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A B S T R A C T

Context: The development of systems that handle configuration options according to a specific environment
is considered a hard activity. These kind of systems, Highly-Configurable Systems (HCS) are perceived by
researchers and developers as complex and difficult to maintain due to the necessity of handling variation
points. Although this perception is reported in the literature, no prior study investigated the differences
between HCS and Single Systems (SS).
Objective: This study investigated similarities and differences between HCS and SS using well known metrics
from the literature according to three different perspectives: product perspective (bug-proneness, complexity,
and change size); process perspective (number of contributors, number of core developers, and accidental
contributors); and people perspective (contributor retention and number of paid contributors).
Method: To perform this comparison, we collected data from two surveys and from a mining study (within
15,769 releases of 124 GitHub projects written in C).
Results: In general, we identified that for the majority of the metrics, the perception of practitioners and
researchers about HCS and SS is different from our mining results.
Conclusion: The identification of similarities and differences of HCS and SS will help to initiate a discussion
and further research in this direction.
. Introduction

Modern software systems allow developers to configure the system
ccording to a particular market niche [1]. Among many techniques,
ne way of doing so is through handling the variability in configuration
sing features [2], to handle the needs of a particular user. These
ind of systems are referred to Highly-Configurable Systems (HCS) [3],
llowing a large amount of variability configurations according to the
ser’s needs and encompass large sets of features. Systems that do not
llow any kind of variability configuration, or allow a small amount of
ariability configuration are referred to as Single Systems (SS).

The ability to accommodate a large number of configurations re-
uires additional implementations known as variation points, i.e., el-
ments in code, to manage variability and to facilitate the derivation
f different configurations [4]. Due to the presence of variation points
n HCS, researchers and developers alike perceive that HCS is more
omplex and challenging to maintain [5–7]. Such perception is high-
ighted in the following examples collected from literature: ‘‘bug-finding

∗ Corresponding author.
E-mail address: raphael.oliveira@academico.ufs.br (R.P. de Oliveira).

is a time-consuming and tedious task in the presence of variability’’ [5];
‘‘variability specifications and realizations tend to erode in the sense that
they become overly complex’’ [6].

However, there are numerous examples of long-held beliefs that
proved to be incorrect or outdated when actual evidence was collected
through empirical analysis [8,9]. Given that, and the prominence of
HCS, it is well past time for investigating the difference between HCS
and SS to answer questions, such as:

• RQ1. Are HCS more bug-prone than SS?
• RQ2. Is code complexity in HCS higher than SS?
• RQ3. Is code change size in SS bigger than in HCS?
• RQ4. Is the number of core developers in SS bigger than in HCS?
• RQ5. Is the number of code contributors in HCS bigger than in

SS?
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• RQ6. Is the number of accidental contributors in SS bigger than
in HCS?

• RQ7. Is the developer retention higher in HCS than in SS?
• RQ8. Is there more paid contributors in SS than in HCS?

Identifying the similarities and differences between HCS and SS will
elp to initiate a discussion and further research. Observing a similarity
f both types of systems would help us transfer insights, methods,
nd tools that have been proven useful for SS to HCS and were not
onsidered for transfer due to the perceived differences. On the other
and, identifying differences would help us to design new techniques
ddressing the difference.

The overarching goal of this work is to cover the gap in research
y understanding the similarities and differences between HCS and
S using well known metrics collected from literature pertaining to
hree different dimensions: the product, the process and, the people.

According to Majumber et al. [10], product perspective is related to
the product itself (code), process perspective is related to the software
development process characteristics and, people perspective is related
to resources required within the software development. We investigate
bug-proneness, complexity, and change size which are relevant to the
product dimension. Next, we explored process related factors, such as
number of contributors, number of core developers and accidental con-
tributors. Finally, we investigate the people perspective by analyzing
contributor retention and number of paid contributors.

We started by inviting 100 practitioners and 100 researchers to par-
ticipate in our formative survey. In our survey, we asked respondents to
provide their opinion regarding differences between HCS and SS along
the three different perspectives (product, process, and people). Based
on their responses, we identified 8 metrics that participants anticipated
to have difference between HCS and SS.

Next, we conducted a mining software repository study based on
15,769 releases of 124 GitHub projects (written in C). These projects
were selected based on a list provided by Medeiros et al. [11], and
based on the GitHub Stars [12]. All of the projects were classified
into HCS or SS according to the number of #ifdef directives. These
directives allow to deal with conditional compilation in C, which
enable the programmer to include or exclude parts of the code base
by providing a corresponding configuration [13].

We collected information regarding the 8 metrics identified through
the formative survey for each one of the 15,769 releases. Moreover,
we investigated the differences in order to find statistical significant
results. Finally, we conducted a large-scale survey where we surveyed
45 practitioners and 50 researchers and asked them about their opinion
regarding differences between HCS and SS in terms of the 8 metrics. We
compare and contrast our findings identified through the large-scale
survey and mining to show how belief and evidence differs when it
comes to differentiate between HCS and SS.

Overall, the paper makes the following contributions:

• We report on the first large-scale analysis of similarities and dif-
ferences between HCS and SS using 8 metrics across 124 different
applications spanning over 15,769 releases.

• We present the findings of a survey involving 45 software practi-
tioners and 50 researchers from 24 countries across 5 continents,
which shed light on how practitioners and researchers perceive
the similarities and differences between HCS and SS.

• We highlight the differences between the belief and actual evi-
dence pertaining to the similarities and differences of HCS and
SS.

• Based on our results, we outline implications for developers and
researchers.

The remainder of the paper is structured as follows. Section 2
rovides an overview of related work. Section 3 discusses our method-
logy, with Section 4 presenting our findings. Section 5 places our
2

results in the broader context of work to date and outlines the im-
plications for developers and researchers. Section 6 details threats
to validity. Finally, Section 7 concludes with a summary of the key
findings and an outlook at our future work.

2. Related work

The implementation of variability within HCS is mostly imple-
mented using #ifdef directives in C language. Medeiros et al. [11]
studied the #ifdef directives in C. Thus, they propose a catalog of
refactorings to cope with #ifdef’s. To validate their catalog, they
selected 63 HCS written in C from the GitHub repository. #ifdef’s
directives allow to deal with conditional compilation and they handle
variability according to the HCS definition. However, according to
authors, these directives may have a negative impact on code under-
standing and maintainability.

Mining HCS repositories was the focus of several work. Lotufo
et al. [14] and Israeli and Feitelson [15] were the first ones to analyze
the evolution of the Linux kernel. Lotufo et al. [14] investigated the
evolution of the Linux kernel feature model between revisions 12
and 32, a period extending over almost 5 years. They analyzed the
model size, depth of leaves, constraints, and branching factor for each
revision and identified six categories of reasons for changes in the Linux
model. Israeli and Feitelson [15] investigated 810 versions of the Linux
kernel, released over a period of 14 years, to characterize its evolution
using Lehman’s laws of software evolution [16]. Passos et al. [17]
identified four evolution patterns in commits found in the Linux kernel
repository. Next, they extended this work [18] inspecting over 500
commits relative to the addition and removal of features, spanning four
years of Linux kernel development. The new catalog included 13 high-
level evolution patterns capturing the coevolution of the Linux kernel
variability model, Makefiles, and C source code. The work was later
extended [19] improving the dataset and pattern identification process
and identifying new evolution patterns. Passos et al. [20] analyzed the
source code to understand feature scattering during eight years of the
Linux kernel evolution and extended it with interviews and a survey
with developers [21].

Different aspects of SS have been extensively researched by many re-
searchers [22–25]. We were motivated to investigate product, process,
and people following other works in SS, such as [10,26]. Majumder
et al. [10] identified hero developers by mining data from more than
1100 GitHub projects. They grouped the analysis into 3 perspectives:
product, process, and personnel. Product was represented by metrics
related to code, process was related to software development metrics,
and personnel metrics related to resource needed in the software de-
velopment. Rahman et al. [26] analyzed the applicability and efficacy
of software process and code metrics according to several perspectives.

In spite of decades of research, to the best of our knowledge, no
prior work has analyzed the differences between HCS and SS. This
paper aims to fill that gap by conducting the first study that provides
empirical evidence regarding the differences between HCS and SS using
a mixed-method approach combining mining of software repositories
and surveys.

3. Methodology

Our study consisted of two parts: surveys and mining study of
software repositories. The goal of the first survey was to get insights
into how practitioners and researchers perceive the differences between
HCS and SS along three different perspectives (product, process, and
people). We then checked these perceptions with empirical evidence
gathered from HCS and SS open-source projects followed by another
round of survey of a larger sample size of practitioners and researchers

for triangulating the findings.



