
Code Smells in Machine Learning Systems
Jiri Gesi

fjiriges@uci.edu
University of California, Irvine

Irvine, California, USA

Siqi Liu
sliu17@uci.edu

University of California, Irvine
Irvine, California, USA

Jiawei Li
jiawl28@uci.edu

University of California, Irvine
Irvine, California, USA

Iftekhar Ahmed
iftekha@uci.edu

University of California, Irvine
Irvine, California, USA

Nachiappan Nagappan
nnagappan@acm.org

Facebook
Seattle, WA, USA

David Lo
davidlo@smu.edu.sg

Singapore Management University
Singapore

Eduardo Santana de Almeida
esa@rise.com.br

Federal University of Bahia
Salvador, Brazil

Pavneet Singh Kochhar
pavneet.kochhar@microsoft.com

Microsoft Research
Vancouver, Canada

Lingfeng Bao
fjiriges@uci.edu

Zhejiang University
Zhejiang, China

ABSTRACT
As Deep learning (DL) systems continuously evolve and grow, as-
suring their quality becomes an important yet challenging task.
Compared to non-DL systems, DL systems have more complex
team compositions and heavier data dependency. These inherent
characteristics would potentially cause DL systems to be more vul-
nerable to bugs and, in the long run, to maintenance issues. Code
smells are empirically tested as efficient indicators of non-DL sys-
tems. Therefore, we took a step forward into identifying code smells,
and understanding their impact on maintenance in this comprehen-
sive study. This is the first study on investigating code smells in the
context of DL software systems, which helps researchers and practi-
tioners to get a first look at what kind of maintenance modification
made and what code smells developers have been dealing with. Our
paper has three major contributions. First, we comprehensively
investigated the maintenance modifications that have been made
by DL developers via studying the evolution of DL systems, and
we identified nine frequently occurred maintenance-related modifi-
cation categories in DL systems. Second, we summarized five code
smells in DL systems. Third, we validated the prevalence, and the
impact of our newly identified code smells through a mixture of
qualitative and quantitative analysis. We found that our newly iden-
tified code smells are prevalent and impactful on the maintenance
of DL systems from the developer’s perspective.

KEYWORDS
Deep learning, Code Smell, Code Quality, Empirical analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Arxiv,
,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Jiri Gesi, Siqi Liu, Jiawei Li, Iftekhar Ahmed, Nachiappan Nagappan, David
Lo, Eduardo Santana de Almeida, Pavneet Singh Kochhar, and Lingfeng Bao.
2022. Code Smells in Machine Learning Systems. In Proceedings of (Arxiv).
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the past few years, Deep Learning (DL) systems, a branch of
machine learning (ML), has become an inseparable part of billions
of peoples’ lives worldwide, from personal banking to communica-
tion, from entertainment to transportation, and more [2, 4]. Due
to such ever-increasing dependence, ensuring DL system quality
is of utmost importance. Failure to do so has already resulted in
catastrophic consequences [1].

As DL systems evolve and grow in size and complexity, continu-
ous maintenance in the form of performance improvement, manda-
tory upgrades, and fixing bugs is necessary to ensure its correctness
and continuous availability during its lifetime [44]. However, main-
tenance of DL systems, similar to non-ML systems, can be hindered
due to poor design and implementation choices. Compared to non-
ML systems, DL systems are even more affected by maintenance
issues since they are prone to the maintenance issues pertaining to
both non-ML components and DL components as DL systems are
combinations of both non-ML and DL components [42].
Over the years, researchers have investigated the indicators of

maintenance issues and methods to identify and quantify their
impact [11, 23, 25, 42]. Code smells is one such indicator, which is
related to long term maintenance issues [23, 25, 42]. Prior research
have investigated when and why code smells are introduced [46]
and how they evolve over time [13, 17, 35, 39, 46]. Code smells’
impact on software comprehensibility [10], fault-proneness, change-
proneness [20, 28, 29], and code maintainability [22, 34, 43, 48, 49]
has also been demonstrated.
However, the majority of these studies focus on non-ML code

smells with only a few focusing on ML code smells [25] and none
focuses on DL-specific code smells. Since DL and traditional soft-
ware development is significantly different in terms of workflow
and engineering practices [21], as well as DL’s data dependent

1

ar
X

iv
:2

20
3.

00
80

3v
1

 [
cs

.S
E

]
 2

 M
ar

 2
02

2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

behavior [12, 47], it is safe to assume that along with previously
known code smells, there are code smells that are unique to DL
systems which have not yet identified.

A study conducted by Hadhemi et al. [25] is closest to our work,
where they studied code smells in DL systems. However, they in-
vestigated the prevalence of Python code smells; and analyzed
code smells that were designed for non-DL general-purpose source
code [18]. We posit that generic Python code smells provide only a
partial picture, and there are DL-specific code smells that require
further investigation. For example, Fig.1 shows an example of Jum-
bled Model Architecture (JMA) code smell where a Variational
Autoencoder (VAE) [30] is extracted into encoding, sampling, and
decoding1. Intuitively, jumbled VAE impedes the understandability
of model architecture and makes future maintenance difficult, this
refactoring helps to ameliorate that. Due to the already proven
impact of code smells on various aspects of non-DL software, it
is safe to assume that code smells will have a similar, if not more
detrimental effect on the long-term maintainability and overall
quality of DL systems. Making it of utmost importance to get a
complete picture of the unique code smells in DL systems and un-
derstand their impact. The first step towards achieving this goal
is by identifying DL-specific code smells derived from real-world
modifications applied to DL projects by developers.

In this study, we identify and analyze maintenance related modi-
fications done by developers on 59 open source DL projects that
were previously investigated by other researchers [25].

By employing a combination of PythonChangeMiner [7], GitcProc [16]
and manual analysis, we collected 426 maintenance related code
changes from these 59 projects, where each change has at least
three other similar occurrences among the projects. Next, using
qualitative analysis, multiple coders independently coded collected
changes into nine groups and extracted five frequently occurring
code smells. Next, we validated the prevalence and severity of code
smells by conducting a survey of 235 OSS DL developers. The sur-
vey analysis results show that our identified new code smells are
often seen and have a significant impact on system maintenance
activities.

