
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Let’s Go to the Whiteboard (Again):
Perceptions from Software Architects
on Whiteboard Architecture Meetings

Eduardo Santana de Almeida, Senior Member, IEEE, Iftekhar Ahmed, and André van der Hoek, Senior
Member, IEEE

Abstract—The whiteboard plays a crucial role in the day-to-day lives of software architects, as they frequently will organize meetings
at the whiteboard to discuss a new architecture, some proposed changes to the architecture, a mismatch between the architecture and
the code, and more. While much has been studied about software architects, the architectures they produce, and how they produce
them, a detailed understanding of these whiteboards meetings is still lacking. In this paper, we contribute a mixed-methods study
involving semi-structured interviews and a subsequent survey to understand the perceptions of software architects on whiteboard
architecture meetings. We focus on five aspects: (1) why do they hold these meetings, what is the impact of the experience levels of
the participants in these meetings, how do the architects document the meetings, what kinds of changes are made after the meetings
have concluded and their results are moved to implementation, and what role do digital whiteboards plays? In studying these aspects,
we identify 12 observations related to both technical aspects and social aspects of the meetings. These insights have implications for
further research, offer concrete advice to practitioners, provide guidance for future tool design, and suggest ways of educating future
software architects.

Index Terms—Software architecture, software architects, whiteboard meetings, architecture documentation, interviews, survey

F

1 INTRODUCTION

Designing a software architecture is not purely a technical
issue [1], [2]. It also involves numerous social, human, and
organizational aspects [3] that can influence the success of
an architecture, and thus the entire project, considerably.
One such aspect concerns who is involved in the design
process: the different stakeholders participating must be
selected with care [4], [5]. So it is for the primary software
architect or architects leading the effort: they are typically
experienced members of the team who are ultimately re-
sponsible for the design choices made, validating them, and
capturing and sharing them in various kinds of artifacts that
will be used downstream [6].

To date, the software engineering community has stud-
ied which kinds of projects and organizations need a soft-
ware architect [1], the assigned duties, skills, and knowledge
of architects [2], what software architects actually do [6], [7],
their mindset [8], the reasoning process involved in making
architectural decisions [9], [10], and the impact of soft-
ware architects writing code themselves [11], [12], among
others. Not all findings from these studies are uniform.
For instance, what architects do varies considerably from
one organization to another and even from one project to
another within the same organization [12], [13]. Moreover,

• E. Almeida was with the Institute of Computing (IC-UFBA), Federal
University of Bahia, Brazil.
E-mail: esa@rise.com.br

• I. Ahmed and A. van der Hoek are with University of California, Irvine
(UCI).

Manuscript received ...; revised...

gaps exist in our collective understanding, which has led to
calls for further studies of software architects, their work,
and how they conduct it [14], [15], [16].

This paper contributes one such study, with two closely
related goals. Our first goal is to understand how soft-
ware architects perceive the whiteboard design meetings in
which they participate to engage in high level architectural
design. Whiteboards are an important medium used in
reasoning and problem solving in many disciplines, such
as civil engineering [17], mechanical engineering [18], and
design engineering [18]. In software engineering, previous
whiteboard studies focused on programmers [5], [19], [20]
and software designers [21], [22], but not architects. With
software architecture design laying the critical foundations
for a project’s success, then, it is important to specifically
study software architecture design work being performed at
the whiteboard to understand the unique context, demands,
and approaches of this setting.

Our second goal is to understand the transition from
architectural design sketches as produced in whiteboard
software architecture meetings to implementation. Architec-
ture work at the whiteboard is necessarily incomplete and,
when the rubber hits the road during more detailed design
or implementation, refinements and changes are frequently
needed [22]. While much has been said about the need for
architecture and implementation to stay in sync [23], as
well as about architectural erosion and drift over time [24],
no study to date has examined how information from
whiteboard architecture design meetings makes its way into
implementation, what kinds of deviations happen in this
process, and why.

ar
X

iv
:2

21
0.

16
08

9v
1 

 [
cs

.S
E

] 
 2

8 
O

ct
 2

02
2



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

We conducted semi-structured interviews with 27 soft-
ware architects from 18 different companies across five dif-
ferent countries, with the software being worked on by these
architects spanning a wide range of application domains.
We then surveyed an additional 46 software architects across
nine countries to contextualize and augment the findings
from the interviews.