Information and Software Technology 152 (2022) 107035R.P. de Oliveira et al.

s
t
t
a
(

t
a

c
m
d
o
a
c
r
a

P
q
t
i
q
s
u
e
m
t
t
r

r
p
t
p
t
i
c
p
A
c
t
1

t
i
t
m

1
d

v
t
a
p
c
w
p

3

u
a
i
p
o
t
p
w
f
p
A
a
p
i
o
#
m
b
e
p
o
e
2
p
o
H
p
S
T
m

3.1. Survey

Protocol.We used the similar protocol for both surveys. For the first
urvey, we created a 5-min survey where three questions were asked
o collect developers and researchers opinion regarding differences be-
ween HCS and SS along three different perspectives (product, process,
nd people). Based on the Majumder et al. [10] work, we defined three
yes or no) questions:

• Is there any difference between HCS and SS related to product
metrics (bug-proneness, complexity, and change size)?

• Is there any difference between HCS and SS related to process
metrics (number of contributors, number of core developers, and
accidental contributors)?

• Is there any difference between HCS and SS related to people
metrics (contributor retention and number of paid contributors)?

Based on the responses of the first survey, we confirmed 8 metrics
hat participants anticipated to have difference between HCS and SS
long the product, process, and people perspectives.

For the second survey,1 we created a 10-min survey designed to
ompare and contrast our findings identified through a large-scale
ining to show how belief and evidence differs when it comes to
ifferentiate between HCS and SS. The second survey was composed
f 8 closed questions on a 5-point Likert scale, from Strongly Dis-
gree to Strongly Agree and short free-form text for any additional
omment. The survey also collected demographic information from
espondents. For the design of the surveys, we followed the Kitchenham
nd Pfleeger’s guidelines for personal opinion surveys [27].

We piloted both surveys with three researchers (2 Ph.D.s and 1
h.D. student) with experience in the area to get feedback on the
uestions and their corresponding answers, difficulties faced to answer
he survey and time to finish it. As these pilot respondents were experts
n the area, we also would like to know if we were asking the right
uestions. We conducted several iterations of the survey and rephrased
ome questions and removed others to make the survey easier to
nderstand and answer. Another concern in this stage was also to
nsure that the participants could finish the surveys in 5-min and 10-
in respectively. The responses from the pilot survey were used solely

o improve the questions and these responses were not included in
he final results. We kept the survey anonymous but in the end the
espondents could inform their email to receive a summary of the study.
Respondents. We followed a two step approach to recruit survey

espondents: first, we identified the average of commits per open source
rojects (HCS and SS) selected for the study (Section 3.2) and contacted
he contributors that had more commits than this average. It was im-
ortant to not select accidental contributors with few contributions in
he project whose participation in the study could not bring any benefit
n terms of experience and perceptions. In total, we selected 769 emails
ontacts from contributors. Next, we invited researchers who published
apers from 2014–2020 in important conferences (ICSE, FSE/ESEC,
SE, SPLC) and journals (IEEE TSE, ACM TOSEM, EMSE). Regarding
onferences, research and industry/practice tracks were considered. All
he authors of the selected papers were contacted. In total, we selected
95 papers and 489 emails contacts excluding the duplicated ones.

Contact all potential respondents within a survey is a difficult
ask [28]. Moreover, selecting potential respondents may raise eth-
cal concerns, such as contacting developers on GitHub [29] using
heir email addresses, which were not there for this purpose. Thus, to
itigate this threat, we did not selected all the potential respondents.

Of the 769 email contacts from contributors, we randomly selected
00 emails and out of 489 email contacts from researchers, we ran-
omly selected 100 emails. We sent out our initial survey invitations

1 https://github.com/raphaufs/hcsSS/.
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to these 200 respondents. Out of which 54 responded and all emails
were successfully delivered. This resulted in a 27% response rate.

For the second survey, we sent invitations to all 1258 contacts. Of
the 1258 invitations, 176 of these were not successfully delivered and
we received 27 automatic reply notifying the respondent’s absence. One
author replied saying that he worked in the study as a statistician expert
and he did not have background to answer the survey. In total, 1054
invites were delivered and we received 108 responses (10.2% response
rate) which we considered satisfactory, since other important studies in
the field had reported response rates between 5.7% [21] and 7.9% [11].

From the responses of the second survey, we disqualified 13 re-
sponses without actual data (without responses to any of the survey
questions of interest to the study despite responding to basic demo-
graphics questions, such as role of the respondent), leading to 95
valid responses that were considered. The respondents spread out in
24 countries across 5 continents. The top three countries where the
respondents come from are Germany, Brazil, and United States. The
professional experience of these 95 respondents vary from 1 years to
40 years, with an average of 14.93 years and median of 12 years. 17.9%
of the respondents have a Bachelor’s degree, 77.9% have an advanced
degree, i.e., Master’s or Ph.D., and the other ones have graduated high
school, trade/technical school, associate degree, and no degree (1%
each). 45 respondents are practitioners and 50 researchers.

Data Analysis. We collected the ratings that our respondents pro-
ided for each question for the second survey. Next, we used for ratings
he Likert scores from 1 (Strongly Disagree) to 5 (Strongly Agree)
nd computed the average Likert score of each statement related to
roduct, process, and people perspectives. In addition, we extracted
omments that the survey respondents gave to explain the reason
hy they strongly disagree/disagree or agree/strongly agree with each
erspective (Table 1).

.2. Repository mining

Selecting and filtering projects. We started with 63 HCS projects
sed by Medeiros et al. [11] in their study, which, according to the
uthors, were selected based on: 40 projects used in previous stud-
es [39–44], covering different sizes; and 23 most active projects using
reprocessor directives in Github (a project was considered active based
n its higher number of pull requests opened and closed). Out of
hese 63 projects, we excluded projects with less than 2 releases or
rojects without GitHub. Since our analysis is based on GitHub data,
e kept only projects that have GitHub. Thus, we selected 44 projects

rom Medeiros et al. [11]. Moreover, we select the top 900 GitHub
rojects (written in C) based on the stars that the project has at GitHub.
ccording to Valente et al. [12], the number of stars that a project has
t GitHub is useful to measure its popularity. Thus, we selected only
rojects with more than 1000 stars. From these 900 GitHub projects, we
dentified HCS and SS candidates. The HCS projects were selected based
n: the number of releases must be greater or equal to 2; the number of
ifdef directives must be greater than 5; the year of the last commit
ust be greater or equal to 2021; the project documentation should

e written in English; and the project should not be in the Medeiros
t al. [11] list. At this point we identified 484 HCS Projects. The SS
rojects were selected based on: the number of releases must be greater
r equal to 2; the number of #ifdef directives must be smaller or
qual to 5; the year of the last commit must be greater or equal to
021; the project documentation should be written in English; and the
roject should not be a tutorial. Thus, we identified 92 SS Projects. In
rder to have the same amount of HCS projects, we selected all the 44
CS projects from Medeiros et al. [11] and selected the top 48 HCS
rojects (from the 484 HCS identified). With 92 HCS projects and 92
S projects, we started to collect data for each one of the metrics from
able 1. However, some projects did not have available some of the
etrics. Bug-proneness and complexity were not available for some
S projects. Thus, we excluded these projects and ended up with 62

https://github.com/raphaufs/hcsSS/
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Table 1
Metrics used in the analysis.

Perspective Metric Definition Ref.

Product
Bug-Proneness Number of bug-fix commits divided by total number of commits [30]
Code complexity Cyclomatic complexity of code [31,32]
Change size Number of modifications in a commit (insertions and deletions) [33]

Process
Number of core developers Number of GitHub developers doing most of the work in a project [34]
Number of code contributors Number of GitHub contributors in a project [35]
Number of accidental contributors Number of GitHub contributors with one contribution in a project [36]

People Developer retention Number of contributors working longer in a project [37]
Paid contributors Number of paid contributors [38]
Fig. 1. Selecting and filtering projects for mining.

SS projects. The same happened for HCS projects when we started to
collect data. Bug-proneness and change size were not available for some
HCS projects. We removed these projects resulting in 70 HCS projects.
In order to have the same amount of SS projects, we selected the top
62 HCS projects. This whole process is shown in Fig. 1. The final list
of projects is presented in Table 2 for HCS projects and in Table 3
for SS projects. Next, we present how each metric was identified and
measured for the repository mining process. All the scripts created for
collecting the metrics are available on-line.2

Measuring Bug-Proneness. The Bug-Proneness metric was mea-
sured using a python script which identifies the bug-fixing commits
within a GitHub Project. It considers the active files in the repository
and counts the number of bug-fix commits based on the presence of
specific keywords in the commit message. We adopt a method similar
to that used in previous studies [45–49] to identify the commits.
Keywords like fix, defect, error, bug, issue, mistake, incorrect, fault, and
flaw and their variations were considered by the python script. Bug-
Proneness metric is calculated by dividing the total number of bug-fix
commits by total number of commits. Thus, a bug-proneness close to
one indicates a higher number of problems within the project. A bug-
proneness equal to zero indicates no problem at all. Tables 2 and 3
show the average of bug commits for all the identified releases in HCS
and SS projects, respectively.