In this paper, we answer the following research questions:
RQ1: What kinds of modifications do developers make frequently
in DL systems?
RQ2: How prevalent are code smells in DL systems?
RQ3: How do practitioners perceive the identified code smells in
DL systems?
The remainder of the paper is structured as follows. Section 2

provides an overview of related work. Section 3 details our method-
ology, with Section 4 presenting our findings. Section 5 places our
results in the broader context of work to date and outlines the im-
plications for DL practitioners and researchers. Section 6 lists the
threats to the validity of our results. Section 7 concludes with a
summary of the key findings and an outlook on our future work.

2 RELATEDWORK
Code smells were introduced by Martin Fowler [23] to describe
the design and implementation flaws in source code. These flaws

1This refactoring commit is collected from the "NiftyNet" [5] open-source software
project.

do not make the software system behave incorrectly or crash but
make it harder to understand, and maintain [20]. Research com-
munities have investigated the impact of code smells in non-ML
software systems such as how code smells impact fault-proneness
and change-proneness [20, 28, 29], it’s impact onmaintainability[22,
34, 43, 48, 49], when and why code smells are introduced [46], how
they evolve over time [13, 17, 35, 39, 46], and how to detect code
smells using different techniques [33, 36, 37, 40].

However, whether these code smells can capture all code smells
relevant to DL systems is still an open question since existing re-
search shows that there are significant differences between DL and
traditional software systems. Wan et al. showed that the incorpora-
tion of DL into a software system significantly impacts the require-
ment analysis, system design, testing, and process management [47].
Scully et al. presented a set of unique anti-patterns in DL system
development and highlighted a number of areas where technical
debts unique to DL systems exist [42]. Researchers also identified
differences in the development process for DL systems due to the
team formation and dependence on data which necessitates steps
such as data understanding, data cleaning, model training, model
deployment, and monitoring [3, 9, 12, 21]. All these differences can
potentially introduce unique poor designs or implementations in
source code, also known as code smells.

Despite the clear differences between DL and traditional software
systems, only a few studies have investigated code smells in the
context of DL systems. Hadhemi et al. [25] investigated the preva-
lence of Python code smells in DL systems along with investigating
the differences in the distribution of code smells between DL and
traditional systems. The code smells they investigated are:

Long Parameter List (LPL) [23]: A method or a function that
has a large number of parameters.

Long Method (LM) [23]: A method or a function that is ex-
tremely long.

Long Scope Chaining (LSC) [19]: A method or a function that
has a deeply nested closure.

Large Class (LC) [15]: A class that has a large number of source
code lines.

Long Message Chain (LMC) [15]: An expression for access-
ing an object using the dot operators through a long sequence of
attributes or method calls.

Long Base Class List (LBCL) [15]: When a class extends too
many base classes due to the multiple inheritances that Python
language supports, it makes code hard to understand.

Long Lambda Function (LLF) [15]: An anonymous function
that is extremely long and complex in terms of conditions and
parameters.

LongTernaryConditional Expression (LTCE) [15]: A ternary
conditional expression that is extremely long.

Complex Container Comprehension (CCC) [15]: One-line
comprehension list, set, or dictionary that contains a large number
of clauses and filter expressions.

Multiply-Nested Container (MNC) [15]: a container (includ-
ing set, list, tuple, dict) that is deeply nested.
As it can be seen for the definitions, these code smells were de-

signed for traditional general-purpose Python code [18]. However,
in a DL system, there is general-purpose code, along with model
architecture, data preparation, and pipeline related code. Hence, we

2

class VAE(nn.Module):
def __init__(self):

super(VAE, self).__init__()

self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)

def forward(self, x):
h1 = F.relu(self.fc1(x.view(-1, 784)))
mu, logvar = self.fc21(h1), self.fc22(h1)

std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
z = mu + eps*std

h3 = F.relu(self.fc3(z))
decodedZ = torch.sigmoid(self.fc4(h3))

return decodedZ, mu, logvar

class VAE(nn.Module):
def __init__(self):

super(VAE, self).__init__()

self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)

def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)

def sample(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std

def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))

def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.sample(mu, logvar)
return self.decode(z), mu, logvar

Figure 1: Jumbled Model Architecture code smell refactoring for Variational Autoencoeder model

Data Analysis

59 DL
Projects

PythonChangeMiner Manually Label
Maintenance

related Commits

GitcProc

Code Mining

Code
Change

Patterns &
Commits

Commits
without
Bug Fix

Open Card Sorting
on 426 commits

9 frequently
occurred

modifications

Group Discussion on
code smells in MLPilot Survey

11 participants
Online Survey

235 Respondents

Findings

Survey

Open Coding on 9
maintenance related

modifications

Five Code
Smells in DL

Systems

Data Analysis II

Data Analysis I

Figure 2: Schematic diagram of research methodology

posit that there are other code smells that are unique to DL specific
code (i.e., model architecture, data preparation and pipeline, etc.)
Prior research in the context of non-ML systems indicated that

developers have differentiated opinions about code smells, their
prevalence, and effect [49]. However, existing research in DL did not
investigate how developers perceive code smells in the context of
DL systems. As result, questions such as how prevalent these smells
are, and how developers perceive their impact remains unanswered.
We aim to fill the gap and answer the questions in this work.

3 METHODOLOGY
We used a mixed method approach consisting of mining software
repositories and qualitative analysis. Figure 2 shows the process
that we follow in this study. We start by code mining to gather
recurring code change patterns, then apply open card coding to
identify new code smells, and finally, conduct a large-scale survey

to validate the prevalence and impact of the newly identified code
smells.

3.1 Code Mining
Our first step was collecting recurring code changes in 59 open
source DL systems. These projects were investigated by Hadhemi
et al. [25] in their study and we wanted to investigate whether
there are other codes smells unique to DL in these systems besides
generic Python code smells, thus we used the same dataset.