The following five research questions guided the analy-
sis of the interviews and survey responses were

• RQ1: Why do software architects hold whiteboard
software architecture design meetings?

• RQ2: What is the impact of the experience of the
participants on how design work proceeds in these
meetings?

• RQ3: How do software architects document what
happens in whiteboard software architecture meet-
ings?

• RQ4: When moving to implementation, what kinds
of refinements and deviations happen to the archi-
tectural design that was first created?

• RQ5: What role do digital whiteboard tools play?

This paper constitutes the first broad empirical study of how
software architects view and engage in whiteboard architec-
ture meetings, as well as the outflow of those meetings into
eventual code. It makes the following contributions:

• A mixed qualitative and quantitative study that in-
vestigates key aspects of whiteboard software archi-
tecture meetings, with a primary focus on the role
of experience and the transition of the results from
these meetings to implementation.

• A set of twelve observations regarding the nature of
whiteboard software architecture meetings, covering
concrete technical, human, and social perspectives
on these meetings and offering recommendations for
practitioners, researchers, tool builders, and educa-
tors.

• A collection of all our research materials on a project
website for replication and reproducible research
purposes, including our interview data (prompts,
transcriptions, and codebook) and the survey instru-
ment.

2 RELATED WORK

2.1 Studies of Sketching and Whiteboard Use

Dekel and Herbsleb conducted an observational study an-
alyzing several software design meetings from the ACM
DesignFest event that was held at the 2005 OOPSLA con-
ference [25]. The analysis of the meetings primarily focused
on the notations that the designers used and the representa-
tions they created in those notations, detailing for instance
how the designers often started with unstructured represen-
tations and how they at times combined content from what
were independently created diagrams into a single diagram.
Based on the results of the study, Dekel and Herbsleb
discussed several implications for the design of future tools
supporting whiteboard based design. Cherubini et al. [20]
performed an exploratory study at Microsoft of how and
why developers use whiteboards, with a particular focus on

how developers ‘draw their code’. Based on interviews and
surveys with developers, they found that informal notations
were used in support of face-to-face communication about
the code and that available modeling tools were not capable
of supporting this need since their focus on formal, correct
diagrams does not match the informal nature in which
developers seek to externalize their mental models of code.

Leveraging one of the videos collected for the 2009
Studying Professional Software Design workshop [26],
Nakakoji et al. examined the conversations and whiteboard
drawings of a pair of professionals with the help of the
Design Practice Streams (DPS) tool they developed [27]. DPS
allows replays of strokes on the whiteboard and connects
the replay to an automatically created transcript of the
meeting, enabling quick exploration of concepts and when
they were talked about. In the case of the video analyzed,
Nakakoji et al. highlight the role of key concepts and what
aspects of the design being worked on were most frequently
re-discussed.

In order to understand how to provide improved
tool support for integrating visual sketches into devel-
opers’ workflows, Walny et al. conducted a qualitative
study centered on the creation, use, and transformation of
sketches [28]. Using semi-structured interviews with eight
software developers, their particular focus was on the life-
time of sketches: with what medium they were created
first (e.g., paper, whiteboard, tool) and how they then were
captured, augmented, and re-created in similar and other
media (e.g., photo, tablet, another piece of paper).

Baltes and Diehl investigated the use of sketches and
diagrams in software engineering practice, with a particular
focus on their relation to source code artifacts [29]. Using
data from three companies and a survey, they found that
the majority of the sketches were informal and that the most
common purposes for creating sketches and diagrams were
designing, explaining, and understanding. More than half
of the sketches were created on analog media like paper or
whiteboards and were revised after creation. Based on the
findings from this work, Baltes et al. developed SketchLink,
a tool that aims at increasing the value of sketches and
diagrams by explicitly linking them to the source code to
which they pertain [30].

Mangano et al. conducted an observational study ana-
lyzing fourteen hours of design activity by eight pairs of
professional software developers at the whiteboard [22]. In
the study, each pair was provided with a written prompt
asking them to design an educational traffic light simulation
program. The researchers analyzed the type of sketches
created, how professional software designers focus on in-
dividual sketches and shift their attention among sketches,
and the reasoning process to understand and advance the
state of the design at hand.