Measuring Code Complexity. Code Complexity in this paper refers
to the McCabe Cyclomatic Complexity [31,32]. Code Complexity metric

2 https://github.com/raphaufs/hcsSS/.
4

was evaluated using the KernelHaven3 tool for HCS and the Understand
tool4 for SS. KernelHaven tool calculates the cyclomatic complexity
including the complexity within variation points for HCS projects. On
the other hand, for SS the Understand tool allowed to obtain the
McCabe Cyclomatic Complexity. A project cyclomatic complexity is
considerable bad if its value is higher than 4 [50]. Tables 2 and 3 show
the complexity average for all the identified releases within the HCS
and SS projects, respectively.

Measuring Change size. To identify the Change Size metric, we
used a python script to collect, for each release, the number of inser-
tions and deletions within the code. The total number of modifications
(insertions plus deletions) within a source code represents this metric.
This metric was statistically normalized to adjust the different scales
found. Thus, if the value of this metric is close to one, it means a higher
number of modifications. If it is close to zero, it represents a low level
of modifications. Tables 2 and 3 show the Change Size average for all
the identified releases in HCS and SS projects, respectively.

Measuring Number of Core Developers. To calculate the number
of core developers we created a python script. We used the number of
commits in the code base as a criterion to decide if a developer is core
or non-core member in the project [34,51]. Open source contribution
follows a power law, where 20% of contributors are responsible for
80% of the contributions [34]. We follow the same rule to identify the
core and non-core developers. We consider a developer as core if the
developer is in the top 20% of developers in that project (calculated by
the number of commits authored). Otherwise the developer is non-core.
The higher the value obtained for this metric the higher is the number
of developers within these 20%. Tables 2 and 3 show the Number of
Core Developers average for all the identified releases within the HCS
and SS projects, respectively.

Measuring Number of Code Contributors. To count the number of
code contributors we built a python script to access all contributors that
had one or more commits per release for each project and summed the
total number of contributors that had one or more commits per release.
Tables 2 and 3 show the average Number of Code Contributors for all
the identified releases in HCS and SS projects, respectively.

Measuring Number of Accidental Contributors. We also built
a python script to collect accidental contributors. We consider an
Accidental Contributor, a developer who has only one contribution
(commit) in a release [36]. Tables 2 and 3 display the average of
Accidental Contributors for all the identified releases within HCS and
SS projects, respectively.

Measuring Developer retention. To identify the developer reten-
tion, we created a python script. A developer retention is defined as
a developer that has a commit within the last 180 days and had at
least one commit before these 180 days. The choice of the threshold
is motivated by previous studies [37,52]. Tables 2 and 3 show the
average of Developer Retention for all the identified releases in HCS
and SS projects, respectively.

Measuring Paid Contributor. We also created a python script to
collect paid contributors. We used the email address to identify if a

3 https://github.com/KernelHaven/KernelHaven.
4 https://scitools.com/.

https://github.com/raphaufs/hcsSS/
https://github.com/KernelHaven/KernelHaven
https://scitools.com/
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Table 2
Summary of analyzed data for the 62 HCS projects.

Highly-Configurable systems

# Project GitHub Rela Bugb Complc CSized CDeve CContf AContg DReth PConti

1 akimd/bison https://github.com/akimd/bison 132 0.15 4.70 0.03323 1.3409 37.31 0.00 1.00 0.05948
2 alliedmodders/amxmodx https://github.com/alliedmodders/amxmodx 27 0.23 5.42 0.07857 1.3704 9.96 0.00 3.00 0.02602
3 allinurl/goaccess https://github.com/allinurl/goaccess 40 0.03 3.73 0.00633 1.1250 62.00 0.00 4.00 0.11524
4 angband/angband https://github.com/angband/angband 550 0.14 0.07 0.09468 0.0291 0.20 0.01 0.38 0.01859
5 arut/nginx-rtmp-module https://github.com/arut/nginx-rtmp-module 660 0.04 6.77 0.01353 0.1712 0.76 0.00 1.00 0.01859
6 asfadmin/ASF/MapReady https://github.com/asfadmin/ASF/MapReady 15 0.18 5.74 0.05959 1.2000 29.73 0.00 1.00 0.06134
7 balabit/syslog-ng https://github.com/balabit/syslog-ng 110 0.22 0.40 0.06340 0.2182 1.18 0.37 2.51 0.04275
8 bilibili/ijkplayer https://github.com/bilibili/ijkplayer 79 0.10 2.93 0.01947 1.0759 33.01 0.00 4.00 0.01859
9 cherokee/webserver https://github.com/cherokee/webserver 19 0.11 4.37 0.05189 0.9474 16.95 0.00 2.00 0.04833
10 Cisco-Talos/clamav-devel https://github.com/Cisco-Talos/clamav-devel 148 0.19 1.14 0.56894 0.4122 1.17 0.01 1.26 0.01115
11 ClusterLabs/pacemaker https://github.com/ClusterLabs/pacemaker 137 0.09 5.53 0.24288 1.1022 99.77 0.00 11.00 0.23606
12 collectd/collectd https://github.com/collectd/collectd 162 0.11 5.21 0.06123 1.2593 135.78 0.00 4.00 0.52230
13 curl/curl https://github.com/curl/curl 199 0.20 1.45 0.11370 0.2663 0.65 0.05 1.33 0.00929