3.1.1 Data Collection. We started by obtaining 90, 301 commits
from the 59 DL open source projects downloaded on May 20, 2020.
Next, we used PythonChangeMiner [7] to detect and group com-
mits with similar change patterns. PythonChangeMiner mines the
history of a given repository using the PyDriller framework [6] and
builds change graphs for matching functions in each changed file
for a commit. To achieve this, both versions of the file (before and
after the change) are parsed into Abstract Syntax Trees (ASTs) [38],

3

Modification Reason Code smell reasonCode snippet

Compatibility with next
version of TensorFlow: one

method in different files Scattered use of one or more
ML librariries in one or
multiple files

Code smell

Scattered Use of ML
Library

b.py
shape = tf.pack([1,1,tf.shape(self.Y)[1]])
shape = tf.stack([1,1,tf.shape(self.Y)[1]])

a.py
shape = tf.pack([tf.shape(f)[1], 1, 1])
shape = tf.stack([tf.shape(f)[1], 1, 1])

c.py
return tf.where(x > 0, res, alpha * res)
return tf.select(x > 0, res, alpha * res)

tf.batch_matmul(tf.tile(Xcov[:, None, :, :],
[1, M, 1, 1]), vecplus)

tf.matmul(tf.tile(Xcov[:, None, :, :],
[1, M, 1, 1]), vecplus)

Compatibility with next
version of TensorFlow:

multiple methods in same file

Figure 3: An example of using qualitative analysis for determining code smells in deep learning systems

which are then traversed to create the structure of fine-grained
Program Dependence Graph (fgPDG). Then, the obtained fgPDG are
analyzed to find all node pairs before and after the change using
GumTree [31], resulting in grouped change pattern categories. Fig-
ure 4 shows an example of a changing pattern identified in several
projects that developers switched from using built-in copying to
creating a deep copy of an object using a copy module. To make sure
that our analyzed patterns are common across multiple projects and
not specific to a project, we extracted code changes that happened
at least three times within all commits across multiple projects. We
identified 1, 942 commits matching this criterion.

model = optimizer.target).copy(
model = optimizer.target)copy.deepcopy(

(a) Code snippet 1
merged_config = self._default_config).copy(
merged_config = self._default_config)copy.deepcopy(

(b) Code snippet 2
votes = rule.get_class_votes(X, self)).copy(
votes = rule.get_class_votes(X, self))copy.deepcopy(

(c) Code snippet 3

Figure 4: An example of a changing pattern identified in
several projects on GitHub. The developers switched from
using built-in copying to creating a deep copy of an object

using a copymodule of a Standard library.

Research shows that refactoring (non-bug-fixing and non-program
behavior-altering commits) is performed to remove code smells [24].
Since our identified 1, 942 patterns contained both bug-fixing, non-
bug-fixing commits, we removed bug-fixing commits from our
analysis as they alter program behavior. We used GitCProc [16]
for this purpose, which identifies the bug-fixing commits based
on the presence of specific words in the commit message. Words
such as error, bug, defect and, fix are considered while identifying
bug-fix commits by GitCProc. After removing bug-fix related com-
mits, 1, 335 non-bug-fixing commits were left, which come from
all 59 projects. Next, the first and second authors independently
went through the commits to identify the commits related to main-
tenance. They relied on the commit message and compared the
code before and after the update for deciding whether the commit

was maintenance related or not. They initially used 10% (134) of
the commits and independently labeled them. After initial labeling,
the inter-rater agreement was 0.61, which according to Landis et
al.[32] is considered as a substantial level of agreement. After an
initial disagreement on some of the commits, the authors discussed
their approach and had a complete agreement regarding the label
of commits initially disagreed. Then the two authors labeled the
remaining 1,201 commits together. This resulted in selecting 426
maintenance related commits where each commit had at least three
occurrences across multiple projects.

3.1.2 Modification Category Creation. Our next step was to group
these commits based on the modification reasons. To do so, we fol-
lowed descriptive coding [41] which is used for identifying topics
from data. The result of descriptive coding is categorized groups
based on identified topics. Two authors jointly conducted the de-
scriptive coding on the selected 426 commits. They relied on the
commit message and compared the code before and after the update
for identifying the reasons for making the changes. This resulted
in grouping the commits into nine modification categories. We
selected descriptive coding technique for the following reasons:
(1) we can get an overview of recurring changes that are indica-
tive of poor maintainability; (2) we can obtain the context of these
modifications.

3.1.3 Code Smell Categorization. Our primary goal was to extract
code smells from the frequently occurred modifications. For this
purpose, in the next step first and the second authors checked if
the modification reasons mentioned in Table 1 met the following
criterion: (1) whether the modification reason is general (common
to many DL systems), (2) if there is a general solution to the root
cause that required the modification. If both criteria are met, they
considered the modification reason as a code smell. Figure 3 shows
an example of qualitative analysis to determine whether a modifi-
cation is a code smell.
Two rounds of descriptive coding were conducted. In the first

round, the first and second authors independently investigated all
modification reasons and created a list of code smell candidates
based on the previously mentioned two criteria. After discussing
they curated a list of 12 code smells and reached an inter-rater
agreement of 83.2%. In the second round, these 12 code smells were

4

presented to all authors, and after discussion, everyone agreed on
five new code smells and the remaining seven were discarded as
they did not meet the previously mentioned criteria completely.
Since the collected commits consisted of both new code smells

and pre-existing code smells that were identified by Hadhemi et
al [25] (listed in Section2), we check the prevalence of generic
Python code smells among the 427 commits. Since Pysmell [18] can
identify these smells, instead of applying quantitative techniques,
we relied on Pysmell for this purpose. We ran Pysmell before and
after applying each of the 426 commits and calculated the number
of fixed generic Python code smells. If the count of code smells
decreased, we labeled that commit as Python code smell fixing
commit. Through this analysis, we identified eight Python code
smells in our data.

3.2 Survey
We delivered a survey to gain an understanding of the prevalence
and severity of the newly identified code smells and gather the
developer’s perspective about them.

3.2.1 Protocol. We based our questions on the identified code
smells from code change pattern mining. Our questionnaire in-
cluded questions about the following topics (the complete question-
naire is available as supplemental material2):
• Demographics: We asked questions about organizations, geo-
graphical locations, and ML-related working experiences for this
part of the survey.
• Self-perception: We let respondents self-identify their profes-
sional categories ("I think of myself as a/an..." like researchers,
engineers, scientists, etc). We used the answers to classify all re-
spondents into four groups based on the result’s keywords: data
scientist/engineer, Machine Learning (ML) engineer, software
engineer, and project manager based on their self-perception. ML
engineers sit at the intersection of software engineering and data
science, whose job is applying ML techniques and developing DL
models. Data scientists/engineers are the group of people who
create and maintain optimal data pipeline architecture, study and
understand the data, and clean data. All respondents who are
working on data-related jobs are grouped. Software engineers are
those who build the software system and deploy the DL models.
• Perception on code smells: We asked respondents whether they
have encountered the code smells. To clarify any possible con-
fusion, we provided a definition and a simple example for each
code smell. If they responded “yes”, we also asked them to what
extent the code smell impacts their DL systemmaintenance (Very
Serious, Serious, Moderate, Scarcely, and Not At All).
We followed a pilot protocol [14] while designing the survey.