Out of these prior studies, the ideas discussed in [20],
[21], and [29] are most closely related to our study. However,
our study is unique in focusing on software architects and
software architecture design activities at the whiteboard,
as well as in examining important aspects not covered in
previous work, such as the influence of levels of experience
and the transition from sketches at the whiteboard to code.

Beyond studies that specifically focus on creating an
understanding of sketching and whiteboard use, many tools



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

have been proposed to explicitly support software develop-
ers in their design sketching. Baltes et al. [31], for instance,
presented LivelySketches, a prototype tool that supports the
round-trip lifecycle of sketches from analog to digital and
back. As another example, FlexiSketch supports collabora-
tion across distances, with the ability for users to define
notations on the fly [32]. An interesting recent example seeks
to integrate sketching in the IDE [33]. Compared to these
and many other tools that have been proposed, our paper
does not contribute any tool designs, though our findings
give rise to implications for future tools.

2.2 Studies of Software Architects

Personal Experiences. The Pragmatic Architect column in
the IEEE Software magazine discussed many aspects about
the software architect and their role over the years. In [1],
for instance, Fowler introduced key definitions of software
architecture and the architect’s role in creating and man-
aging them. Buschmann [34] shared and commented on
a compressed week-long diary of what his ‘real life’ as
an architect is like when working on a product line for
an industrial automation system. Based on more than ten
years working as a software architect, Woods [35] classified
architects into three groups: enterprise, infrastructure, and
application architects. Klein [36] discussed what makes a
software architect successful. Erder and Pureur [16] consid-
ered the architect’s role in agile development and followed
up on this discussion in a later paper that examined desired
personality traits of software architects [37]. Woods [11]
discussed the benefits and drawbacks of architects actually
engaging in programming beyond their primary role as a
designer. Klein [38], based on his experience in industry,
defined a three-phase model (Blank Page, Integration, and
Magic) to capture the evolution of software systems, and
discussed the kinds of contributions necessary from the
software architect for achieving success in each phase.

Sarang [39] proposed a structure for an architecture team
and defined the roles and responsibilities of the members.
Based on his experience in managing a 10-person archi-
tecture team from 1992-1995, Kruchten [6] described what
software architects ‘really do’.

Surveys. Clements et al. [2] investigated the human
aspects of architecting software, focusing on the duties,
skills, and knowledge of software architects. They canvased
over 200 public sources of information (e.g., web sites,
blogs, training and education materials, job descriptions) to
identify about 200 different duties, 100 skills, and 100 areas
of knowledge – each of which was mentioned by at least
one source.

Clerc et al. [8] performed a survey in the Netherlands to
collect feedback on the importance of architectural knowl-
edge for the daily work of practitioners in architecture.
Based on the answers of 107 respondents, the study pro-
vides insights in the way practitioners view and use ar-
chitectural knowledge by listing what uses are important
for the different roles that architects play (e.g., project lead,
reviewer, consultant) and on what architectural level (e.g.,
software, information, enterprise).

Heesch and Avgeriou [9] surveyed 53 software archi-
tects from several companies and project domains to get

insights in the reasoning processes followed in architectural
design. Among a variety of findings, they show that archi-
tects typically are involved in requirements elicitation and
therefore understand the reasoning behind the requirements
well, that architects find it important to search for multiple
options but equally consider this an expensive activity and
only engage in doing so when truly necessary (thus favoring
known solutions), and that architects seldom reject decisions
they have made before.

Hoorn et al. [7] conducted a large-scale survey with
142 software architects from four IT organizations in the
Netherlands to understand what architects do on a day-to-
day basis and what kind of support they need for sharing
architectural knowledge.

Case Studies. Premaj et al. [40] conducted a case study
with two projects by performing retrospective root cause
analyses into the issues assigned to software architects to
understand why the issues arise, what types they are, and
how their occurrences could potentially be reduced in future
through improvements in the development process.

Rehman et al. [12] conducted a two-stage case study,
combining data analytics for five open source projects with
semi-structured interviews of several architects of these sys-
tems. The authors addressed three questions: Do architects
write code? What type of code do architects write? Is there
any empirical evidence to support that software projects
will benefit from hands-on software architects? the primary
conclusion is that benefits exist to architects writing code.