14 emscripten-core/emscripten https://github.com/emscripten-core/emscripten 397 0.15 0.58 0.57188 0.0000 18.01 3.96 46.06 0.14870
15 FFmpeg/FFmpeg https://github.com/FFmpeg/FFmpeg 349 0.18 0.13 0.37779 0.0029 11.43 3.37 11.23 0.75465
16 freedesktop/xorg-xserver https://github.com/freedesktop/xorg-xserver 488 0.11 0.82 0.16184 0.2398 0.72 0.18 0.90 0.01115
17 FreeRADIUS/freeradius-server https://github.com/FreeRADIUS/freeradius-server 105 0.15 6.33 0.14075 1.5048 74.93 0.00 4.00 0.18216
18 gentilkiwi/mimikatz https://github.com/gentilkiwi/mimikatz 12 0.10 5.11 0.00018 0.9167 5.50 0.00 3.00 0.00558
19 Genymobile/scrcpy https://github.com/Genymobile/scrcpy 27 0.16 2.90 0.00838 1.5926 40.96 29.19 3.00 0.01301
20 git/git https://github.com/git/git 827 0.23 5.06 0.25504 1.0834 952.23 3.34 1.00 0.14126
21 gitGNU/gnu/bash https://github.com/gitGNU/gnu/bash 27 0.00 4.46 0.33907 1.0741 2.33 0.00 1.00 0.00558
22 glennrp/libpng https://github.com/glennrp/libpng 1616 0.02 5.21 0.03466 1.0223 7.19 0.00 4.00 0.02974
23 GNOME/gnumeric https://github.com/GNOME/gnumeric 274 0.24 3.69 0.76856 0.3029 310.55 0.00 6.00 0.53160
24 GNOME/libsoup https://github.com/GNOME/libsoup 309 0.37 0.56 0.02598 0.6181 2.13 0.79 2.80 0.04833
25 GNOME/libxml2 https://github.com/GNOME/libxml2 193 0.48 6.23 0.21681 0.9948 102.84 0.00 1.00 0.10595
26 GNOME/totem https://github.com/GNOME/totem 252 0.29 2.83 0.11246 1.0079 382.05 0.00 7.00 0.73606
27 gnuplot/gnuplot https://github.com/gnuplot/gnuplot 53 0.08 6.24 0.05798 1.4528 127.85 0.00 2.00 0.03160
28 hashcat/hashcat https://github.com/hashcat/hashcat 27 0.11 6.49 0.36284 1.8519 61.48 0.00 10.00 0.12825
29 hexchat/hexchat https://github.com/hexchat/hexchat 23 0.13 3.65 0.10603 1.6087 90.57 0.00 2.00 0.07993
30 iovisor/bcc https://github.com/iovisor/bcc 34 0.19 3.89 0.10939 0.5294 245.68 0.00 7.00 0.22862
31 irssi/irssi https://github.com/irssi/irssi 72 0.14 1.57 0.02555 0.3750 1.81 0.39 1.88 0.00372
32 jarun/nnn https://github.com/jarun/nnn 36 0.03 1.34 0.00190 1.3056 66.58 0.00 6.00 0.06320
33 krb5/krb5 https://github.com/krb5/krb5 302 0.15 0.13 0.16274 0.0298 0.31 0.03 0.32 0.02602
34 libuv/libuv https://github.com/libuv/libuv 231 0.24 4.12 0.04523 0.0000 31.36 14.15 57.04 0.11152
35 MapServer/MapServer https://github.com/MapServer/MapServer 188 0.12 7.44 0.11736 0.9521 43.33 0.00 6.00 0.14684
36 memcached/memcached https://github.com/memcached/memcached 104 0.27 4.63 0.01552 1.1538 136.42 0.00 1.00 0.08922
37 micropython/micropython https://github.com/micropython/micropython 52 0.19 3.09 0.20307 1.9615 147.48 0.00 5.00 0.09108
38 mirror/busybox https://github.com/mirror/busybox 156 0.22 6.12 0.10574 1.4936 109.86 0.00 2.00 0.05019
39 mpv-player/mpv https://github.com/mpv-player/mpv 81 0.20 3.02 0.06684 0.0000 98.26 30.36 813.38 0.14126
40 netdata/netdata https://github.com/netdata/netdata 58 0.51 1.00 0.05698 0.0690 0.31 2.53 11.59 0.07807
41 nginx/nginx https://github.com/nginx/nginx 548 0.27 0.00 0.02844 1.0328 14.34 0.00 9.00 0.10409
42 obsproject/obs-studio https://github.com/obsproject/obs-studio 159 0.19 1.25 0.08610 0.0000 26.01 14.57 50.85 0.11152
43 OpenSC/OpenSC https://github.com/OpenSC/OpenSC 39 0.28 0.98 0.03493 1.6923 6.41 0.92 9.33 0.02788
44 openssl/openssl https://github.com/openssl/openssl 339 0.16 0.49 0.25062 0.3304 0.71 0.01 0.92 0.01859
45 opentx/opentx https://github.com/opentx/opentx 132 0.20 1.36 0.21161 2.2424 11.96 1.83 22.35 0.02230
46 OpenVPN/openvpn https://github.com/OpenVPN/openvpn 73 0.24 0.97 0.05107 0.2055 0.21 0.00 0.21 0.00186
47 openwrt/openwrt https://github.com/openwrt/openwrt 43 0.19 3.79 0.49328 0.8140 606.21 0.00 26.00 0.12825
48 ossec/ossec-hids https://github.com/ossec/ossec-hids 44 0.33 0.96 0.05833 0.1136 0.25 0.11 0.57 0.00000
49 php/php-src https://github.com/php/php-src 1179 0.22 6.66 1.00000 0.0611 546.50 0.00 61.00 1.00000
50 qmk/qmk/firmware https://github.com/qmk/qmk/firmware 1457 0.28 3.07 0.72270 0.0096 1389.33 0.00 9.00 0.40706
51 radareorg/radare2 https://github.com/radareorg/radare2 101 0.21 5.53 0.29210 1.0297 622.98 0.00 10.00 0.10781
52 redis/redis https://github.com/redis/redis 266 0.17 4.12 0.08450 1.2218 183.14 115.52 4.00 0.35130
53 robertdavidgraham/masscan https://github.com/robertdavidgraham/masscan 12 0.15 5.33 0.01243 1.6667 23.42 0.00 3.00 0.04833
54 robol/MPSolve https://github.com/robol/MPSolve 11 0.28 3.46 0.01468 0.6364 5.45 2.55 7.64 0.01859
55 sleuthkit/sleuthkit https://github.com/sleuthkit/sleuthkit 48 0.26 1.83 0.17065 0.2083 0.21 0.00 0.21 0.00186
56 sqlite/sqlite https://github.com/sqlite/sqlite 137 0.15 4.27 0.18190 1.0146 29.94 0.00 4.00 0.06691
57 TauLabs/TauLabs https://github.com/TauLabs/TauLabs 10 0.11 3.01 0.40632 0.9000 160.30 0.00 2.00 0.22305
58 timescale/timescaledb https://github.com/timescale/timescaledb 87 0.24 2.58 0.06926 0.4138 53.39 0.00 8.00 0.05204
59 tmux/tmux https://github.com/tmux/tmux 34 0.12 5.09 0.00704 1.3235 24.82 0.00 6.00 0.08550
60 unbit/uwsgi https://github.com/unbit/uwsgi 123 0.26 6.00 0.02965 0.7967 116.54 0.00 3.00 0.29740
61 ventoy/Ventoy https://github.com/ventoy/Ventoy 69 0.06 5.29 0.01656 1.1884 27.70 0.00 2.00 0.00186
62 wiredtiger/wiredtiger https://github.com/wiredtiger/wiredtiger 479 0.17 0.59 0.07850 0.2171 1.36 0.27 1.92 0.02974

