, OwnerUserId, Own-
erDisplayName, LastEditorUserId, LastEditorDisplayName, LastEditDate, LastActivityDate, Tags, AnswerCount, Com-
mentCount, FavoriteCount, ClosedDate, CommunityOwnedDate, ContentLicense, Title from Posts where Tags LIKE
jupyter-notebook)
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2.3 Data Scientists Interviews
To validate the findings identified in the previous steps and understand how these bugs impact the
daily life of data scientists working with Jupyter notebook projects, we conducted semi-structured
interviews with data scientists.

Protocol. We designed the interview prompt to understand and validate previous findings
related to the data scientists’ usage of Jupyter notebook projects. It was composed of eighteen open
questions. The participants were informed that they could omit to answer a question to avoid arbi-
trary answers. The interviews started with some demographic questions and participants’ expertise.
The technical section is composed of questions related to the Jupyter Notebook environment and
the tool’s problems and challenges.

The interview pilot was performed using one data scientist. After that, the 2nd and 3rd authors
also support the interview improvement, solving questions difficulties based on pilot feedback.
Some questions were added, updated, and removed to make the interview easier to understand
and answer. The pilot interview responses were only used to calibrate the instrument, and these
responses were not included in the final results. The interview instrument can be seen in the
supplementary material attached to the paper. All the interviews were conducted remotely, and we
recorded the audio to further analysis with the participants’ consent. The interviews took about 43
minutes on average. We transcribed the recorded interviews using QDA Miner9.

Participants. After conducting a pilot interview with one data scientist (not included in the
study) as a pretest [29], nineteen data scientists were interviewed. All of them have at least one
year of data science experience from several companies and domains as seen in Table 1. The data
scientists came from 12 different companies, working in domains such as mobile games, finance,
car, petrochemical, mining, etc. 40% of participants hold a Ph.D., 25% holds a master’s degree, 25%
hold a bachelor’s degree, and 10% conducted post doctoral studies.

Id Role Company Area Exp. (Years)
DS1 Data Engineer Petrochemical Industry 5
DS2 Feature Owner Car Industry 8
DS3 Data Scientist Finance 13
DS4 Coordinator Mining Company 10
DS5 Data Scientist Finance 8
DS6 Software Engineer Engineering solutions 10
DS7 Data Scientist Mobile Games 11
DS8 IA Researcher University 20
DS9 Data Scientist IT Services 18
DS10 Teacher University 15
DS11 ML Engineer Mobile Games 13
DS12 Data Scientist Finance 12
DS13 Data Scientist Finance 25
DS14 Business Manager Finance 17
DS15 Data Scientist Finance 15
DS16 Data Scientist Finance 14
DS17 Data Scientist Finance 11
DS18 Data Scientist Finance 9
DS19 DS Researcher University 9

Table 1. Interview Participants background.

9https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/
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Analysis. The audio transcription was the first step (14 hours and 33 minutes). The first author
was responsible for conducting the transcription process using the OTranscribe 10 tool. We also
performed a minor review to validate the transcriptions and clarify some answers.

Next, the first author started the coding process using the QDAMiner Lite 11 tool. The first author
and two experts iteratively worked in the coding step to reduce the subjective bias during the open
coding process. We used a set of first-cycle, and second-cycle coding methods for data analysis [28].
The first cycle methods are those processes during the initial coding of data. Second-cycle methods,
if needed, are ways of reorganizing and reanalyzing data coded through first-cycle methods. All
codes created in our study were later on clustered into categories. Analyzing our data, we could
define categories to understand the answers from interview participants. Next, the authors resolved
the potential conflicts in the labels and categories. It resulted in 52 codes, 7 categories, and 5
challenges.

3 RESULTS
This section reports the answers to our targeted research questions and findings from the data
collected from GitHub, StackOverflow, and interview responses.

3.1 Types of Bugs in Jupyter Projects (RQ1)
Data scientists face different types of bugs when using Jupyter notebooks. To understand these
bugs, we classified them into different types and created an initial taxonomy. Next, we used the
interviews to validate and improve the proposed taxonomy. Figure 2 shows the taxonomy, and
then we describe the types of bugs with examples and their occurrence percentage (in parenthesis)
in StackOverflow and GitHub.

Fig. 2. Taxonomy of Jupyter Notebook bugs.

Kernel Bugs | KN - (StackOverflow - 10.8% | GitHub - 2.9%). This type covers the bug problems
in the kernel operation when using Jupyter Notebooks. The most common occurrences of Kernel
Bugs are crashing, booting, installation, and unresponsive problems.
10https://otranscribe.com/
11https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:8 Trovato and Tobin, et al.

• Kernel Crash: A common bug that happens during notebook usage is when the kernel breaks.
Sometimes the crashing is followed by a warning message, and the kernel is unusable in
other cases. According to participants in our interviewees, it is a common bug fixed by kernel
restarting

• Kernel Not Found: It happens when the user starts the Jupyter Notebook, but it is not linked
to a Kernel. This way, the Kernel not found message is displayed. Some StackOverflow posts
relate this bug to installation issues.

• Initialization Bugs: It happens during kernel initialization, usually caused by wrong installa-
tions or conflict with the installed kernel.

• Kernel Restart: The kernel unexpectedly restarts during its usage.
Example: Kernel bugs can cause many problems, such as data and information loss and, delays in

project time, repeating the lost analyses. In bug #107937815 (GitHub) or #35673530 (StackOverflow)
where the Python updating generated incompatibility among packages used in the notebook and
as reported by DS13:

✓ DS13: " The Kernel bugs are the most frequent ones (...). It impacts project execution time since it
interrupts the data analysis."