While the focus of our study is different from these exist-
ing studies of software architects, the viewpoints expressed
in the personal experiences and the results from the case
studies were particularly influential in shaping the direction
of our study to provide a complementary view of an im-
portant under-understood activity: whiteboard architectural
design together with its downstream outflow. In addition,
the surveys conducted in [2], [7], [8], [9], [40], and [7] served
as inspiration for how we structured our survey questions.

3 RESEARCH DESIGN

We adopted a two-part research design for our study: we
first conducted in-depth semi-structured interviews with
experienced software architects and then performed a vali-
dation survey with additional, again experienced, software
architects. The goal of the interviews was to gather insights
into practitioner views to help us to formulate a clear picture
of whiteboard software architecture meetings and the out-
flow from these meetings. These insights were then checked
and refined by the results from the validation survey. All
study materials from the interviews and surveys can be
found in the supplementary materials for the paper.1

3.1 Interviews

Protocol. We interviewed 27 software architects with experi-
ence in whiteboard software architecture meetings. The first
author interviewed the software architects either in person,
if they worked in the same area, or via Skype, if they did not.
The average length of the interviews was 37 minutes, with

1. https://github.com/whiteboard-architecture/empirical-study



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

the shortest interview 7.18 minutes and the longest 43.42
minutes.

Each interview consisted of two parts. In the first part,
in addition to a few demographic questions and questions
about the experience level of the interviewee, the inter-
viewer asked open-ended questions about their engagement
in whiteboard architecture design meetings, their percep-
tions about the participation of novice and experienced
software architects, and their advice for other software
architects participating in these kinds of meetings. In the
second part, the interviewer asked questions related to the
importance of the meetings to implementation, approaches
used to document and communicate outcomes, decisions
and structures preserved from whiteboard to code, typical
changes that take place when moving from sketched de-
signs to concrete implementation, and aspects missing from
whiteboard discussions. Finally, we thanked the intervie-
wees and debriefed them by informing them about what
we planned to do with the data. The protocol was designed
by two researchers over a period of three months.

Participants. We selected the software architects to be in-
terviewed based on convenience sampling and snowballing.
Initially, we invited twenty software architects with experi-
ence in designing software architectures and participating
in whiteboard architecture meetings. All of them agreed
to be interviewed and they recommended seven additional
software architects to be interviewed as well. These seven
recommended software architects also agreed to participate
in the study.

We first conducted a pilot interview with another soft-
ware architect (not included in the study) as a pretest [41]
and then performed the interviews with the 27 architects.
The software architects came from eighteen different com-
panies across five different countries (Brazil 13, Canada
1, Germany 4, Sweden 2, and USA 7), working across a
range of different domains, including but not limited to
games, music, finance, e-commerce, data science, and sports.
Note that after 24 interviews, we reached saturation. We
performed a few extra interviews to ensure this was the
case, reaching a total of 27. All interviews were conducted
by the first author over a period of four months. Only one
interview was completed face to face.

In the remainder of the paper, we label each interviewee
SA1 through SA27. Table 1 provides a summary of the
architects’ backgrounds. The supplementary material at-
tached to the paper presents detailed (though anonymized)
information about the participants.

Data analysis. Data analysis started with audio tran-
scription (16 hours and 46 minutes total). Two researchers
conducted the transcription using the Trint tool2 and, after
internal review, all interview transcripts were formatted
and then shared with the respective software architects for
validation; this resulted in minor adjustments involving the
architects providing clarifications of some of their answers.

After that, the coding process was started by two re-
searchers using the NVivo tool3. The two researchers had
previous experience in conducting studies combining inter-
views and surveys, albeit in different aspects of software

2. https://trint.com
3. https://www.qsrinternational.com/nvivo/nvivo-products

SA Experience Company sector Country
SA1 2-5 years IT Brazil
SA2 5+ years e-Government Brazil
SA3 2-5 years e-Commerce Brazil
SA4 5+ years IT Brazil
SA5 5+ years IT Brazil
SA6 2-5 years Marketing Brazil
SA7 5+ years Audio streaming Sweden
SA8 5+ years IT Brazil
SA9 5+ years IT Brazil
SA10 5+ years Finance Brazil
SA11 5+ years Marketing Brazil
SA12 2-5 years Embedded Software Germany
SA13 5+ years Finance Brazil
SA14 5+ years e-Commerce Canada
SA15 5+ years Embedded Software USA
SA16 5+ years e-Government Brazil
SA17 5+ years Embedded Software USA
SA18 5+ years e-Government Brazil
SA19 5+ years Games Sweden
SA20 5+ years Cyber-physical USA
SA21 5+ years Embedded Software Germany
SA22 5+ years Embedded Software USA
SA23 5+ years Embedded Software Germany
SA24 5+ years Embedded Software USA
SA25 5+ years Embedded Software Germany
SA26 5+ years Embedded Software USA
SA27 5+ years Sports USA