HCS Totals 13,961 0.18 3.43 0.00785 0.5510 286.66 3.30 16.48 0.13350

aTotal # of Releases.
bBug-Proneness Average.
cCode Complexity Average.
dChange Size Average.
eCore Developers Average.
fCode Contributors Average.
gAccidental Contributors Average.
hNo. of Developer Retention.
iPaid Contributors Average.
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Table 3
Summary of analyzed data for the 62 SS projects.

Single systems

# Project GitHub Rela Bugb Complc CSized CDeve CContf AContg DReth PConti

1 adafruit/Adafruit-GFX-Library https://github.com/adafruit/Adafruit-GFX-Library 81 0.12 12.92 0.04514 1.3580 35.60 0.00 2.00 0.14595
2 altdesktop/playerctl https://github.com/altdesktop/playerctl 18 0.24 3.93 0.00541 1.0000 10.72 0.00 2.00 0.07568
3 AltraMayor/f3 https://github.com/AltraMayor/f3 17 0.53 2.98 0.00272 0.9412 6.06 0.00 2.00 0.07027
4 ardagnir/athame https://github.com/ardagnir/athame 14 0.20 8.12 0.13233 1.0000 6.14 0.00 1.00 0.00541
5 atc1441/ATC/MiThermometer https://github.com/atc1441/ATC/MiThermometer 51 0.01 2.72 0.00228 0.9804 16.67 0.00 0.00 0.03243
6 basil00/Divert https://github.com/basil00/Divert 20 0.29 8.90 0.01613 0.9500 2.80 0.00 2.00 0.01081
7 benhoyt/inih https://github.com/benhoyt/inih 25 0.25 2.83 0.00038 1.6800 12.88 0.00 1.00 0.01081
8 billziss-gh/sshfs-win https://github.com/billziss-gh/sshfs-win 46 0.01 4.73 0.00046 0.1957 0.76 0.22 3.00 0.01081
9 billziss-gh/winfsp https://github.com/billziss-gh/winfsp 61 0.07 4.15 0.08273 0.9836 9.00 1.77 2.00 0.05946
10 canonical/dqlite https://github.com/canonical/dqlite 35 0.04 2.39 0.02911 0.9714 9.57 6.51 3.00 0.04324
11 citusdata/cstore/fdw https://github.com/citusdata/cstore/fdw 14 0.15 2.96 0.00202 1.5000 10.43 0.00 2.00 0.05405
12 citusdata/pg/cron https://github.com/citusdata/pg/cron 14 0.15 4.23 0.00215 1.8571 9.43 0.00 4.00 0.06486
13 danielfrg/word2vec https://github.com/danielfrg/word2vec 11 0.00 12.27 0.02616 2.0000 15.73 9.55 1.00 0.03784
14 datatheorem/TrustKit https://github.com/datatheorem/TrustKit 30 0.05 2.82 0.04061 1.4333 18.23 0.00 1.00 0.14054
15 eclipse/mosquitto https://github.com/eclipse/mosquitto 63 0.16 5.20 0.05736 1.0000 69.59 40.11 4.00 0.15676
16 eradman/entr https://github.com/eradman/entr 43 0.05 3.04 0.00157 1.2093 5.12 0.00 1.00 0.02162
17 ExistentialAudio/BlackHole https://github.com/ExistentialAudio/BlackHole 11 0.03 7.65 0.00123 1.8182 5.91 2.09 3.00 0.01081
18 F5OEO/rpitx https://github.com/F5OEO/rpitx 3 0.15 3.02 0.00412 1.3333 6.33 3.67 1.00 0.01622
19 FeralInteractive/gamemode https://github.com/FeralInteractive/gamemode 11 0.21 3.74 0.00859 1.0000 22.36 13.82 2.00 0.06486
20 gamelinux/passivedns https://github.com/gamelinux/passivedns 18 0.08 6.05 0.00300 1.0556 6.61 0.00 1.00 0.08649
21 gnif/LookingGlass https://github.com/gnif/LookingGlass 35 0.12 4.86 0.04907 1.0571 28.77 19.34 1.00 0.02162
22 google/brotli https://github.com/google/brotli 17 0.29 5.23 0.08163 1.6471 44.00 24.88 2.00 0.14054
23 haad/proxychains https://github.com/haad/proxychains 6 0.29 6.31 0.00253 1.1667 13.83 5.33 1.00 0.07568
24 HardySimpson/zlog https://github.com/HardySimpson/zlog 31 0.26 4.41 0.01832 0.9677 5.90 0.00 1.00 0.12432
25 henrypp/memreduct https://github.com/henrypp/memreduct 11 0.38 1.09 0.00756 2.1818 11.27 0.00 1.00 0.02703
26 henrypp/simplewall https://github.com/henrypp/simplewall 123 0.04 1.52 0.04404 1.4065 8.44 3.10 5.00 0.07027
27 hoytech/vmtouch https://github.com/hoytech/vmtouch 11 0.07 6.37 0.00169 1.0909 12.18 0.00 1.00 0.06486
28 icholy/ttygif https://github.com/icholy/ttygif 7 0.14 2.50 0.00062 1.8571 26.00 18.00 1.00 0.05946
29 inotify-tools/inotify-tools https://github.com/inotify-tools/inotify-tools 15 0.20 5.10 0.00794 1.3333 28.67 19.33 0.00 0.05946
30 iovisor/gobpf https://github.com/iovisor/gobpf 3 0.21 2.71 0.00026 1.0000 59.33 0.00 2.00 0.17297
31 jedisct1/minisign https://github.com/jedisct1/minisign 11 0.04 3.96 0.00177 0.9091 4.91 0.00 3.00 0.04865
32 jhawthorn/fzy https://github.com/jhawthorn/fzy 11 0.02 2.34 0.00329 0.9091 7.09 4.09 2.00 0.05405
33 jorisvink/kore https://github.com/jorisvink/kore 35 0.10 4.01 0.01175 0.9714 34.31 18.09 1.00 0.09730
34 jpmens/jo https://github.com/jpmens/jo 14 0.15 4.61 0.00329 1.0000 16.57 9.43 1.00 0.10811
35 karlstav/cava https://github.com/karlstav/cava 22 0.26 9.22 0.00565 1.9091 24.77 9.45 3.00 0.16216
36 kornelski/pngquant https://github.com/kornelski/pngquant 81 0.08 4.60 0.00722 1.6543 27.85 12.91 2.00 0.10270
37 krallin/tini https://github.com/krallin/tini 38 0.09 4.87 0.00270 0.9737 5.45 4.29 1.00 0.03784
38 leahneukirchen/nq https://github.com/leahneukirchen/nq 8 0.13 9.94 0.00017 1.0000 4.38 1.88 1.00 0.00541
39 lxc/lxc https://github.com/lxc/lxc 123 0.22 5.14 0.15005 0.4309 256.61 142.30 0.00 1.00000
40 mintty/wsltty https://github.com/mintty/wsltty 59 0.17 2.40 0.00085 1.1186 6.02 3.03 1.00 0.01622
41 muennich/sxiv https://github.com/muennich/sxiv 26 0.07 5.14 0.00474 1.1154 13.23 0.00 1.00 0.08649
42 netblue30/firejail https://github.com/netblue30/firejail 59 0.23 8.10 0.12479 0.9831 130.15 64.08 9.00 0.92973
43 philippe44/AirConnect https://github.com/philippe44/AirConnect 21 0.02 5.08 0.00339 1.9048 10.33 5.00 2.00 0.02162
44 PromyLOPh/pianobar https://github.com/PromyLOPh/pianobar 30 0.15 5.34 0.00967 2.6000 25.33 0.00 1.00 0.04865
45 rbsec/sslscan https://github.com/rbsec/sslscan 55 0.12 14.37 0.00841 1.5091 29.58 0.00 3.00 0.17838
46 RedBeardLab/rediSQL https://github.com/RedBeardLab/rediSQL 30 0.00 2.63 0.53773 1.9333 9.03 0.00 4.00 0.02162
47 stlink-org/stlink https://github.com/stlink-org/stlink 12 0.17 4.12 0.02862 0.5833 151.33 90.17 5.00 0.62703
48 swaywm/sway https://github.com/swaywm/sway 81 0.14 4.74 0.05753 0.9877 202.42 90.54 4.00 0.77297
49 Syllo/nvtop https://github.com/Syllo/nvtop 12 0.15 4.69 0.00654 1.2500 6.67 4.17 2.00 0.02162
50 symisc/sod https://github.com/symisc/sod 3 0.33 2.97 0.00180 0.6667 0.67 0.00 1.00 0.00000
51 Sysinternals/ProcDump-for-Linux https://github.com/Sysinternals/ProcDump-for-Linux 6 0.34 5.02 0.00124 1.5000 8.83 5.50 1.00 0.02703
52 taviso/ctftool https://github.com/taviso/ctftool 5 0.00 3.44 0.00016 0.8000 1.00 0.00 0.00 0.00000
53 tideways/php-xhprof-extension https://github.com/tideways/php-xhprof-extension 44 0.01 2.47 0.00968 0.9773 42.25 0.00 2.00 0.20541
54 uber/h3 https://github.com/uber/h3 29 0.12 3.40 1.00000 1.1724 24.24 8.07 1.00 0.08649
55 ultrajson/ultrajson https://github.com/ultrajson/ultrajson 19 0.27 3.95 0.30531 0.3158 61.63 34.63 2.00 0.22703
56 ValdikSS/GoodbyeDPI https://github.com/ValdikSS/GoodbyeDPI 27 0.03 5.48 0.00535 0.9630 3.67 1.81 1.00 0.01081
57 visit1985/mdp https://github.com/visit1985/mdp 24 0.14 6.47 0.00259 1.1250 21.00 14.88 1.00 0.10811
58 vozlt/nginx-module-vts https://github.com/vozlt/nginx-module-vts 20 0.39 5.30 0.02255 1.2000 3.05 0.20 2.00 0.01081
59 wg/wrk https://github.com/wg/wrk 21 0.04 4.76 0.10335 1.0000 1.00 0.05 1.00 0.00541
60 Xfennec/progress https://github.com/Xfennec/progress 19 0.07 6.24 0.00204 1.2105 14.68 7.42 2.00 0.07568
61 yaoweibin/nginx/tcp/proxy/module https://github.com/yaoweibin/nginx/tcp/proxy/module 12 0.23 19.08 0.02021 0.9167 3.17 0.00 1.00 0.03243
62 zauonlok/renderer https://github.com/zauonlok/renderer 6 0.02 2.14 0.35463 1.0000 2.00 0.00 1.00 0.00000

SS Totals 1808 0.13 5.19 0.00514 1.1571 47.62 21.49 2.22 0.11395

aTotal # of Releases.
bBug-Proneness Average.
cCode Complexity Average.
dChange Size Average.
eCore Developers Average.
fCode Contributors Average.
gAccidental Contributors Average.
hNo. of Developer Retention.
iPaid Contributors Average.
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developer is a paid contributor or not. We excluded email addresses
belonging to the following domains, such as: @gmail, @googlemail,
@local, @me.com, @instance-1, @github, @live, @hotmail, @yahoo,
@none. Finally, we manually checked all the remained mails in order to
have only company mails. The values for this metric were statistically
normalized to adjust the different scales. Thus, the closer this metric
is to one, the higher is the number of paid contributors. Otherwise,
if this metric is zero, it means that the project does not have paid
contributors. Tables 2 and 3 show the average of paid contributors for
all the identified releases within HCS and SS projects, respectively.

3.3. Statistical analysis

After collecting the data for the experiment, we used descriptive
statistics, box plots, and statistical tests to perform the analysis. As is
usual, in all the tests, we accepted a probability of 5% of committing a
Type-I Error [53], i.e., rejecting the null hypothesis when it is actually
true. The data analysis was carried out by considering the following
steps:

• Survey and Mining: We first carried out a descriptive study of the
measures for the dependent variables.

• Survey: Within the survey data, we applied the Fisher’s Test [54]
to identify significant difference between the researchers and
practitioners answers. A Fisher’s Test p-value less than 0.05 repre-
sents a significant difference between researchers and practition-
ers.

• Mining: We analyzed the characteristics of the data in order to
determine which test would be most appropriate to test our
hypotheses. For testing normality, we applied the Kolmogorov–
Smirnov Test [55]. This test is recommended to check for normal-
ity within large samples (more than 5000). Since in our analysis
we have 15,769 releases from the mining repository process, we
applied this test for normality.

• Mining: When the results of the aforementioned test
(Kolmogorov–Smirnov Test) shows a non normal distribution (p-
value less than 0.05), we applied the Wilcoxon Test [56] to
identify significant statistical difference between HCS and SS.