We designed a pilot version and sent them to a small subset of
developers (11 developers). Based on the feedback, we rephrased
some questions to make them easier to understand. We simplified
and merged some questions to ensure that participants could finish
the survey in 7 minutes. The responses from the pilot survey were
used solely for improving the survey questions and were not in-
cluded in the final results. We also translated our original survey to
a Chinese version to support respondents who read Chinese before

2https://github.com/codesmell-material/codeSmell

Figure 5: Countries in which survey respondents reside.
The legend presents the top 4 countries with most

respondents

distributing the survey. two of the authors (one of them is a native
English speaker and the other a native Chinese speaker) discussed
the survey and performed the translation together.

3.2.2 Respondent Selection. We aimed to get a sufficient number
of practitioners from diverse backgrounds working on open source
DL development and maintenance. Thus, we collected active con-
tributors’ emails in the 59 DL projects by using GitHub REST APIs.
In total, we collected 1,157 email addresses and successfully dis-
tributed them to 1,061 contributors. We kept the survey anonymous,
but the respondents could choose to receive a summary of the study.
In total, we received 265 responses. After excluding incomplete

surveys, 235 responses were considered valid. The countries and
the corresponding number of respondents are shown in Fig. 5. The
survey respondents who met our criteria are distributed across 15
countries and six continents. The majority of our respondents cur-
rently work in North America, Asia, and Europe, with the United
States and China being the top two countries. Respondents’ soft-
ware development experience varies from 1 to 23 years with an
average of 5.25 years, and their DL development experience varies
from 1 to 10 years with an average of 3.13 years.

3.2.3 Survey Data Analysis. To analyze the responses, we used
descriptive statistics.
For the 235 valid responses to the question related to whether

they have encountered our identified code smells, we normalized
the frequency of each code smell by computing the percentage of
respondents who have encountered code smells. If a high proportion
of respondents reported that they have encountered a certain code
smell, we consider this smell as more common. We did the same
for the impact level of the code smell question. We also analyzed
the responses based on roles. We mainly analyzed the responses
from the top three categories of respondents which belonged to
software engineers, ML engineers and data scientist/engineers since
the number of project manager respondents were too few.

To check if there is a significant difference between new identified
code smells in terms of impact, we adopted the Scott-Knott test [26].
Scott-Knott test divides the measurement averages into statically
distinct groups by hierarchical clustering analysis. However, the
limitations of the Scott-Knott test are that it assumes the data are
in a normal distribution and it may create groups with trivially
different from each other. Thus, we adopted its normality and effect

5

size-aware variant Scott-Knott effect size difference (ESD) test [45].
The Scott–Knott ESD test (1) corrects the normal distribution of
the input data and (2) merges any two statistically different groups
of negligible effects. A detailed description of the Scott–Knott ESD
test can be found in [45].

4 RESULTS
In this section, we report the answers to our targeted research
questions and findings that emerged from the data.

4.1 Maintenance Related Modifications in Deep
Learning

RQ 1: What kinds of modifications do developers make fre-
quently in DL systems?
To answer this question, we mined 59 open source DL project

repositories and identified 426 maintenance-related modification
commits. By using descriptive coding, we categorized the selected
commits into nine modification categories (explained in Section 3).
The modification categories, identified modification reasons, and
their corresponding distributions are shown in Table 1.
Our manual analysis revealed that, as expected, some of the

frequent modifications are specific to DL systems and others are
not. For example, the most frequent (21%) modification category
named Change function declaration which involves renaming
functions, changing lambda functions to normal functions, and
modifying function signatures is not specific to DL. Extract class/-
function categorywhich includes changes pertaining to separating
new class, isolating independent parts of code, and splitting long
functions is also not specific to DL.
We also found that three of the modification categories are spe-

cific to DL.
Update/replace ML library: This recurring modification is the

second most frequent category of modification (19%). Similar to
API update/replace in traditional systems, developers usually use
third-party DL libraries and frameworks to implement DL function-
alities. However, DL libraries are usually updated more frequently
than traditional libraries [42] and DL developers need to fix either
deprecated or outdated functions to keep up with the updates. For
example, the code snippet in Figure 3, shows that developers had to
replace API names to resolve the compatibility issue with a newer
version of TensorFlow.

Data preparation modification: This recurring modification
is performed on the data preprocessing steps. We found that 8% of
overall modifications in our dataset belonged to this group. Since
a substantial part of code in DL systems is written for data prepa-
ration, and feeding to DL model any changes to the data source,
preparation steps, or the model architecture requires this category
of modification.

Model architecturemodification: This recurringmodification
is done on DL model architecture related code. In order to resolve
model degradation problems, developers iteratively train models
or deploy new model architectures. We also found that developers
make modifications to improve the model architecture by untan-
gling the components. This group of modifications is 6% of our
analyzed commits.

�
�

�

Observation 1: One third (33%) of the maintenance related
modifications in DL systems are specific to DL systems and
are related to the data, model, and library.

Interestingly, our results highlight another category of modifi-
cation that is not specific to DL, but contains some DL specific
changing reasons:

Replace hard-coded value: This is the recurring modification
where developers replace hard-coded values with variables. Simi-
lar to traditional software, hard-coded values make it difficult to
maintain software systems. We found developers frequently replace
hard-coded model path, hyper-parameters, and learning rate with
variables. 13% of our identified commits fall into this category.

Remove redundant debugging code: Developers frequently
remove unnecessary debugging code in DL systems. The software
engineering community has developed a number of tools, IDEs,
and techniques to help catch bugs. Unfortunately, practitioners for
DL systems do not enjoy the same robust set of debugging tools
available for traditional software while debugging DLmodels due to
the opaqueness of DL models and strong coupling between model
and software components [42]. Thus, many DL developers resort to
using print statements for debugging. 16% of maintenance-related
modifications were grouped into this category.