Conversion | CV - (StackOverflow - 6.7% | GitHub - 10.6%) . It comprehends bugs related to
errors during notebook conversion from .ipynb file type to other formats. Data scientists commonly
use the conversion function to distribute their analyses and results to different audiences. This type
refers to bugs during conversion, resulting in poorly rendered conversions or corrupted files.

• Conversion Interrupted: It occurs when there is an attempt to convert a notebook to another
format, but this conversion is interrupted.

• Conversion with defects: It happens when a conversion task finishes successfully, but its result
contains unintended defects, for example, PDFs generated without images.

• Nbconvert bugs: It is related to bugs from nbconvert module, responsible for conversions
using command line commands. In these cases, the conversation does not even start.

Example: Conversion is one of the essential Jupyter functionalities. Bugs #99244384 (GitHub)
and #46415269 (StackOverflow) are examples involving the nbconvert module. It impacts the user
experience, mainly for new users, as reported by DS12:

✓ DS12: "It happens with new users, which spend considerable time performing the export procedure."

Portability | PB - (StackOverflow - 2.7% | GitHub - 1.3%). It involves bugs that are related to
Jupyter notebook execution in different environments. Although this feature is one of the pillars in
the Jupyter project [10], we found different bug occurrences, such as compatibility, rendering, and
environment configuration problems. Thus, this bug refers to errors obtained when rendering the
notebook in environments and platforms other than the original one.

• GitHub Bugs. It is related to bugs when executing .ipynb files in the GitHub environment. It
happens when the notebook is not rendered or shows rendering defects.

• Nbviewer Bugs. Similar to the previous one, it happens when the user tries to execute the
.ipynb file in the nbviewer platform.

• Different Platforms: This bug is related to the attempt to run the notebook on a different
platform from its origin, which can happen in situations of different Operating Systems,
machines, and browsers (even situations of execution of a .ipynb in a Google Colab, Jupyter-
Lab or any platform other than the original). This bug is generally related to the difference in

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.
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configurations between the platform it was originally developed on and the platform it was
ported to.

Example: Problems at this stage make it difficult to disseminate the analysis. Bugs #200722670
(GitHub) and #47868625 (StackOverflow) describe the need for modifications to correctly display
the notebook on the GitHub environment. Participant DS11 reported a similar problem:

✓ DS11: "GitHub has a tool to view Jupyter notebooks, right, but it’s kind of random, it opens
whenever it wants. It doesn’t always work to open Jupyter notebook in the browser."

Environments and Settings | ES - (StackOverflow - 43.2% | GitHub - 35.6%). It is related to
bugs in the development environment and configuration issues. It can happen due to several aspects,
such as missing libraries, issues during libraries installation, deprecated libraries, incompatibility
between components and libraries, incompatibility with operational systems, problems with a
package manager(such as Anaconda, PIP), and problems with installation and configuration of
extensions.

• Update and Downgrade Version: It happens due to incompatibility with the currently installed
version of a library or extension, and this library or extension needs to be updated or
downgraded to work correctly.

• Installation Bugs: Wrong installations may cause this bug or lack of dependencies during
installation.

• Incompatible Component: The components used in notebooks can be different, and some
of them or versions of some of them generate incompatibilities for use in the same note-
book. When installed or used, reports of extensions generate incompatibilities with various
components.

Example: The environment setup is a time-consuming task. The Bug #200722670 (GitHub) and
#35561126 (StackOverflow) show the cost of solving a problem due to a wrong Python version.
Participant DS13 suggested that the notebook could aid the user with this setup checking:

✓ DS13: "Depending on the project you’re working on and the dependencies you need to install, the
setup environment is a laborious task. Maybe it could be managed by Jupyter Notebooks. It is hard to
say how it would be possible, but the environment creation could help to avoid configuration problems
and everything else."

Connection Bugs | CN - (StackOverflow - 6.2% | GitHub - 0.9%). It happens when connecting
the notebook with external resources, such as databases, hardware, and repositories. It can occur
in two ways:

• External Resource Access Bugs: It happens when the notebook disconnects or is no longer
available to external resources.

• Disconnection and Connection Establishment Bugs: In this bug, the notebook itself loses
connection to its server.

Example: The Bugs #107937815 ( GitHub) and #63863571 (StackOverflow) report problems re-
lated to url and external image connection. Another connection problem reported happens when
receiving data through a serial port, as highlighted by Participant DS2:

✓ DS2: "... during Arduino usage some problems are difficult to know the root cause. It this situation,
we looked at the Arduino board, try to disconnect and connect again, turn it on and off, replace the

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Trovato and Tobin, et al.

Arduino board to see if one of the work around solve our problem. After all tries, for some reason we
get the Arduino board connected to Jupyter notebook."

Processing | PC - (StackOverflow - 4.9% | GitHub - 1.9%). Data analysis often requires high
processing power. Thus, memory availability and concurrency are valuable resources. Bugs of this
type are related to Timeout, Memory Errors, and longer processing tasks.

• Memory Leak: It occurs when a large memory allocation is incompatible with the process
that is being executed. In general, the user identifies this bug when there is a delay in the
execution.

• RAM and GPU Bugs: All bugs related to memory overflow and slow processing fall into this
category.