• Mining: Our null hypothesis states that there is no difference
between HCS and SS projects. Our alternative hypothesis states
that there is a difference between HCS and SS projects. Since
Kolmogorov–Smirnov Test shown a non normal distribution for
all variables, we applied only the Wilcoxon Test to test our
hypotheses. A Wilcoxon Test result less than 0.05 (p-value less
than 0.05) shows a significant difference between HCS and SS
projects. If p-value result is greater or equal to 0.05, it means that
there is no difference between HCS and SS projects.

• Mining: Furthermore, the statistical significance of the Wilcoxon
Test results were complemented with the magnitude of their
effects. Since our data is non-parametric we used the Cliff’s 𝛿 to
measure the effect size [57]. Its result (delta estimate) shows how
the two means differentiate from each other (small, medium, or
large difference).

4. Results

In this section, we present the results from the survey and repository
mining process grouped by each perspective. Table 4 shows a summary
of the results obtained in this study.

Each one of the statements used in the survey with practitioners and
researchers is present in the first column of Table 4. These statements
were randomly created in order to avoid bias within the survey re-
sponses and in order to find differences between HCS and SS according
to the investigated metrics. Thus, some statements are in favor of HCS
7

projects and other are in favor of SS projects. e
The second column of Table 4 presents the average Likert score and
the Fisher’s test results of the 10 statements organized by practitioners
and researchers answers. Since we used a scale of 5 points, a likert value
could be interpreted as: a value close to zero represents a disagreement
with the statement; a value of exact three is neutral; and a value
close to five represents an agreement with the statement. Moreover, a
Fisher’s Test result less than 0.05 shows a significant difference between
practitioners and researchers answers, i.e. statement No. of Accidental
contributors in SS is bigger than HCS.

The third column Table 4 shows the results of the Wilcoxon Test
and the results of the Cliff’s 𝛿 for the repository mining processes
according to each statement. A Wilcoxon Test p-value greater or equal
to 0.05 represents no statistical difference between HCS and SS projects,
i.e. statement No. of code contributors in HCS is bigger than SS. And
a Cliff’s 𝛿 value considered large, shows a large distance between the
means of HCS and SS projects, i.e. statement No. of core developers in
SS is bigger than HCS.

Finally, we compared the results from the survey with the results
from the mining process for each statement, last column of Table 4. If
the results are equals we state our finding as the Same. If the results
are different, we state our finding as the Opposite. For example, both
practitioners and researchers disagree with the statement Code change
size of SS is bigger than HCS. However, the Wilcoxon Test shows that SS
projects have more change size than HCS projects. Thus, our finding is
the Opposite.

For most of the results, we found a difference between HCS and
SS projects, except for the number of code contributors. Moreover, the
majority of our findings shown the opposite between the survey (per-
ception) and the mining (evidence) analysis, except for bug-proneness
and developer retention. Fig. 2 shows the box plots of mean values for
each metric used in this analysis.

4.1. Product

4.1.1. Bug-proneness
Survey results. Many respondents disagree or are neutral consider-
ing that the number of bugs in SS is higher than in HCS. 14, 31,
33 respondents strongly disagree, disagree, and are neutral with this
statement, respectively. The average Likert score for this statement is
2.60 (i.e., between ‘‘disagree’’ and ‘‘neutral’’). The following are some
comments that support or refute the statement:

✓‘‘An HCS fits more requirements than an SS, and thus more verification
ctivities are conducted with more diverse test scenario. As parts of the
CS are shared between many usage scenarios, they are more thoroughly
erified’’.

✗‘‘HCS have additional complexity introduced by variation points, with-
ut a systematic method to deal with variation points, more bugs are likely
o appear... As a side effect of introducing feature model based product line
ngineering they measured a significant reduction of newly introduced bugs’’.

From the previous comments, we note that participants realize the
articularities promoted by variability in HCS. However, this percep-
ion was not enough to have a high evaluation rate (agree or strongly
gree). In general, they disagree that the number of bugs in SS is higher
han HCS. We also ran the Fisher’s exact test to check the answers
rovided by practitioners and researchers and no difference between
ategories was identified (𝑝-value = 0.5982).

epository mining results. We applied Wilcoxon test to identify differ-
nces between HCS and SS bug fix commits. The results show that the
CS median (0.19) was higher than the SS median (0.10) (Wilcoxon

est, 𝑝-value 2.2e−16), although, the Cliff’s 𝛿 results presented a ‘‘small’’

ffect size (0.30).
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Table 4
Survey and repository mining analyses results.

Statement Survey Repository mining Finding
(Survey vs. Mining)

Likert scale Fisher’s test Wilcoxon test

Pract. Resear. p-value Result p-value Result Cliff’s 𝛿

No. of bugs in SS is higher than HCS 2.56 2.64 0.5982 Pract. = Resear. 2.2e−16 HCS > SS 0.30 [0.27,0.33] (small) Same
Code complexity in HCS is higher than SS 3.82 4.04 0.3417 Pract. = Resear. 2.2e−16 SS > HCS −0.21 [−0.24,−0.19] (small) Opposite
Code change size of SS is bigger than HCS 2.71 2.80 0.6042 Pract. = Resear. 2.2e−16 SS > HCS −0.19 [−0.21,−0.17] (small) Opposite
No. of core dev. in SS is bigger than HCS 2.58 2.78 0.1774 Pract. = Resear. 2.2e−16 SS > HCS −0.49 [−0.51,−0.48] (large) Opposite
No. of code contr. in HCS is bigger than SS 3.33 3.28 0.8126 Pract. = Resear. 0.3619 SS = HCS −0.01 [−0.03,−0.005] (negligible) Opposite
No. of Acci. contr. in SS is bigger than HCS 2.76 2.90 1.12e−02 Pract. <> Resear. 2.2e−16 SS > HCS −0.44 [−0.46,−0.42] (medium) Opposite
Dev. retention is higher in HCS than SS 3.11 3.34 0.3225 Pract. = Resear. 2.2e−16 HCS > SS 0.17 [0.15,0.18] (small) Same
There are more paid contr. in SS than HCS 2.91 2.92 0.7194 Pract. = Resear. 2.2e−16 SS > HCS −0.16 [−0.18,−0.14] (small) Opposite
Fig. 2. Box plots of repository mining results.
Finding. Although the survey answers do not show any significant
difference between researchers and practitioners opinions related to
number of bugs in HCS and SS, both tending to disagree with the
statement (Number of bugs in SS is higher than HCS). Moreover, the
repository mining statistical analysis presented a significant difference
between HCS and SS, where the number of bugs in HCS indeed is higher
than SS. This indicates the same results between the perception (survey)
and evidence (mining).

4.1.2. Code complexity
Survey results. Many respondents expressed that code complexity in
HCS is higher than SS. 43, 30 respondents agree and strongly agree with
this statement and the average Likert score for this is 3.94 (i.e., mostly
‘‘agree’’). The following are comments that support this statement:

✓‘‘When HCS are developed using pre-processing directives, i.e., #if and
#else, the complexity to develop, understand, maintain the source-code is
higher ’’.

✓‘‘In theory the complexity should not be higher in HCS compared
to SS: an HCS would have its feature highly decoupled making it easily
understandable and maintainable. But the reality is the those features are
often coupled and the mechanism itself that allows to make the system
configurable makes it more complex’’.

This statement seems to be like universally supported, at least
among the participants whom we surveyed. It also had the highest
value in our study. In addition, the Fisher’s exact test did not iden-
tify any difference between practitioners and researchers (𝑝-value =
0.3417).
8

Repository mining results. We applied Wilcoxon test to identify differ-
ences between HCS and SS code complexity. The results show that the
HCS median (3.73) was lower than the SS median (4.43) (Wilcoxon
test, 𝑝-value 2.2e−16). The statistical significance was confirmed by the
Cliff’s 𝛿 results (−0.21, considered a ‘‘small’’ effect size).

Finding. The survey answers did not show any significant difference
between researchers and practitioners opinions related to code com-
plexity in HCS and SS, both tending to agree with the statement (Code
complexity in HCS is higher than SS). However, the repository mining
statistical analysis shown a significant difference between HCS and SS
code complexity, where the complexity in SS is higher than HCS. Thus,
our findings were the opposite when comparing the survey and mining
repository processes.

4.1.3. Change size
Survey results. Many respondents disagree or are neutral considering
that average code change size of SS is bigger than HCS. 32, 34,
21 respondents disagree, are neutral, and agree with this statement,
respectively. The average Likert score for this statement is 2.76 (i.e., be-
tween ‘‘disagree’’ and ‘‘neutral’’). We received the following comments
that refute the statement or are neutral:

✗‘‘In my experience, the more configurable a system, the more code it
needs to support that ’’.