Move code: In this category of recurring modification, develop-
ers move code between files and positions. Developers often put
model training, testing, and validation related code in the same
file. Later on, they end up moving each of the training, testing, and
validation to separate files. We found that 6% of the modification
commits belong to this category.

Remove dispensable dependency: This is the recurring modi-
ficationwhere developers remove unused or unnecessary dependen-
cies. Resolving dependency compatibility problems or versioning
conflicts can be time consuming. As a result, developers are usually
reluctant to remove dispensable dependencies until they have to.
This kind of modification consists of 2% of modifications commits
in our dataset.

4.2 Code smells in Deep Learning System
RQ 2: How prevalent are code smells in DL systems?
Through manual analysis of the maintenance related modifica-

tions done on real-world projects, we identified five code smells
in DL systems (details in Section 3). Table 2 shows the five code
smells along with their signs and symptoms ordered based on the
frequency of occurrence in projects from high to low.

Scattered Use of ML Library: This smell is about implement-
ing third-party ML libraries/frameworks in a non-cohesive manner
throughout the project. As a result, whenever these libraries/frame-
works update, developers have to modify multiple positions in
single or multiple files. Such scattered use of ML library requires
additional effort from the developer while maintaining the source
code. 32 out of 59 (54%) projects have at least one commit showing
this problem.

Unwanted Debugging Code: This smell was derived from the
recurring pattern of leaving unwanted or unnecessary code in the
DL system and we found 24 out of 59 DL projects have this code
smell. DL systems tend to be more complicated than a traditional
system and developers use debugging code for getting data shape

6

Table 1: Summary of modification commits and their distribution

Modification Categories Modification reasons
Percentages
of selected
commits (%)

Change function declaration
Rename functions; Change lambda function to normal functions;
Change function signatures; Convert public function to private;
Convert private function to public.

21%

Update/replace ML library

Update deprecated functions with new ML library; Resolve
python version compatibility issue; Resolve ML library compati-
-bility issue; Switch to new ML library; Employ another ML
library to improve model performance.

19%

Remove redundant
debugging code

Clean up no longer used debugging of redundant code. 16%

Replace hard-coded value
Replace hard-coded model names, learning rate, parameters, num-
-bers, and etc to variables. 13%

Extract class/function
Create a separate new class/function to remove old duplicate
code; Isolate independent parts of code; Split long function/class. 9%

Data preparation modification
Resolve Data API compatibility issue; Separate data preparation
code; Clean up data loader. 8%

Move code
Move code to proper files or positions; Simplify deep nested closure
functions or containers. 6%

Model architecture modification
Rewrite model architecture source code; Deep learning layers
and parameter modification; Replace with a new model; Separate
model parts.

6%

Remove dispensable dependency
Remove unused or dispensable DL library/frameworks; Resolve
dependent conflicts. 2%

Table 2: Summary of Newly Identified Code Smells in Deep Learning Systems

Code Smell Signs and symptoms
Percentages

of
commits (%)

Percentages of
Projects (%)

Scattered Use of ML
Library

Scattered use of ML API in multiple files, once an ML API needs
to be modified/updated, and the practitioners must modify places
across several files.

13% 54%

Unwanted Debugging
Code

A debugging code fragment, method, or class is no longer used,
but still is left in the source code 17% 41%

Deep God File
A file contains multiple components of a DL system, such as mo-
-del training, testing, etc 9% 37%

Jumbled Model
Architecture

DL model architecture parts are cobbled together and difficult to
understand and maintain. 6% 19%

Dispensable
Dependency

An installed DL library or framework is no longer used or can be
replaced by other existing ones 2% 9%

or printing current status to understand the code. However, left un-
cleaned these debugging codes can impede maintainability. If many
people are working on a project, individuals are more reluctant
to remove code that they do not thoroughly understand since no
one wants to be responsible for errors. With these redundant codes
left in the system, the code will be more difficult to understand,
especially for DL systems.

Deep God File: This smell was derived from the recurring pat-
tern where developers kept separating DL parts into multiple files
after they had initially put some or all of them into one big file. We
found 22 projects (37%) with this code smell. Deep God File usually
starts small, but over time, they get bloated as practitioners may
find it mentally easier to place programs into existing files.

Jumbled Model Architecture: This smell was derived from
the recurring pattern when DL practitioners programmed the DL

7

Figure 6: Prevalence of identified existing code smells

models, they do not clearly divide the different functional parts
of the model. Instead, all parts of the model are jumbled together,
which makes model code difficult to understand. We found 11 (19%)
projects with this code smell.

Dispensable Dependency: This smell was derived from the
recurring pattern where some redundant dependencies are left in
DL systems and we noticed five out of 59 projects have modification
commits to remove dispensable dependencies. Many DL libraries
have repetitive functions, so some practitioners might try similar
functions in each library and use the one with the best performance.
However, this process adds some unnecessary dependencies to the
entire system.

4.3 Prevalence of Python Smells
We used PySmell to analyze the Python code smells in our se-
lected commits and identified eight Python code smells that were
investigated by Hadhemi et al. [25] (shown in Figure 6). The most
frequently fixed Python code smells in our dataset are LM, LPL,
and CCC and their respective fixing commit percentages are 6.56%,
6.32%, and 6.09%. LTCE and LLF code smell fixing occupy 3.98% and
3.04% percentage of all selected commits. And the fixing commit
percentages for MNC, LC, and LSC are 1.17%, 0.94%, and 0.70%.
According to Table 2, the percentage of selected commits to fix

code smell of Scattered Use of ML Library and Unwanted Debugging
code are respectively 13% and 17%. And for Deep God File and
Jumbled Model Architecture code smells, the percentage of commits
are 9% and 6%. The lowest percentage of commits is Dispensable
Dependency code smell, which is 2%. By comparing the percentage
of commits containing the code smells between our identified code
smells and existing Python code smells we see that newly identified
code smells are more frequent compared to generic Python code
smells.�

�
	Observation 2: Newly identified code smells occur more fre-

quently in our sample than generic Python code smells.