Example: This bug may affect data scientists by increasing time analysis, interruptions, and
data loss. Bugs #86884600 (GitHub) and #643288550 (StackOverflow) report a bug related to high-
resolution images, in which a workaround should be performed to get the notebook processed.
Chattopadhyay et. al [4] also reported Jupyter lack of support for handling large volumes of data,
and one of our participants also reported this:

✓ DS10: "It has happened several times with me, and it happened when I was manipulating large
datasets. I spent some time understanding, debugging, and identifying the root cause of this bug."

Cell Defect (CD) - (StackOverflow - 3.6% | GitHub - 2.6%). It involves bugs related to notebook
cell rendering, such as code cells, markdown, or outputs, and it usually happens when using
interactive components, latex, markdown, or cells. Next, we present some groups of this bug.

• Layout Bugs: It refers to cell rendering problems, such as results beyond the margin, unex-
pected formulas, testing formatting, blank cells, graphics visualization problems, and so on.
It can happen in any Jupyter notebook cell.

• Interactive Components Bugs: It happens with components that allow the users to interact
directly with the rendered cells.

Example: Bugs #237890763 (GitHub) and #69695030 (StackOverflow) are examples in which the
user faces problemswith "input()" or notebook scrollbar. Participant DS14 highlighted this as follows:

✓ DS14: "It was a very annoying error, and it frequently occurs on a personal computer as a Mac.
For some reason, the cell size reduced and ended up cutting the text in half. I don’t know, I could not
identify what caused it (...) and it happens a lot."

Implementation | IP - (StackOverflow - 22% | GitHub - 44.2%). Bugs related to implementa-
tion in general, syntax, logical, non-instantiated variables, algorithms, and semantics are examples
of this type of bug. Analyzing all the posts and commits, we identified the following implementation
bugs:

• Semantic Error: Bugs related to logic misunderstandings. In this bug, the code executes
correctly, but its execution generates a different output than expected, either due to poorly
defined parameters or wrong algorithms.

• Syntax Error : Programming bugs include incorrect variable or function declaration and calls,
missing or incorrectly assigned parameters, missing or misplaced parentheses, warnings or
errors generated by nonstandard Python (PEP8) coding, and other general programming
errors.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.
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• Data Science lib wrong usage: Bugs related to the inappropriate use of functions from typical
data science libraries, such as Pandas, Scikit-learn, TensorFlow, and so on.

• Data Science Algorithm Error: Bugs in the logic of statistical analysis or machine learning
models.

Example: The implementation bugs are common for developers, but in Jupyter notebooks, it is
potentialized by the possibility of creating duplicated cells and cells out of order. Bugs #222507066
(GitHub) and #45946060 (StackOverflow) are examples where changes were made to fix errors of
duplicate code and out-of-order cell execution. Participant DS14 reported this bug as follows:

✓ DS14: "When you’re writing in your notebook, you can write your code along with your text and
it’s easy to lose context at some point. For example, if you write in a cell at the top of the notebook,
keeping the context of the cells running part bottom of the notebook, when you run your code nothing
will make sense."

Frequent bug types - In order to understand the frequency of each bug type previously dis-
cussed, we statistically analyzed the labeled data. Figure 3 shows the distribution of bug types in
GitHub and StackOverflow.

Fig. 3. Frequency of bug types

The most frequent bug in both datasets (GitHub and StackOverflow) was the "Environment and
Settings" with 35.6% and 43.2%, respectively. It was also reinforced by the interviewers, which high-
lighted problems with version control, component incompatibility, wrong or missing installations,
and problems with extensions. The second most frequent bug type was "Implementation" with
44.2% (GitHub) and 22% (StackOverflow).

We calculated the average annual growth (2014 - 2021) in the StackOverflow dataset for a more
in-depth analysis of the bug types and their occurrences. We calculate the annual average growth
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by first calculating the annual growth per year, then calculating the annual average growth. The
following formulas were used to compute this growth.

𝐺𝑅15-14 = ( 𝐹𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒2015−𝑆𝑡𝑎𝑟𝑡𝑉𝑎𝑙𝑢𝑒2014
𝑆𝑡𝑎𝑟𝑡𝑉𝑎𝑙𝑢𝑒2014

) ∗ 100

Where FinalValue2015 is the number of occurrences at the end of 2015 and StartValue2014 is the
number of occurrences at the beginning of 2014. The annual average growth was calculated, as
shown in the formula below, by calculating the average growth considering all ranges.

𝐴𝐺𝑅 =
𝐺𝑅15-14+𝐺𝑅16-15+𝐺𝑅17-16+𝐺𝑅18-17+𝐺𝑅19-18+𝐺𝑅20-19+𝐺𝑅21-20

7

Four types of bugs are growing above the general annual average (see Fig. 4).
The "Implementation" and "Environment and Settings" bugs grow at a rate of 48% and 38%,

respectively, which is reflected in the total percentage of the number of occurrences. The two bugs
correspond to more than 60% of the total bug occurrences in the two analyzed databases (see Fig. 3).

However, the "Portability" and "Cell Defect" bug types show an annual growth rate higher than
the total average, 39% and 37%, respectively, despite a low overall occurrence rate.

Fig. 4. Average annual growth of bugs.

Previous research [21, 22, 38] analyzed exceptions related to reproducibility errors to deepen
the view of the errors found. Likewise, as many of the bug reports analyzed in this study have
exceptions encountered by users, we correlate these exceptions with the types of bugs reported to
understand them better.