✗‘‘Proper abstraction – that can seem like a boilerplate – could increase
the change size and also gave the opportunity to achieve HCS, therefore the
change size is somewhat the same’’.



Information and Software Technology 152 (2022) 107035R.P. de Oliveira et al.

b
w

R
f
s
(
r

F
b
i
f
t
b
T
a

4

4
S
t
4
s
2
c

t
i
u

e
o
m
s
c

b
w

R
e
s
(
w
s

F
b
o
m
H
m
H
t
s

4
S
t
r
r
t
t

b
w

R
e
r
(
t
S
C

F
b
o
d
i
d
c
e
c

4
S
t
6
t
i
c

i

t
h
m
a
a
d
r

b
s

R
e
t
t
s
‘

F
d
l
r
b
t
o
m
H
h

↔‘‘I believe that this highly depends on the coding guidelines for a
specific project ’’.

We also ran the Fisher’s exact test to check the answers provided
y practitioners and researchers and no difference between categories
as identified (𝑝-value = 0.6042).

epository mining results. We applied Wilcoxon test to identify dif-
erences between HCS and SS in terms of change size. The results
how that the SS median (0.00027) was higher than the HCS median
0.00008) (Wilcoxon test, 𝑝-value 2.2e−16), although, the Cliff’s 𝛿
esults shown a ‘‘small’’ effect size (−0.19).

inding. The survey answers did not show any significant difference
etween researchers and practitioners opinions related to change size
n HCS and SS. Both of them tend to disagree with the defined statement
or this metric (Code change size of SS is bigger than HCS). However,
he repository mining statistical analysis shown a significant difference
etween HCS and SS, where the change size in SS is higher than HCS.
hus, we found opposite results when comparing the survey answers
nd the mining repository process.

.2. Process

.2.1. Number of core developers
urvey results. Many respondents disagree or are neutral considering
hat the number of core developers in SS is bigger than HCS. 10, 24,
7 respondents strongly disagree, disagree, and are neutral with this
tatement, respectively. The average Likert score for this statement is
.68 (i.e., between ‘‘disagree’’ and ‘‘neutral’’). The following are some
omments that support or refute the statement:

✓‘‘As the code is not shared, the number of core developers needed
o build the corresponding SS to the various usage scenarios of the HCS
s bigger. But the proficiency of the developers needed to build an HCS is
sually higher than the ones for an SS’’.

✗‘‘If an app is applicable in more contexts, it will attract a wider audi-
nce. Some of that audience will be programmers, thus more programmers
n average will get involved compared to an SS project. More programmers
eans, all other things being equal – such as the rate of conversion from

tarting contributor to core contributor – there will also be more core
ontributors over time compared to an SS project ’’.

We also ran the Fisher’s exact test to check the answers provided
y practitioners and researchers and no difference between categories
as identified (𝑝-value = 0.1774).

epository mining results. We applied Wilcoxon test to identify differ-
nces between HCS and SS in terms of core developers. The results
how that the SS median (1) was higher than the HCS median (0)
Wilcoxon test, 𝑝-value 2.2e−16), although. The statistical significance
as confirmed by the Cliff’s 𝛿 results (−0.49, considered a ‘‘large’’ effect

ize).

inding. The survey answers do not show any significant difference
etween researchers and practitioners opinions related to the Number
f Core Developers in HCS and SS. However, based on the defined state-
ent for this metric (Number of core developers in SS is bigger than
CS), practitioners and researchers tend to disagree. The repository
ining statistical analysis presented a significant difference between
CS and SS, where the number of core developers within SS is higher

han HCS. Thus, we found the opposite result when comparing the
urvey answers and the mining repository process.

.2.2. Number of code contributors
urvey results. In general, the respondents are neutral or agree that
he number of code contributors in HCS is bigger than SS. 43, 31, 8
espondents are neutral, agree, and strongly agree with this statement,
espectively. The average Likert score for this statement is 3.31 (i.e., be-
ween ‘‘neutral’’ and ‘‘agree’’). We received the following comments
9

hat refute or support the statement: t
✗‘‘I can’t say for sure, but I think it is the same’’.
✓‘‘Number of contributors is related to number of variations’’.
We also ran the Fisher’s exact test to check the answers provided

y practitioners and researchers and no difference between categories
as identified (𝑝-value = 0.8126).

epository mining results. We applied Wilcoxon test to identify differ-
nces between HCS and SS in terms of number of code contributors. The
esults show that the SS median (14) was higher than the HCS median
10). However, since the Wilcoxon test 𝑝-value was 0.3619 (greater
han 0.05) we did not found a significant difference between HCS and
S code contributors. The statistical significance was confirmed by the
liff’s 𝛿 results (−0.01, considered a ‘‘negligible’’ effect size).

inding. The survey answers did not show any significant difference
etween researchers and practitioners opinions related to the number
f code contributors in HCS and SS. Both of them tend to agree with the
efined statement for this metric (Number of code contributors in HCS
s bigger than SS). However, the repository mining statistical analysis
id not shown a significant difference between the number of code
ontributors within HCS and SS (HCS code contributors is statistically
quals to SS code contributors). Thus, we found an opposite result when
omparing the survey answers and the mining repository process.

.2.3. Number of accidental contributors
urvey results. Many respondents disagree or are neutral considering
hat the number of accidental contributors in SS is bigger than HCS.
, 16, 63 respondents strongly disagree, disagree, and are neutral with
his statement, respectively. The average Likert score for this statement
s 2.83 (i.e., between ‘‘disagree’’ and ‘‘neutral’’). The following are some
omments that support or refute the statement:

✓‘‘Since SS is emerging product, number of accidental contributors in SS
s bigger than HCS’’.

✗‘‘More use cases → bigger audience → more contributors, including
he 1-and-done crowd. However, there is also another factor (which, again,
as nothing to do with HCS vs. SS): the skill of the project maintainer in
aking contributors feel valued, validated, and appreciated. A welcoming
nd friendly atmosphere that makes the contributor feel like they are making
difference, as well as an active community with frequent feedback and

iscourse, all contribute to the conversion of contributors from accidental to
egulars/core’’.

We also ran the Fisher’s exact test to check the answers provided
y practitioners and researchers and, in this statement, we found a
ignificant difference between both categories (𝑝-value = 1.12e−02).

epository mining results. We applied Wilcoxon test to identify differ-
nces between HCS and SS in terms of number of accidental con-
ributors. The results show that the SS median (1) was higher than
he HCS median (0) (Wilcoxon test, 𝑝-value 2.2e−16). The statistical
ignificance was confirmed by the Cliff’s 𝛿 results (−0.44, considered a
‘medium’’ effect size).

inding. After Analyzing the survey answers, we identified a significant
ifference between the answers from researchers and practitioners re-
ated to the number of accidental contributors in HCS and SS. Although
esearchers and practitioners answers are different, both of them are
elow the average the likert scale, meaning that researchers and prac-
itioners disagree with the defined statement for this metric (Number
f Accidental contributors in SS is bigger than HCS). The repository
ining statistical analysis presented a significant difference between
CS and SS, where the number of accidental contributors within SS is
igher than HCS. Thus, we found an opposite result when comparing

he survey answers and the mining repository process.
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4.3. People

4.3.1. Developer retention
Survey results. In general, the respondents are neutral or agree that the
eveloper retention is higher in HCS than SS. 54, 28, 3 respondents are
eutral, agree, and strongly agree with this statement, respectively. The
verage Likert score for this statement is 3.23 (i.e., between ‘‘neutral’’
nd ‘‘agree’’). We received the following comments that support or
efute the statement:

✓‘‘An HCS is much more interesting to build than an SS, so it might help
n building long term teams’’.

↔‘‘This I can’t really say. I think there is a balancing act in play
etween an HCS being more intimidating, but also more applicable so more
xperienced developers get on board. I think I largely see more in an HCS,
ut I feel like it is difficult to make a call here simply from my observations’’.

We also ran the Fisher’s exact test to check the answers provided
y practitioners and researchers and we did not find a significant
ifference between both categories (𝑝-value = 0.3225).

epository mining results. We applied Wilcoxon test to identify dif-
erences between HCS and SS in terms of developer retention. The
esults show that the HCS median (4) was higher than the SS median
2) (Wilcoxon test, 𝑝-value 2.2e−16). The statistical significance was
onfirmed by the Cliff’s 𝛿 results (0.17, considered a ‘‘small’’ effect size).

inding. The survey results did not present any significant difference
etween researchers and practitioners opinions related to the number of
eveloper retention in HCS and SS. Both of them tend to agree with the
efined statement for this metric (Developer retention is higher in HCS
han SS). Moreover, the repository mining statistical analysis shown

significant difference between the number of developer retention
ithin HCS and SS, where the number of developer retention in HCS is

ndeed higher than SS. Thus, we found the same result when comparing
he survey answers and the mining repository process.