TABLE 1: Summary of Professional and Demographic
Information of Participants.

engineering. We used a set of first cycle and second cycle
coding methods to data analysis [42]. First cycle methods
are those processes that happen during the initial coding of
data. Second cycle methods, if needed, are advanced ways
of reorganizing and reanalyzing data coded by first cycle
methods. In our study, the codes created in the first cycle
were clustered in categories in the second. These clusters,
then, served as the source of our results as discussed in
Section 4). Note that we do not strive to develop a theory at
this time. Doing so is not always a necessary outcome for a
qualitative study [43] and, in our case, is actually ill suited
for the research questions we pose. Rather, then, we seek
to document the perceptions of software architects in a full
and diverse light.

Once each researcher had performed their independent
turn, the two authors met to resolve differences in coding.

3.2 Survey
Protocol. Based on the results from the interviews, we de-
signed a 30-minute survey to further build our understand-
ing of the perceptions of software architects on whiteboard
software architecture meetings. The survey was composed
of seventeen questions, fifteen of which were closed ques-
tions and two of which were open questions. The survey
also collected demographic information from respondents.
For the design of the survey, we followed Kitchenham and
Pfleeger’s guidelines for personal opinion surveys [44]. As
one of the guidelines, previous surveys related to sketches
in software engineering [29] and software architects [2], [7],
[8], [9] were consulted.

We piloted our survey with two experienced software ar-
chitects to get feedback on the formulation of the questions,
difficulties faced in answering the survey overall, and time
to finish it. As these pilot respondents were experts in the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

area, we also wanted to know whether they felt we were
asking the right kinds of questions or should be changing
the approach. In response to their feedback, we modified
the survey several times, rephrasing some questions and
removing others to make it easier to understand and answer.
The final version of the survey consisted of 23 questions
(including demographics). The pilot survey responses were
used solely to improve the questions, and these responses
were not included in the final results. We kept the survey
anonymous, but in the end, the respondents could share
their email to receive a summary of the study. The survey
instrument is included in the supplementary material.

Participants. We followed a three-step approach to re-
cruit survey respondents: initially, we posted survey infor-
mation on personal accounts on social media (e.g., Twitter,
LinkedIn). Next, two authors contacted potential respon-
dents by email (convenience sample) and asked them to
share it with other potential respondents (snowballing).
Because of this process, we were not able to track the total
number of invitations. Overall, we received 50 responses,
out of which we disqualified four responses that did not
have any responses to any of the actual survey questions of
interest (despite having responses to the basic demographics
questions). This lead to 46 valid responses that were consid-
ered where the survey respondents answered all questions.

The respondents were spread out across nine countries
and four continents. The top three countries where the
respondents came from were United States, Brazil, and
Germany. The professional experience of the 46 respondents
working as software architects varied from one year to 31
years, with an average of 14 years and a median of 15 years.
The majority of the respondents had an advanced degree
(67.4%), i.e., Master’s or Ph.D., 30.4% of the respondents had
a Bachelor’s degree, and 2.2% graduated from high school
without completing college.

Data Analysis. We collected the ratings that our re-
spondents provided for each closed question and converted
these ratings to Likert scores from 1 (Strongly Disagree) to
5 (Strongly Agree). We computed the average Likert score
of each statement related to different perspectives (e.g.,
reasons to conduct whiteboard architecture meetings, dif-
ferent levels of experience, role of documentation, transition
from sketches to code, and digital tools) and plotted Likert
scale graphs. In addition, we used open coding to analyze
the answers that the survey respondents gave to the two
open questions related to recommendations for software
architects conducting whiteboard architecture meetings and
final thoughts on the topic. To reduce subjective bias during
the open coding process, we assigned both to two authors
of this paper. Each author analyzed the answers separately.
Once all the data were coded, the two authors met to resolve
differences in coding.