The exceptions reported were also collected and analyzed to understand better the most frequent
type of bugs (see Table 2). While the "ImportError", "ModuleNotFoundError" and "AtributeError"
frequently occur in Environment and Settings bugs, the "TypeError", "AttributeError" and "NameEr-
ror" appears on Implementation bugs. Table 2 summarizes the main problems found in each type
of bug.
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Exception ES IP KN CN PC CV PB CD
ImportError 297 3 11 8 0 4 0 0
ModuleNotFoundError 266 5 5 3 0 0 2 0
AttributeError 116 101 2 8 1 1 0 1
TypeError 31 222 4 0 0 1 0 0
OSError 17 8 2 2 1 3 0 0
RuntimeError 16 2 2 0 7 1 0 0
NameError 14 76 1 0 0 0 0 0
FileNotFoundError 14 9 12 2 0 2 0 0
ValueError 12 15 3 1 0 4 0 0
SyntaxError 2 1 0 1 0 0 1 0

Table 2. Python Exceptions per Type of Bugs.

Finding 1
The most frequent bugs in the Jupyter notebook are those related to Environments and
Settings (StackOverflow - 43.2% | GitHub - 35.6%) and Implementation (StackOverflow - 22%
| GitHub - 44.2%), which also show an annual growth rate above the average, 38% and 48%
respectively. Although the Portability and Cell Defect bugs have had fewer occurrences,
they have had above-average growth over the years.

3.2 Root Causes of Bugs (RQ2)
The root cause of bugs helps us understand their origin and how we can correct them. Table 3
shows the distribution of bug types according to their root causes. As can be seen in the table, the
three more frequent root causes are Install and Configuration Problems (StackOverflow - 32.1%
| GitHub - 16.3%), Version Problems (StackOverflow - 19.0% | GitHub - 22.5%) and Coding error
(StackOverflow - 17.6% | GitHub - 31.5%). These are bugs whose causes are related to component
installation or configuration problems, wrong component versions, and coding problems such as
semantic, logical, or syntax errors.
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Root Causes KN CV ES CN CD PB PC IP
SO GI SO GI SO GI SO GI SO GI SO GI SO GI SO GI

Install and
Configuration
Problems

56 12 44 0 635 117 42 0 6 7 12 3 0 0 36 0

Version Problems 45 7 24 2 374 158 30 0 11 0 6 0 0 0 0 25
Deprecation 1 0 0 0 21 1 1 0 0 0 0 0 0 0 1 0
Permission
denied 2 0 1 0 16 0 1 1 0 0 0 0 1 0 3 0

TimeOut 5 0 9 0 4 0 18 0 0 0 0 0 6 1 7 0
Memory Error 34 0 2 0 3 0 7 0 0 1 1 0 78 12 20 0
Coding error 4 3 12 49 17 18 4 4 17 7 4 0 0 3 397 185
Logic error 9 1 0 0 2 1 0 0 4 2 0 0 4 0 32 114
Hardware soft-
ware limitations 5 0 20 39 12 0 19 1 33 4 32 8 36 0 15 0

Unknown 117 2 60 1 34 9 38 2 22 1 14 0 1 0 58 54
(KN) Kernel, (CV) Conversion, (PB) Portability, (ES) Environment and Settings, (CN) Connection, (PC) Processing,
(CD) Cell Defect, (IP) Implementation.

Table 3. Frequency of Bug Type vs Root Cause

Impacts KN CV ES CN CD PB PC IP
SO GI SO GI SO GI SO GI SO GI SO GI SO GI SO GI

Crash 275 11 49 0 142 16 142 0 4 0 8 0 8 1 1 0
Bad Performance 1 0 2 0 7 1 2 0 1 3 0 0 46 14 18 46
Incorrect Func-
tionality 0 10 96 91 41 90 7 8 86 19 55 11 1 0 64 261

Run Time Error 2 4 24 0 900 197 9 0 2 0 6 0 71 1 472 65
Warning 0 0 1 0 28 0 0 0 0 0 0 0 0 0 14 6

(KN) Kernel, (CV) Conversion, (PB) Portability, (ES) Environment and Settings, (CN) Connection, (PC) Processing,
(CD) Cell Defect, (IP) Implementation

Table 4. Frequency of Impact vs Root Cause

We could not identify all the root causes for some bugs in our dataset. Thus, some bugs were
classified using the Unknown category (StackOverflow - 13.3% | GitHub - 8.1%). This category is
present in all bug types, especially those related to Kernel. It can reinforce the user’s difficulty in
understanding that bug type.
The root cause of Hardware and Software Limitations (StackOverflow - 6.7% | GitHub - 6.1%)

occurs when there are limitations in the software or hardware where the notebook is running. It
happens in all types of bugs; however, the Memory Error (StackOverflow - 5.6% | GitHub - 1.5%)
frequently appears as a root cause of the processing bugs.

The other root causes occur occasionally, such as Logic error (2%) in the developed code; TimeOut
(StackOverflow - 1.9% | GitHub - 0.1%), when an active process achieves time limit; Deprecation
(StackOverflow - 0.9% | GitHub - 0.1%), where a component or functionality is outdated; and
Permission denied (StackOverflow - 0.9% | GitHub - 0.1%), when the permission to access an
external resource is denied.
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Finding 2
The most frequent Root Causes in Jupyter Notebook projects are: Configuration issues
(StackOverflow - 32.1% | GitHub - 16.3%), Version issues (StackOverflow - 19.0% | GitHub
- 22.5%) and Coding Error (StackOverflow - 17.6%) | GitHub - 31.5%) they are the cause
of most Implementation and Environments and Settings bugs. The root cause Unknown
(StackOverflow - 13.3% | GitHub - 8.1%) appears more related to Kernel bugs suggesting a
difficulty in identifying its cause.