.3.2. Paid contributors
urvey results. Many respondents disagree or are neutral considering
hat there are more paid contributors in SS than HCS. 6, 13, 60 respon-
ents strongly disagree, disagree, and are neutral with this statement,
espectively. The average Likert score for this statement is 2.92 (i.e., be-
ween ‘‘disagree’’ and ‘‘neutral’’). The following are some comments
hat support or refute the statement:

✓‘‘But the contributors in HCS are usually paid higher wages’’.
✗‘‘General apps that have a more complete feature set will naturally

eceive more funding from people who need to get a job done. If Blender
ould only do animation or only modeling, etc., it wouldn’t have nearly as
uch funding as it does with those features plus a ton more, etc’’.

We also ran the Fisher’s exact test to check the answers provided
y practitioners and researchers and we found no difference between
oth categories (𝑝-value = 0.7194).

epository mining results. We applied Wilcoxon test to identify differ-
nces between HCS and SS in terms of number of paid developers. The
esults show that the SS median (0.03) was higher than the HCS median
0.01) (Wilcoxon test, 𝑝-value 2.2e−16). The Cliff’s 𝛿 results presented
‘‘small’’ effect size (−0.16).

inding. Analyzing the survey answers, we identified that there is
o significant difference between the answers from researchers and
ractitioners related to the number of paid contributors in HCS and
S. Both of them disagree with the defined statement for this metric
There are more paid contributors in SS than HCS). The repository
ining statistical analysis presented a significant difference between
CS and SS paid contributors, where the number for SS is higher than
CS. Thus, once again, we found an opposite result when comparing

he survey answers and the mining repository process.
10
5. Discussion

5.1. Product perspective

Our results show that the survey respondents do not agree or are
neutral that the number of bugs in SS is higher than HCS. The literature
consider that in HCS, features interact in non-trivial ways in order to
influence the functionality of each others [58]. When these interactions
are unintended, many times they induce bugs that manifest themselves
in some configurations but not in others, or that manifest differently in
different configurations. One survey participant highlighted it: ‘‘In HCS,
there are some additional mechanisms that leads to additional bugs, such as
feature interaction bugs’’. Moreover, data from repository mining showed
that HCS indeed is more bug-prone than SS. This finding confirms what
many researchers argue.

Regarding complexity, survey respondents agree that HCS projects
have more complexity than SS ones. However, the mining results
revealed the opposite. As highlighted by one of the survey participants,
an HCS has more verification activities than an SS, as parts of the HCS
are shared among many usage scenarios [59]. Thus, the correlation
between more verification activities and less complexity is worth of a
further investigation.

Our results showed that, on average, code change size of SS is bigger
than HCS. This finding is someway expected since HCS are designed
carefully to accommodate common and variable parts. However, the
survey respondents disagree or are neutral regarding this aspect. Thus,
new studies should be conducted to understand the type of changes in
HCS (common part or variability changes), the evolution patterns, and
the co-evolution process between source code and other artifacts, such
as configuration models.

5.2. Process perspective

Our repository mining result shown that SS have more core de-
velopers than HCS. However, the survey respondents agree that HCS
have more core developers than SS. Despite HCS systems have less core
developers, and are considered less complex than SS, they have more
bugs. Further study can help to unearth the underlying reason for such
observation.

Regarding code contributors, the repository mining process showed
that SS and HCS do not have difference. On the other hand, the survey
respondents are neutral or agree that the number of code contributors
in HCS is bigger than SS. New studies are required to understand
productivity and quality issues besides the role of code contributors.

Based on the repository mining result, we see that the number of
accidental contributors in SS is bigger than HCS. It supports other
finding from this study which states that SS have more core developers
than HCS. Since in SS we have more core developers doing most
of the development, it is natural to have developers doing sporadic
contributions. The survey respondents also disagree or are neutral that
the number of accidental contributors in SS is bigger than HCS.

5.3. People perspective

Regarding developer retention, the data from repository mining
showed that it is higher in HCS than SS. Although SS have more core
developers, it is hard to peripheral developers stay motivated. More-
over, survey respondents are neutral or agree that developer retention
is higher in HCS than SS. According to one participant: ‘‘An HCS is
much more interesting to build than an SS, so it might help in building
long term teams’’. A dedicated study aimed towards understanding this
observation is required to make any conclusive remarks.

Based on the repository mining the number of paid contributors in
SS is bigger than HCS. Furthermore, SS also have more core contrib-
utors than HCS. This correlation should be investigated in details in
order to identify if a high number of paid contributors implies in a high
number core developers. On the other hand, survey respondents agree
that HCS have more paid contributors than SS.
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6. Threats to validity

We have taken care to ensure that our results are unbiased, and have
tried to eliminate the effects of random noise, but it is possible that our
mitigation strategies may not have been effective. In this section, we
discuss the threats to validity for our study.

6.1. External validity

The primary threat to the external validity of this study involves
the generalizability of our subjects. We reduce this threat by using 124
different projects from different application domains. However, all of
the projects are open source, so we cannot make any claims about how
our results might generalize to proprietary projects.

6.2. Construct validity

The set of metrics used to compare SS and HCS were selected
based on the formative survey. However, other metrics could have been
used for this purpose. Thus, our evaluation is not exhaustive, but we
believe that the metrics we used provide a fair assessment of difference
between HCS and SS.

For our analysis, we categorized developers into core and non-core
groups and for this categorization we had to set a threshold of number
of commits in the code base for each developer. It might be the case that
some of the developers that were categorized as non-core developers
according to our criteria were actually core developers who focus on
large contributions rather than frequent contributions, or simply focus
on architecture and high-level design (high value contributions).

Further, our keyword-based search for bug fixing commit identi-
fication relies on the developers appropriately using keywords in the
commit message, that may not always happen and may lead to missed
bug fixes.

6.3. Internal validity

The primary threats to the internal validity of this study are possible
faults in the implementation of our approach and in the tools that we
used to perform the evaluation. We control this threat by using tools
validated by other researchers for collecting various metrics. We also
extensively test our implementations and verify their results against
a smaller program for which we can manually determine the correct
results.

It is always possible that the participants misunderstand the survey
questions. To mitigate this threat, we conducted a pilot study with three
researchers with different experience levels both in OSS and industry.
We also conducted a pilot study with survey design experts. We updated
the survey based on the findings of these pilot studies. Even after our
best effort, it is possible that some of our survey respondents had a poor
understanding of the statements for rating. To reduce the impact of this
issue, we included an ‘‘I don’t know’’ option in the survey and ignored
responses marked as such.

7. Conclusions

In this paper, we investigated similarities and differences between
HCS and SS using well known metrics from the literature according to
different perspectives: product, process, and people. We collected data
from two surveys and from a mining study (within 15,769 releases of
124 Github projects). Our results shown that for the majority of the
metrics, the perception of practitioners and researchers about HCS and
SS is different from our mining findings.

Bug-proneness is perceived by practitioners and researchers to be
higher in HCS compared to SS. To corroborate with this finding, or
mining study revealed the same. Thus, the more #ifdef a code have,
11

the more bugs may be present.
Although complexity, change size, number of core developers, num-
ber of code contributors, and number of accidental contributors are
perceived by practitioners and researchers to be higher in HCS com-
pared to SS, our mining study found the opposite. We believe that
the strengths of HCS approaches, such as testing, may be adapted and
applied in the context of SS to improve their general quality related
to complexity. Related to code change size, we strengthen the body of
evidence that HCS are carefully designed to accommodate variability
instead of performing code changes. Despite HCS systems have less core
developers, and are considered less complex than SS, they have more
bugs. This finding is worth of investigating. The role of contributors in
HCS seems to be the same from SS. Although, HCS presented more bugs
within the source code.

Developer retention is perceived by practitioners and researchers to
be higher in HCS compared to SS. Our mining study also found the
same. Although it seems that HCS may be more interesting to build
compared to SS, a dedicated study is required to make any conclusive
remarks.

Finally, the number of paid contributors are perceived by practi-
tioners and researchers to be higher in HCS compared to SS. However,
our mining study found the opposite. Since SS also have more core
developers, we recommend a further investigation of the correlation
between paid contributors and core developers and then, compare the
results with HCS.

The current work here lays out highlighted perspectives, quantita-
tive evidence to clarify existing beliefs about HCS, and highlight the
difference between belief and evidence. We hope these results prompt
a discussion and further research in the direction as to how utilize the
similarity of both types of systems to transfer insights, methods, and
tools. Also, identify the differences to design new techniques addressing
the difference.
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