4 RESULTS

In this section, we present the results for each of the five
research questions identified in Section 1. Before we do so,
however, we first further characterize whiteboard software
architecture meetings based on the responses from the ar-
chitects.

4.1 Whiteboard Software Architecture Meetings
During the interview sessions, we asked the participants to
give an example or two of recent whiteboard software archi-
tecture meetings in which they participated. We specifically
asked them to describe the setting, how many participants
there were, what roles they held, what problem the group
addressed, and how long the meeting lasted.

The meetings involved from two (min) to 15 (max)
participants, with five being the average. Beyond the in-
terviewed software architects themselves, other participants
held many different roles, including other software archi-
tects, developers, requirements engineers, test engineers,
marketing managers, product managers, consultants, UX
engineers, and users. According to one of the software
architects (SA 10): ”... you have a team and everyone is working
together, so the developer who is doing the code is participating
in the architecture discussion. The tester is also participating, the
requirements analyst too, everyone is on the same boat. There is
no longer separation.”

The topics discussed ranged from system integration
and service design, through cloud deployment and per-
formance, to knowledge management and even pre-sales.
As one example, a software architect (SA 21) described
a whiteboard meeting concerning the performance of the
software for which they are responsible as follows: ”We’re
using Lambda functions to go from one step to another and we are
seeing performance challenges on processing large files given the
limitation of the Lambda function of having five hundred MB per
data frame, so you can open any file that will consume less than
half GB memory of RAM and then do the processing.” As another
example, another architect (SA 7) described a meeting they
organized as: ”As we had a system that exchanged many mes-
sages over the network and needed very high performance, several
times, we discussed architectural problems that could bring I/O
bottlenecks, because it was a system that wrote a lot on disk and
sent many messages over the network, so we had I/O bottlenecks
on the machine running, as network bottlenecks needed high-level
architectural discussions”.

The meetings ranged from 20 minutes (min) to seven
hours (max), with 1 hour and 10 minutes being the average
duration. According to one of the software architects (SA
7), meetings take longer when they involve activities that
expressly seek to document outcomes: ”These meetings are
roughly I would say between four and seven hours. And this other
meeting that I told you about where we are documenting. So,
when do we do that, we typically also reserve at least half a day
or even better a day. So that we spend also at least four to six
hours really working on it.” This clearly is toward the extreme
end of length of meeting; at the same time, it recognizes
that architecture work is not easy and requires participants
to engage in depth to work through what sometimes can be
very complex issues. In this case, the culture at the company
at which the architect works is such that longer meetings to
sort things through are preferred to spreading out the work
over multiple, more disconnected meetings.

4.2 Reasons to Conduct Whiteboard Software Archi-
tecture Meetings (RQ1)

From the interviews, we identified 19 different reasons
for software architects to conduct whiteboard architecture



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

meetings. We used the survey responses to rank these 19
reasons. Figure 1 shows the respondents’ answers for the
nineteen reasons to software architects conduct whiteboard
architecture meetings. The top five reasons are: brainstorming
the ideas of others (average Likert score for this statement is
4.59, i.e., between ”somewhat important” and ”very impor-
tant”), understanding (aspects of) the problem that the architec-
ture has to solve (average Likert score for this statement is
4.54, i.e., between ”somewhat important” and ”very impor-
tant”), explaining how the system works/is anticipated to work
(average Likert score for this statement is 4.37, i.e., between
”somewhat important” and ”very important”), identifying
the starting point for the eventual architectural solution (average
Likert score for this statement is 4.37, i.e., between ”some-
what important” and ”very important”), and unearthing
concerns that should be addressed architecturally (average Likert
score for this statement is 4.28, i.e., between ”somewhat
important” and ”very important”).

The following are some comments from our software
architects (SA) that highlight these aspects, together with
what reason it was classified as:

3SA 3: ”Most of the time that an important decision was
to be made or some doubt existed related to some important
decision, we used the whiteboard to discuss or brainstorm things
or draw some things that were the common understanding of
the team.”. [understanding (aspects of) the problem that the
architecture has to solve].