3.3 Impacts of Bugs (RQ3)
The impact caused by a bug can help increase its severity and serve as a prioritization model and
alert for users. Table 4 shows the distribution of bug types according to their impact. The most
frequent impacts are Run Time Errors, Incorrect Functionality, and Crashes.

The Run Time Error was the most frequent impact in the StackOverflow (57.5%) dataset and the
second most frequent in GitHub (31.2%). It is characterized by execution failures followed by an
error message. It is commonly found in the Environments and Settings and Implementations types
of bugs.

The impact Incorrect Functionality, which is characterized by bugs that the code can be executed,
but the result is not what was expected, had the highest occurrence on GitHub (57.3%) and appeared
on StackOverflow as the third largest impact (13.5%).
The Crash, as mentioned before, it happens when an interruption in the normal operation or

startup of the notebook occurs without any error message, exception, or warning. Considering the
GitHub dataset, it happens (3.3%) in a smaller amount than on StackOverflow (24.3%). A possible
explanation for this is that Crash is an impact that happens more with Kernel bugs, and one of the
solutions to solve Kernel Crashes is restarting Kernel, which is not showing up in fix commits.
Kernel Crash was the only bug/impact mentioned by all participants in our interview session.

According to users, even being an annoying bug, it is easy to get around it just restarting the kernel:

✓ DS12: “ The Kernel Crash happens a lot, especially when the memory runs out and the notebook
crashes, we need to run it all over again."

✓ DS7: "The Kernel Crash, is usually solved by restarting and returning back to work and that’s
ok..."

The other impacts had a smaller volume of occurrences. Bad Performance bugs (StackOverflow
- 3.0% | GitHub - 7.5%), whose occurrence does not prevent the correct execution, but decreases
the quality or performance and Warning (StackOverflow - 1.7% | GitHub - 0.7%), which does not
impact on notebook functioning, but triggering an alert for the user.

Finding 3
The most frequent impacts from bugs in Jupyter notebooks are: Run Time Error (Stack-
Overflow - 57.5% | GitHub - 31.2%), Incorrect Functionality (StackOverflow - 13.5% | GitHub
- 57.3%), and Crash (StackOverflow - 24.3% | GitHub - 3.3%). They are the effects related
to bug types Environments and settings, Implementation and Kernel bugs. The Kernel
Crash is a common bug/impact in the daily activities of Jupyter users and has as the main
workaround solution, the restart of the Kernel.
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3.4 Challenges in Jupyter Notebook Projects (RQ4)
Previous sections described the bugs types and their frequency. Based on that, a taxonomy was
proposed in the Jupyter Notebook domain. Next, we evaluated the root causes and impact and how
they affect each bug type. This analysis gives us valuable insights into how bugs are distributed.
Finally, to better understand how it affects data scientists’ daily lives, we conducted interviews
with industry professionals who use Jupyter notebooks in industrial projects.

Data science is a multidisciplinary area involving physicists, mathematicians, statisticians, IT
professionals, and others. This diversity is also observed in computational notebooks usage. Thus,
we interviewed professional Jupyter users from the industry to understand the dynamics of bugs
in Jupyter Notebook projects. We used the interviews to validate our results from mining and
collect insights, impressions, and challenges about environmental usage. Next, the main challenges
identified by professionals are discussed.

Backgrounds, and requirements. How users realize the bug can influence how they fix it.
Kim et al. [14] highlighted the existence of a diversity of profiles of data science professionals. This
diversity makes it possible for many Jupyter users not to come from the computing field or even
not have enough experience to feel the need to follow patterns and strategies that help to reduce or
identify errors.
Users with less experience or knowledge tend to produce messy, dirty notebooks that can

eventually generate errors, having the challenge of using a tool with a simplistic layout (compared
to a traditional IDE), without forgetting development standards that bring gain in code quality and
consequently reduction of errors.

Analyzing the interview responses with demographic data (Table 1), we realized that, for example,
software engineering knowledge is important for identifying the root cause and fixing the bug as
highlighted by a professional:

✓DS3: "Another very common thing is the knowledge that the person has. Data science is kind of a
combination of statistics and computing and within that world you see people from physics, engineering
and so on. The concern with having a structured, readable, documented code usually comes from the
computing area, as the guy studied software engineering. So you take these people, they have an
organized code."

Software Quality. Due to user diversity, some of them lack software engineering practices.
Jupyter notebooks increase it since the environment allows users to duplicate cells, drag and drop
cells to different locations, and so on. In addition, notebooks do not provide any mechanism to
control and support the users in this respect. Although Jupyter provides flexibility and allows users
with different backgrounds to use it, no support is provided regarding code quality. This aspect
was also mentioned by a professional:

✓DS14: "The lack of some functionality can be a problem, it can discourage the data scientist writing
better code, using good software engineering practices. I see this a lot, my codes when I’m writing in
VSCode, for example, are much better than when I’m writing in Jupyter, I feel this also happens in
RStudio (...) I can write code better in an IDE than in the Jupyter."

Testing and debugging. Software debugging is an essential activity to improve code quality.
Some interviewees pointed out the lack of basic debugging and testing tools as a challenge to be
addressed. They also detailed the process of fixing a bug using a trial and error approach. Among the
interviewees, especially those with a software engineering background, they pointed out specific
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functions that could provide important support to this task :

✓DS11: "I really miss writing unit testing and being able to lint code. The Jupyter notebook does not
have linting, everyone writes the code they want, and today we have tools, such as Black, Isort, Pylint,
Flake8, Bandit, and it is very difficult for you to use them in Jupyter notebooks. I think this lack of lint,
this lack of testing is crucial for me."