4.4 Code Smells Validation
RQ3:Howdopractitioners perceive the identified code smells
in DL systems?
To answer this question, we analyzed the survey results. We

asked respondents to what extent they have encountered these
code smells and their perception about the impact of these code

smells on making DL systems difficult to maintain. The aggregated
results are shown in Fig. 7.
According to the aggregated results shown in Figure. 7-(a), re-

spondents are familiar with the code smells we identified. 84% of
the respondents expressed that they have seen Scattered Use of ML
Library code smell before, which matches our repositories mining
result that the most frequently occurred code smell is Scattered Use
of ML Library. The respondents were also familiar with the other
code smells. The ranking through mining was closely matched with
the survey’s ranking as Unwanted Debugging Code, and Deep God
File were among the top three code smells in both rankings.
According to the combined result from all the participants in

Figure. 7-(b), the most impactful code smell is Scattered Use of ML
Library. More than 60% of survey respondents reported that these
code smells seriously impact their DL systems’ maintenance. Ac-
cording to the developers, the other two most impactful code smells
are Jumbled model architecture and Deep God File. Among them,
Deep God File is also the second most frequent code smell (Figure. 7).�
�

�

Observation 3: According to both mining and developers’
responses, Scattered Use of ML Library and Deep God File are
two of the most frequent and impactful code smells.

(a) Results of code smells frequency of occurrence

(b) Results of code smells impact on deep learning systems

Figure 7: Aggregated survey results form all respondents

8

Figure 8: Scott-Knott effect size difference (ESD) test results

When we grouped the perceived frequency of code smells based
on respondents’ roles shown in Fig. 9-(a), the most common code
smells for ML engineers, software engineer and data scientist/engi-
neer respondents were Scattered Use of ML Library, Dispensable
Dependency, Unwanted Debugging Code. However, software engi-
neer met Scattered Use of ML Library more often, but ML engineer
encountered Dispensable Dependency and Unwanted Debugging
Code more often. It is also reasonable that software engineers and
Data engineers encountered less Jumbled Model Architecture since
they are not primarily maintaining models, but 62% ML engineer
respondents encountered Jumbled Model Architecture code smell as
they are primarily working with models.
We looked into the impact of these code smells for each role,

shown in Fig. 9-(b), which only shows the percentage of respondents
who identified the code smell having serious or very serious impact
on system maintenance. The Scattered Use of ML Library code smell
is considered as the most severe by all three roles, especially by ML
Engineers since 88% of ML Engineer respondents think this code
smell has a “serious impact” on their system maintenance. Similarly,
Jumbled Model Architecture is considered as a severe code smell
by all three roles, even though it’s not common for software and
data scientist/engineer. In our analysis, we found that Unwanted
Debugging Code is a common code smell, but most of respondents
do not think it is a severe issue.�
�

�

Observation 4: Different roles encounter code smells differ-
ently and they also have varied opinions about the impact of
the code smell.

We conducted Scott-Knott ESD test on the responses collected
for pertaining to the impact of code smells on DL maintenance
to check if there is significant difference among all newly identi-
fied code smells. Figure 8 shows that Scott-Knott ESD categorized
five code smells into three different groups. Scattered Use of ML
Library is categorized in the first group as the most impactful code
smell; Jumbled Model Architecture, Deep God File, and Dispensable
Dependency code smells are categorized into the second group; and
Unwanted debugging Code is categorized into the third group.

(a) Survey responses for different roles about code smell
Occurrence (shows percentage of respondents have seen code

smell before)

(b) Survey responses for different roles about code smell impact
(only show the percentage of respondents think the code smell

has serious or very serious impact)

Figure 9: Separated survey results for different roles

5 DISCUSSION AND IMPLICATIONS
In this section, we discuss the results presented in the previous
section and present mitigation strategies, probable root causes for
code smells, and practical implications of our study for researchers,
educators, tool builders, and developers.

5.1 Mitigation Strategies
Scattered Use of ML Library: DL practitioners should import
module as an alias to shorten the ML API message chain. That way,
when an ML API is updated, maintainers no longer need to modify
the usage of this API call throughout the whole project. Instead,
they only need to change the code in module importing parts.

Jumbled model architecture: We suggest DL practitioners
clearly separate the parts of the DL model with different functions,
so that the model code is easier to understand and maintain.

9

Deep God File: We recommend developers place each part of
code into a proper file, and have clear boundaries, such as placing
model architecture, training, testing and validating program in
separate files. If there is a Deep God File, DL practitioners can
employ extract class or move function refactoring operations to
separate components in such files.

Unwanted Debugging Code: We advocate DL practitioners
remove unused debugging code in a timely manner.

Dispensable dependencies: We encourage practitioners re-
move unnecessary dependencies in DL systems since it takes a
lot of time and effort to resolve dependency and library version
conflicts in DL systems.

5.2 Probable root causes
ML teams are composed of different roleswith overlapping tasks [12].
We posit that code smells might be a product of such overlapping
tasks since the overlap in responsibility leads to unclear mainte-
nance responsibility. A general thought is that this problem is not
unique to DL systems but applies to regular systems as well. That is
absolutely correct. Nevertheless, this problem is exacerbated in DL
systems because of the significantly distinct roles of various team
members. Along with creating confusion and dissatisfaction, un-
certain responsibilities can result in dropped or mishandled source
code and catastrophic consequences down the line. Practitioners
need to ensure the maintenance task’s boundaries for different roles
in DL systems.
Differences in job responsibilities among team members can be

another reason for accumulating code smells over time. For ex-
ample, ML engineers mainly concentrate on model development
rather than software deployment and maintenance. To obtain a
better model performance, they may try different ML libraries and
add all tried library dependencies into the system at the same time.
Even though ML engineers finally end up requiring only a few of
the imported libraries, the unused but imported DL libraries and
their dependencies remain in the system. Such unnecessary depen-
dencies introduce additional problems to the software engineers
who try to build and maintain the DL system. Since the process
used at the ML developer’s end is opaque to the software engineers,
it becomes difficult, even impossible in certain cases, for software
engineers to remove any unused DL library dependencies. As a
result, all the unused dependencies are left in the DL system and
the quality of the system as a whole suffers [42]. Projects in the
industry have started investigating ways to overcome these chal-
lenges. One approach is hybrid teams that include ML engineers,
data scientists, and DevOps engineers [8]. Further work is needed
to help DL systems identify and remove the unused dependencies.
Improving cross-team communication, reducing the opaqueness in
the development process used within the sub-groups along with
ensuring documentation are some of the possible steps to mitigate
this to some extent.