3SA 13: ”So I would say that the solution crystallizes on the
whiteboard. The whiteboard makes it possible to quickly change
the solution or to brainstorm some different aspects. So, the
brainstorming is I would say impossible without the whiteboard”.
[brainstorming the ideas of others].

In our survey, we also asked respondents about the
importance of whiteboard architecture meetings to success-
ful architectural design. Among the 46 survey respondents,
56.52 percent (26 respondents) consider whiteboard design
meetings very important to successful architectural design,
41.30 percent (19) ranked the meetings as important, and
2.17 percent (1) were neutral.

Observation 1
Brainstorming the ideas of others, understanding
(aspects of) the problem that the architecture has
to solve, explaining how the system works/is an-
ticipated to work, identifying the starting point for
the eventual architectural solution, and unearthing
concerns that should be addressed architecturally
are the top five reasons for software architects to
conduct whiteboard software architecture meetings.

4.3 Experience (RQ2)

4.3.1 Important Aspects of Experience

According to Kruchten [6], a software architect is a software
expert responsible for designing, developing, nurturing, and
maintaining the architecture of the software-intensive sys-
tems in which they are involved. Kruchten further observes
that, in general, the architect’s role is typically reserved for
someone with significant experience in prior projects.

In order to better understand what kind of experience is
relevant to whiteboard software architecture meetings, we
asked the software architects during our interviews. Col-
lectively, they identified sixteen different aspects, as listed
in Table 2 with the number of architects that identified each
aspect. The top five aspects are: design of previous architectures
(5), ability to communicate (4), participation in previous projects
(3), technical knowledge (3), and domain knowledge (3).

The following are some comments from some of the
software architects that highlight these aspects, together
with the corresponding meaning of experience:

3SA 9: ”When we are with experienced architects, they
have already designed and implemented various software and
have more notion of what works and does not work, they have
already seen several examples of architecture, so that is what they
bring of importance, the experience itself.” [design of previous
architectures]

3SA 28: ”So I think there is probably two aspects to the experi-
ence, right. One is: experience with how to communicate, right. So
how to, how to produce design on the fly and communicate that to
the other people in the room quickly.” [ability to communicate]

3SA 7: ”Experience is also defined in terms of the variety of
projects. If a person has developed an embedded system, a mobile
system, a web system, a large-scale micro-controller system, in
various contexts, [ed: they] will be able to compare very well the
performance of a web system is different from mobile performance,
embedded, etc.” [participation in previous projects]

Meaning of Experience Frequency

Design of previous architectures 5
Ability to communicate 4
Participation in previous projects 3
Technical knowledge 3
Domain knowledge 3
Architectural knowledge on methods and tools 2
Awareness of technology trends 1
Ability to think strategically 1
Blend of technical and non-technical aspects 1
Depth of knowledge about a theme with breadth
of knowledge overall

1

Facilitation of meeting discussion 1
Having faced failures 1
Good understanding about existing systems 1
Ability to interact with project manager 1
Many hours of development 1
Knowing a lot of abstractions across domains 1

TABLE 2: Important Aspects of Experience Relevant to
Whiteboard Software Architecture Meetings.

Overall, while the aspects mentioned differ, we note
that the majority point to the need for a strong technical
background that is not necessarily limited to just one project
or type of project.

Observation 2
Design of previous architectures, ability to commu-
nicate, participation in previous projects, technical
knowledge, and domain knowledge are the top five
aspects of experience seen as useful to whiteboard
software architecture meetings.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 1: Nineteen Reasons for Software Architects to Conduct Whiteboard Software Architecture Meetings.

4.3.2 Team Composition.

Most companies have a limited number of software archi-
tects and depending on the size of the company, it may
have just one or two people in this role. Thus, white-
board software architecture meetings necessarily not only
involve participants in different roles as discussed prior,
but also participants who are likely to have different levels
of experience. In the interview sessions, we asked about
these different levels of expertise as they relate to team
composition for meetings at the whiteboard, and we used
the surveys to gather additional information in this regard.