The difficulty of testing and debugging the code can influence the data scientist’s ability to
identify or even fix a bug, which may affect the number of accepted answers (the answer that
solved the problem), the number of unanswered posts, or the acceptance time of an answer in
StackOverflow.
Figure 5 shows the number of questions reported with the accepted answer, considering each

bug type in our StackOverflow dataset. All the bug types have a similar average (27.9%) of accepted
answers. Figure 6 shows the average time to get an acceptable answer. The average time to obtain
an acceptable answer in the Jupyter notebooks domain is 21 days, at least 4 out of 8 bug types are
above average.

Fig. 5. Bug reports with accepted answers

Finding 4
Data scientists perceive bugs differently. Their hands-on experience with software engineer-
ing techniques can change how they identify bugs. In addition, the lack of basic features in
Jupyter to promote code testing and debugging can generate difficulties in fixing bugs.

Data analysis deployment. Jupyter notebooks are used in two distinct scenarios: first, the
notebook itself is a product and it is further used to replicate or perform new analyses; and next, it
can be encapsulated and added to another system to use it [4]. Some interviewees (DS3, DS5, DS7,
DS8, DS9, DS11, DS12, DS14, DS15, DS16, DS17, DS18) reported that Jupyter notebook is a good
tool for exploratory analysis and prototyping, but it has some limitations, such as the lack of basic
features that could help convert notebook code or facilitate this process when generating a final
product to be deployed:
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Fig. 6. Average accepted response time (in days)

✓DS11: "It has some issues, especially if you want to generate a deliverable of what you are doing
inside a Jupyter notebook."

✓DS7: "You can opt for a workaround, but it’s not trivial when you are dealing with libraries you
build, functions you build, or classes. (...) How do you matter, how do you build this environment,
where you have solutions that use a library you created, for example. Maybe if Jupiter itself helped the
user to already build the entire class structure and the entire code structure, or even if it offers tools to
facilitate things like encapsulating a library, it could be something interesting too."

Many interviewees use Jupyter notebook in industrial and robust projects and deploy it inside
company systems to perform the analysis:

✓DS7: "When you intend to deploy the Jupyter notebook code inside the system code, it is not a
trivial task since some changes need to be performed to be properly deployed in production environment.
It would be interesting if the Jupyter Notebook provide tools to support this deployment."

Bad Programming Practices. Except for DS1, all other interviewees whose academic back-
ground was not computer science started in the field of data science and/or programming in Python
through Jupyter, which raises the concern about what culture of code quality in computational
notebooks is being propagated..
The Jupyter notebook appears in StackOverflow annual survey12 since 2017, and as shown

in Table 5, the posts and bugs on StackOverflow only increased. It reinforces the importance of
evolving the tool with features to mitigate bugs and help data scientists to do exploratory analysis,
12https://insights.StackOverflow.com/survey
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2014 2015 2016 2017 2018 2019 2020 2021 2022
Posts 37 381 1688 2559 3976 5490 7107 8607 531
Bugs 9 121 663 1054 1712 2482 3378 3879 251

Table 5. Jupyter History - Posts vs Bugs

prototyping, computational narratives, and generate products without losing quality. These aspects
were also highlighted by a professional during our interviews:

✓ DS11: "Another mistake is also... Generally when we write a Jupyter notebook we do not care much
about the quality of the code, we write code in almost any way, we do not care about a Lint, things
like that, right. People do not bother to test too, so I think it is one of Jupyter biggest problems. We
do not appreciate our code, we do not care much about code quality, we do not care much about unit tests."

Finding 5
Transforming an analysis developed in Jupyter into a product can be one of the most
important features for data scientists in the industry. However, there is still a lack of
resources to improve the code quality and this transition process. Some users have been
looking for alternative solutions that combine the benefits of a Jupyter notebook and an
IDE. The lack of resources focused on code quality can also lead new data scientists to have
bad programming habits.

4 DISCUSSION
In this section, we discuss the implications of our study’s results. In particular, the implication for
tool builders, researchers, and data scientists.
As highlighted in Finding 1, the most frequent bugs in the Jupyter notebook are related to

Environments and Settings, consisting of 43.2% of analyzed posts from StackOverflow and 35.5% of
the issues analyzed in GitHub. Majority of the root causes of this bug category were configuration
issues, version issues, and deprecation-related issues, suggesting that a significant amount of time
and effort expended by data scientists are spent dealing with these issues. If software-engineering
research can aid data scientists, this would potentially save a substantial amount of time.
Incorrect algorithm implementations cause many bugs (44.2% of GitHub issues and 22% of

StackOverflow posts). Most of them are related to coding and logical error resulting in "Incorrect
Functionality" (Table 4). We posit that this is happening due to data scientists not being familiar
with the existing software quality assurance techniques such as unit testing, bug localization, and
repair. Our intuition is corroborated by the findings reported in Finding 4. This calls for action from
the software engineering community researchers and practitioners alike to increase awareness
about the existing techniques and make such tools available for data scientists. Also, researchers
need to develop tools that can seamlessly integrate with the Jupyter notebook, making it easy for
data scientists to adopt the techniques.
Our study highlights lack of functionalities that are standard practice in Software Engineering.