5.3 Implication
Implications for researchers, tool builders and educators: Our
results show that DL systems have a wide variety of code smells.
However, when we looked for code smell related work for DL,

we found limited studies. We encourage researchers to investigate
many more kinds of code smells in DL systems.

Tool builders can focus on making the code smell detection tools
seamlessly integrated into the existing DL development pipeline
without causing major disruptions. This is important because re-
search shows that if a workflow is disrupted, practitioners tend to
stop using the tool [27].

The large variety of code smells in DL systems is also good news
for educators. Educators can illustrate many design principles by
showing both well-designed programs and those that exhibit code
smells. Using DL systems as subject case studies is guaranteed to
provide a variety of code smells. Moreover, students might also
prefer examples from the DL domain given the rise and allure of
DL programming.

Implications for DL developers: As Table 2 shows, identified
code smells are distributed in a big percentage of DL systems. Thus,
it is important that developers educate themselves about the kinds
of code smells that occur in DL systems, and how to mitigate them.
Or even better, being conscious about code smells when program-
ming in the first place and avoid them altogether.

6 THREATS TO VALIDITY
Our refactoring pattern mining was performed on 59 projects care-
fully selected by Hadhemi et al. [25]. However, these are open
source projects, which means the results may not be generalizable
to all DL projects, particularly closed-source projects. Nonetheless,
the majority of the DL projects use Python, so we believe our code
mining on these Python projects still provides significant insights
on code smells in DL systems. This is our first step towards building
an empirical body of knowledge. With further replication across
different contexts by different research teams, we can build a body
of knowledge to generalize the results.
The manual analysis applied throughout the study could have

introduced unintentional bias. First, we manually identified the
commits that were related to maintenance activities based on com-
mit messages and comparing the code before and after an update.
Another manual analysis was conducted while grouping the fre-
quently occurring change categories into code smells. This could
have introduced bias or mistakes due to the lack of domain exper-
tise. To address this concern, two researchers individually labeled
a significant portion of the data. We established a high inter-rater
agreement of 0.61 and 0.83 respectively for the twomanual analyses,
which according to Landis et al.[32], is considered as a substantial
level of agreement and we believe we have minimized this threat.
We ran PythonChangeMiner to obtain frequently changed pat-

terns, and then we used GitcProc to exclude bug fixes. Relying
on these tools can be a threat to validity. However, these tools or
variant of them has been validated in other studies. We also per-
formed a manual investigation of any refactored code that has not
been labeled by GitcProc to identify if there is any systemic error.
Through our manual analysis, we did not see any evidence of the
systemic error.
There is a possibility that our participants misunderstood the

survey questions. To mitigate this threat, we conducted a pilot
study with 11 developers with different background experiences
and updated the survey based on the feedback. In order to clarify

10

any confusion, we provided definitions for each of the smells. Addi-
tionally, we translated the original survey to simplified Chinese to
help native Chinese readers to reduce any confusion. Our survey’s
language selection and translation process may be subject to bias.
It might cause the group of respondents who can read Chinese and
English to be over represented. However, it is important to mention
that we chose to present our survey in English and Chinese because
these are the top two most used languages in software develop-
ment. Our survey could also have translation errors that cause the
questions to deviate from the original meaning. To mitigate these
risks, two of the authors (one of them is a native English speaker
and the other a native Chinese speaker) discussed the survey and
performed the translation together.

7 CONCLUSIONS AND FUTUREWORK
We investigated frequently occurring modifications in DL open
source software repositories and identified nine modifications along
with five code smells in this work. We also validated the code smells
with DL practitioners through a survey. Participants identified the
most impactful smells; however, surprisingly, the most frequent
code smells are not necessarily the most impactful ones.

Our findings also open up new directions for future research. In
addition to the future directions already presented in the discussion
and implication sections, future research entails exploring the evo-
lution of the identified code smells and their effect on DL systems’
overall quality.

REFERENCES
[1] “2 killed in driverless tesla car crash, officials say,” https://www.nytimes.com/

2021/04/18/business/tesla-fatal-crash-texas.html, accessed: 2020-07-1.
[2] “20 natural language processing examples for businesses,” https://www.

wonderflow.ai/blog/20-natural-language-processing-examples-for-businesses,
accessed: 2020-07-1.

[3] “The amazon machine learning process,” https://docs.aws.amazon.com/machine-
learning/latest/dg/the-machine-learning-process.html, accessed: 2020-07-1.

[4] “Mobileye is bringing its autonomous vehicle test fleets to at least four
more cities in 2021,” https://techcrunch.com/2021/01/11/mobileye-is-bringing-
its-autonomous-vehicle-test-fleets-to-at-least-four//-more-cities-in-2021/, ac-
cessed: 2020-07-1.

[5] “Niftynet,” https://github.com/NifTK/NiftyNet, accessed: 2020-07-1.
[6] “Pydriller,” https://github.com/ishepard/pydriller, accessed: 2020-07-1.
[7] “Pythonchangeminer: a tool for mining change patterns in python projects,”

https://github.com/JetBrains-Research/code-change-miner, accessed: 2020-07-1.
[8] “Solving enterprise machine learning’s five main challenges,” https://info.

algorithmia.com/ml-challenges-ebook, accessed: 2020-07-1.
[9] “What is the team data science process?” https://docs.microsoft.com/en-us/azure/

machine-learning/team-data-science-process/overview, accessed: 2020-07-1.
[10] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study of the

impact of two antipatterns, blob and spaghetti code, on program comprehension,”
in 2011 15Th european conference on software maintenance and reengineering.
IEEE, 2011, pp. 181–190.

[11] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma, “An empirical
examination of the relationship between code smells and merge conflicts,” in
Empirical Software Engineering and Measurement (ESEM), 2017 ACM/IEEE Inter-
national Symposium on. IEEE, 2017, pp. 58–67.

[12] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann, “Software engineering for machine learning: A case study,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 291–300.

[13] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the longevity of code
smells: preliminary results of an explanatory survey,” in Proceedings of the 4th
Workshop on Refactoring Tools, 2011, pp. 33–36.

[14] I. Brace, Questionnaire design: How to plan, structure and write survey material for
effective market research. Kogan Page Publishers, 2018.

[15] W. J. Brown, R. C.Malveau, H.W.McCormick III, and T. J. Mowbray, “Antipatterns:
Refactoring software, architectures, and projects in crisis.(1998),” Google Scholar
Google Scholar Digital Library Digital Library.