For instance, Version control systems (i.e., Git) are standard tools used in software development.
However, in Jupyter notebook development, it is not standard practice yet, as mentioned by
interviewee DS7, DS11 previously. Since existing version control systems do not compare differences
in the generated Graphical User Interface (GUI) components, it is difficult to identify the differences
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between GUI components across different versions of a given notebook. So a tool helping developers
to compare GUI changes instead of only textual changes can help Jupyter notebook developers
significantly. Interviewees also highlighted the lack of functionality to preview, explore and interact
with the raw dataset before starting analysis and modeling, which can be a better alternative than
the notebook cell visualization. Another common feature requested by interviewees was advanced
debugging capabilities such as a viewer of the variables defined in the notebook and the values
assigned in each cell. We posit that such easy-to-use debugging capabilities will help reduce the
significant number of implementation errors in Jupyter notebooks.
In our study, we noticed that Jupyter Notebook is a very useful solution when it comes to

analyzing, investigating and exploring data, 95% of our respondents reported understanding that
the main (or only) usefulness is in these steps, as in contrast to other traditional IDEs like R-Studio
or VS-Code its simple layout facilitates and highlights the analysis performed. Although almost all
respondents reported this tool’s potential in data exploration, 79% of them reported a difficulty in
transforming the analysis done in the Jupyter Notebook into code to be put into production and
the lack of features that facilitate cleaning and adaptation of the code for transposition.
Finally, with the analysis of bugs and interviews, we brought a non-exhaustive list (see Table

6) of features desired by users. Some features already have ready-made extensions, but in our
analysis the use of some extensions is not trivial, in addition to generating compatibility, version
and configuration errors. That’s why it’s important to have an extension with a unified package of
solutions for Jupyter Notebook or that some of these solutions are in the standard version of the
tool.
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Feature Description

Indentation corrector For Python indentation is important. Jupyter allows in-
dentations to be the developer’s responsibility while writ-
ing. The indentation corrector identifies and corrects
wrong indentations at development time.

Syntax highlighting Function that inspects the code indicating syntax errors,
structure errors, etc.

Data Preview Functionality to preview and explore the raw dataset
before starting analysis and modeling, a better alternative
than the notebook cell visualization

Graphic Interaction Functionality to manually interact with the graphs gen-
erated during data analysis

Multi-Languages Per Cell Possibility to use other programming languages in the
same notebook

Version control Notebook change manager
Text Editor More advanced code editing features

Development Framework Framework that provides a base architecture adapted for
the notebook

Real Time Collaboration Functionality to support people working together at the
same time, even if they are in different places.

Variable Manager Viewer of the variables defined in the notebook and the
values assigned in each cell

Connection Between Notebooks Functionality for the user to visualize his set of notebooks
and make calls to notebooks and cells external to the
current notebook.

Table 6. Features mentioned by respondents

5 THREATS TO VALIDITY
In this section, we discuss several threats to validity for our study.

Projects Selection.We have not analyzed proprietary repositories, and our findings are limited
to open source projects which may not be representative and comprehensive. We mitigate this
limitation by mining a large number of 105 open source projects from GitHub selected based on a
well-defined set of criteria.

Bug Selection. We only collected the issues with a set of keywords in the commit message (see
Section 2.1.). Even with a predefined list used also in previous research [7, 18], it is possible to miss
some real bugs that do not have these keywords.

Manual Analysis of Bugs. Our study involved manual inspection of bugs which is a potential
error-prone process. In order to mitigate this threat, three authors (2nd, 3rd, and 4th) analyzed
the bugs separately. Next, all divergence in the process was discussed with the whole team until a
consensus was reached. Our results are also online for public scrutiny.

Quality of posts. The trustworthiness of the posts collected from Stack Overflow can be a threat
to our study. To mitigate this threat, we used an approach similar to [9] which collected the posts
based on a score at least 5 and reputation of users asking the questions. This score can be used as
a good indicator to trust the post as a good discussion topic among the developers’ community
that cannot merely be solved using an internet search. In addition, the reputation of the users
asking questions on Stack Overflow can be a threat to the quality of the posts. We only investigated
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top scored posts which are from users with different range of reputation ranging from novices to
experts.

Taxonomy. The final taxonomy is not fully comprehensive since the derivation process is
dependent on the collected commits, posts on Stack Overflow, and authors judgment. We mitigated
this threat investigating 105 Jupyter notebook repositories, 14740 valid commits, and 30416 Stack
Overflow posts.

Interviews. The interviews were conducted with open-ended questions, where the participants
were asked to express their perceptions and point-of-views. The interviews were conducted at 12
different companies and when these happened in the same company, the participants were warned
not talk to each other about it to avoid bias. In addition, we did our best to select experienced
professionals at each company to avoid our sample not being mature enough to have the expressive
knowledge about our area of investigation. Another aspect that is critical for validity is the quality
of the material used in the study. Thus, to ensure that the interview prompt had high quality, a
pilot interview was conducted with a professional data scientist. Finally, to avoid the threat of
concluding false conclusions based on the interview data, we carefully validated our interviews
and findings with the participants as we performed analysis, sometimes asking for clarifications.

6 RELATEDWORK
In this section, we discuss the main work related to our study.

Jupyter Notebooks - Extensions. The Jupyter Notebook Project aims to provide to the data
science community, a simple graphic interface to promote the computational narrative, based on
usability, collaboration and portability [10]. Some studies have been proposing different ways to
improve these aspects.

Rule et al. [25] investigated how cell folding can contribute to notebook navigation and reading.
They developed an extension for it, but in some cases, folded sections were ignored or increased the
time of notebook revisions. It shows how the analysis process in a notebook can be confusing and
hard to understand, especially in large documents. Head et al. [8] developed a solution to collect
and organize code versions, helping the analyst to study, review and recover old codes and analysis.
Computer notebooks unify text, code and visual outputs, being able to manually interact with

the graphical outputs increases the data analysis power of scientists. Kery et al. [13] developed an
API for this.

Considering to support reproducibility, Wang et al. carried out two studies. The first one to
recover the notebook’s reproducibility with a tool that generates possible execution schemes [35],
and the second one to retrieve and install the notebook’s experimental dependencies [38].

Our study is not focused on producing new features for Jupyter Notebooks. We analyze, identify
and classify bugs in the Jupyter notebook to provide a systematic overview of bugs and developer
challenges and provide an initial body of knowledge for future work on gaps and limitations in the
daily use of the Jupyter notebook.

Jupyter Notebooks - How Data Scientists Use. Some studies explore how the data scientists
use the notebooks in their daily usage. Code duplication, for example is a common practice from data
scientists. Koenzen et al. [15] studied how these duplication happen and identified that although
there is an approximately 8% rate of duplicate code in GitHub databases, users prefer not to duplicate
their own code.

Data analysis processes provide insights that need to be demonstrated, shared and disseminated.
Wang et al. [33] studied the real-time collaboration and identified that working on synchronous
notebooks encourages exploration and reduces communication costs, but the resources currently
available for this imply the need for greater team coordination.
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Jupyter Notebook - Notebook Quality. Chattopadhyay et al. conducted a study [4] that in-
volved observing five data scientists at their work with computational notebooks. They interviewed
15 data scientists and next surveyed 156 data scientists. They cataloged nine main problems and
difficulties faced by data scientists using computer notebooks. Unlike this research, our study
highlights the challenges faced by users from the perspective of real bugs that data scientists
encounter in their daily work.
Rule et al. [27] analyzed the structure of 1 million notebooks to assess whether they were

being built to support computational narratives. They identified that most of the notebooks are
built without proper cleaning or documentation, making readability, replication, code reuse and
consequently reproducibility a difficult task. Pimentel et al. [21] conducted a large-scale study on
notebook reproducibility problems. Their results show that only 24.11% of notebooks run without
errors, and out of that percentage, only 4.03% are able to produce the original results. Later, they
conducted another study that conducted a more detailed analysis [22]. While the authors are
interested in analyzing notebooks regarding their structure, our study aims to understand the
notebook code quality throughout the existing bugs.

Investigating the coding quality of Jupyter notebooks, Wang et al. [37] developed a preliminary
study where the results revealed a high amount of bad coding practices in Jupyter notebooks.
However, unlike the previous study, Patra et al. [20] decided to focus on a single type of coding
inconsistency that appears in Jupyter notebooks, Name-Value, and its implications for understanding
and maintaining code. Unlike the previous studies that cite specific bugs, our work categorize and
quantify types of bugs and root causes in the domain of Jupyter notebooks.

Empirical Studies on Bugs. Some related work are not directly related to data science, such
as: Zhang et al. [40] mined bugs in deep learning applications based on Tensorflow. They analyzed
GitHub commits, pull requests and issues and StackOverflow questions. Using similar mining
strategies and same data sources, Islam et al. [9] extended the search for other popular deep
learning libraries, Caffe, Keras, Tensorflow, Theano, and Torch. In addition, Thung et al. [32]
analyzed bugs in machine learning systems, but their research used the issues reported on Jira
database as a data source. However, to the best of our knowledge, this is the first empirical study of
bugs in Jupyter Notebook projects.

Other studies focused on bugs by only analyzing the GitHub projects in different domains, such
as bugs in autopilot software in unmanned aerial vehicles [34], bugs in IoT systems [18], bugs in
autonomous vehicles [7] and bugs involving Infrastructure as Code Scripts [24].

All previous research focused on analyzing specific aspects of bugs, such as symptoms, common-
ality, bug evolution, bug prone stages, and bug detection. Our work is a preliminary study that
focuses on providing the characterization of bugs in Jupyter Notebook projects, such as the types
of bugs, the potential root causes, their frequency, and the impact and challenges for data scientists.

7 CONCLUSION
In this work, we conducted a large-scale empirical study to characterize bugs in Jupyter notebook
projects. First, we analyzed 855 commits from 105 GitHub open-source repositories. Next, we
analyzed 2585 Stack Overflow posts which gave us insights into bugs that data scientists face when
developing Jupyter notebook projects. Finally, we conducted semi-structured interviews with 19
data scientists from 12 companies to validate the findings. We proposed a taxonomy of Jupyter
notebook-specific bugs by analyzing these bugs. In particular, we identify eight classes of bugs, ten
types of root causes, and the impact of bugs.

The most frequent bugs in the Jupyter notebook are those related to Environments and Settings
and Implementation. Regarding the root causes, the most frequent were: Configuration issues,
Version issues, and Coding Errors. They are the cause of most Implementation and Environments
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and Settings bugs. The most frequent bug impact was Run Time Error, followed by Incorrect
Functionality. In addition, we found that the data scientist’s background determines how the bugs
are identified, highlighting the importance of testing and debugging tools. Finally, we identified
the Jupyter notebook deployment as a challenging and poorly supported task.

We believe this study can facilitate practitioners’ understanding of the nature of bugs and define
possible strategies to mitigate them. Our findings can guide future research in related areas, such
as developing tools for detecting and recommending fixes for bugs in the Jupyter notebook.
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