[16] C. Casalnuovo, Y. Suchak, B. Ray, and C. Rubio-González, “Gitcproc: a tool for
processing and classifying github commits,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2017, pp.
396–399.

[17] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad smells in
object-oriented code,” in 2010 Seventh International Conference on the Quality of
Information and Communications Technology. IEEE, 2010, pp. 106–115.

[18] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in python programs,”
in 2016 International Conference on Software Analysis, Testing and Evolution (SATE).
IEEE, 2016, pp. 18–23.

[19] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, and B. Xu, “Understanding metric-
based detectable smells in python software: A comparative study,” Information
and Software Technology, vol. 94, pp. 14–29, 2018.

[20] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design flaws on
software defects,” in 2010 10th International Conference on Quality Software. IEEE,
2010, pp. 23–31.

[21] E. de Souza Nascimento, I. Ahmed, E. Oliveira, M. P. Palheta, I. Steinmacher,
and T. Conte, “Understanding development process of machine learning sys-
tems: Challenges and solutions,” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–6.

[22] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shepperd, “A
controlled experiment investigation of an object-oriented design heuristic for
maintainability,” Journal of Systems and Software, vol. 72, no. 2, pp. 129–143, 2004.

[23] M. Fowler, “Refactoring: Improving the design of existing code,” in 11th European
Conference. Jyväskylä, Finland, 1997.

[24] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how misclassifica-
tion impacts bug prediction,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 392–401.

[25] H. Jebnoun, H. Ben Braiek, M.M. Rahman, and F. Khomh, “The scent of deep learn-
ing code: An empirical study,” in Proceedings of the 17th International Conference
on Mining Software Repositories, 2020, pp. 420–430.

[26] E. Jelihovschi, J. C. Faria, and I. B. Allaman, “The scottknott clustering algorithm,”
Universidade Estadual de Santa Cruz-UESC, Ilheus, Bahia, Brasil, 2014.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 672–681.

[28] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of the impact
of code smells on software change-proneness,” in 2009 16th Working Conference
on Reverse Engineering. IEEE, 2009, pp. 75–84.

[29] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study
of the impact of antipatterns on class change-and fault-proneness,” Empirical
Software Engineering, vol. 17, no. 3, pp. 243–275, 2012.

[30] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[31] T. Lam, N. Hauser, A. Götz, P. Hathaway, F. Franceschini, H. Rayner, and L. Zhang,
“Gumtree—an integrated scientific experiment environment,” Physica B: Con-
densed Matter, vol. 385, pp. 1330–1332, 2006.

[32] J. R. Landis, A general methodology for the measurement of observer agreement
when the data are categorical, 1975.

[33] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented systems.
Springer Science & Business Media, 2007.

[34] W. Li and R. Shatnawi, “An empirical study of the bad smells and class error prob-
ability in the post-release object-oriented system evolution,” Journal of systems
and software, vol. 80, no. 7, pp. 1120–1128, 2007.

[35] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the impact of bad smells
using historical information,” in Ninth international workshop on Principles of
software evolution: in conjunction with the 6th ESEC/FSE joint meeting, 2007, pp.
31–34.

[36] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for
the specification and detection of code and design smells,” IEEE Transactions on
Software Engineering, vol. 36, no. 1, pp. 20–36, 2009.

[37] M. J. Munro, “Product metrics for automatic identification of" bad smell" de-
sign problems in java source-code,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 15–15.

[38] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton, “Graph-
based mining of in-the-wild, fine-grained, semantic code change patterns,” in 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 819–830.

[39] D. Rapu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history information
to improve design flaws detection,” in Eighth European Conference on Software
Maintenance and Reengineering, 2004. CSMR 2004. Proceedings. IEEE, 2004, pp.
223–232.

[40] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection as a bilevel
problem,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 1, pp. 1–44, 2014.

[41] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.

11

https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.wonderflow.ai/blog/20-natural-language-processing-examples-for-businesses
https://www.wonderflow.ai/blog/20-natural-language-processing-examples-for-businesses
https://docs.aws.amazon.com/machine-learning/latest/dg/the-machine-learning-process.html
https://docs.aws.amazon.com/machine-learning/latest/dg/the-machine-learning-process.html
https://techcrunch.com/2021/01/11/mobileye-is-bringing-its-autonomous-vehicle-test-fleets-to-at-least-four //-more-cities-in-2021/
https://techcrunch.com/2021/01/11/mobileye-is-bringing-its-autonomous-vehicle-test-fleets-to-at-least-four //-more-cities-in-2021/
https://github.com/NifTK/NiftyNet
https://github.com/ishepard/pydriller
https://github.com/JetBrains-Research/code-change-miner
https://info.algorithmia.com/ml-challenges-ebook
https://info.algorithmia.com/ml-challenges-ebook
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

[42] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, J.-F. Crespo, and D. Dennison, “Hidden technical debt in machine
learning systems,” in Advances in neural information processing systems, 2015, pp.
2503–2511.

[43] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå, “Quantifying
the effect of code smells on maintenance effort,” IEEE Transactions on Software
Engineering, vol. 39, no. 8, pp. 1144–1156, 2012.

[44] I. Sommerville and R. Thomson, “An approach to the support of software evolu-
tion,” The Computer Journal, vol. 32, no. 5, pp. 386–398, 1989.

[45] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “An empirical
comparison of model validation techniques for defect prediction models,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 1–18, 2016.

[46] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 403–414.

[47] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning change
software development practices?” IEEE Transactions on Software Engineering,
2019.

[48] A. Yamashita and M. Leon, “Exploring the impact of inter-smell relations on soft-
ware maintainability: An empirical study,” in 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 682–691.

[49] A. Yamashita and L. Moonen, “Do code smells reflect important maintainability
aspects?” in 2012 28th IEEE international conference on software maintenance
(ICSM). IEEE, 2012, pp. 306–315.

12

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Code Mining
	3.2 Survey

	4 Results
	4.1 Maintenance Related Modifications in Deep Learning
	4.2 Code smells in Deep Learning System
	4.3 Prevalence of Python Smells
	4.4 Code Smells Validation

	5 Discussion and Implications
	5.1 Mitigation Strategies
	5.2 Probable root causes
	5.3 Implication

	6 Threats to Validity
	7 Conclusions and future work
	References