We first discuss the participation of novices. The inter-
viewees shared eleven different perceptions on including
novices in the meetings, which were ranked by the software
architects who participated in the survey (Figure 2). The top
five perceptions are: with novices, the team has to provide more
context and offer more explanation during whiteboard software
design meetings (average Likert score for this statement is
4.28, i.e., between ”somewhat agree” and ”strongly agree”),
including novices in whiteboard software architecture design
meetings is important, because the ideas that they contribute are
not bound by preconceived notions of what is right/wrong (3.65,
between ”neutral” and ”somewhat agree”), when novices are
present, the team has to go into aspects of the design that it
had not intended to focus on, impacting the flow of meetings
(3.59, between ”neutral” and ”somewhat agree”), novices do
not consider all aspects necessary to design a good architectural
solution (3.59, between ”neutral” and ”somewhat agree”),
and it is important to include novices in whiteboard software
architecture design meetings because they are not biased by
previous experiences/meetings (3.57, between ”neutral” and
”somewhat agree”). The following are some comments from
the interviewees that highlight these aspects:

7SA 18: ”When it is with more inexperienced architects,
sometimes it tends to be a bit more for lecture. Some points you end
up having to go deeper to see if you bring the person to the same

level or tend to go down. The person still does not make a clear
division between what is architecture level and implementation. It
goes down and up much more often and you have to keep pulling
the person up again.”

3SA 23: ”So having novices in the room who are unafraid to
ask questions can help to clarify things which often leads to actual
insights that would have gotten glossed over had they not been
written down.”

7SA 12: ”The beginner has a lot of difficulty, sometimes, to
see the whole solution. The beginner is very focused on the use of
technology and a little distant from the solution as a whole. This
is my perception. They already want to discuss the technology, the
infrastructure, the implementation, they have a very great anxiety,
the more novice the developer. The tendency is to try to contain
these impetus and take off the source code leading to discussion
at the architecture level, regardless of technology or how it will
be used. That’s my main difficulty with new developers. They are
still very much attached to the code and technology that will be
used in the project.”

Note that the various perceptions represent a mix of po-
tentially positive and negative effects of including novices,
so the order in which the perceptions are placed in Figure 2
should not be read as ranging from positive perceptions
(top) to negative perceptions (bottom), or vice versa. Rather,
the figure is ordered by level of agreeableness. The obser-
vation that, with novices, the team has to provide more
context and offer more explanation during whiteboard soft-
ware design meetings was agreed to most often, while the
observation that novices are inflexible in that, when they
offer up an idea, they cannot let it go and thereby lessen
the ability to have a productive meeting was agreed to least
often.

In our survey, we also asked respondents whether they
felt that overall it is important to include novices in white-
board software architecture design meetings. Out of 46
respondents, 23 respondents strongly agree, 19 somewhat



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 2: Architects’ Perceptions on Including Novice Participants in Whiteboard Software Architecture Meetings.

agree, and 2 are neutral to this statement. The average Likert
score for this statement is 4.35 (i.e., between ”somewhat
agree” and ”strongly agree”).

Observation 3
The top five perceptions on including novices in
whiteboard software architecture meetings are: with
novices, the team has to provide more context and
offer more explanations during whiteboard software
design meetings; including novices in whiteboard
software architecture design meetings is important,
because the ideas that they contribute are not bound
by preconceived notions of what is right/wrong;
when novices are present, the team has to go into
aspects of the design that it had not intended to
focus on, impacting the flow of meetings; novices do
not consider all aspects necessary to design a good
architectural solution; and It is important to include
novices in whiteboard software architecture design
meetings because they are not biased by previous
experiences/meetings.

In addition to building an understanding of the percep-
tions of architects on the participation of novices, we equally
sought to understand perceptions on the participation of
experienced architects in the meetings. We identified thir-
teen such perceptions from the interviews and asked the
surveyed software architects to rank these thirteen (Fig-
ure 3). Again based on the level of agreeableness, the top five
perceptions are: the quality of the architecture is influenced by
the participation of experienced architects (average Likert score
for this statement is 4.35, i.e., between ”somewhat agree”
and ”strongly agree”), experienced architects are important in
a meeting to avoid making the wrong decisions (4.3, between
”somewhat agree” and ”strongly agree”), experienced archi-

tects are able to work with larger abstractions and have a facility
to discuss those abstractions (4.26, between ”somewhat agree”
and ”strongly agree”), experienced architects push edge cases,
because they are aware of their past mistakes in this regard
(4.15, between ”somewhat agree” and ”strongly agree”), and
experienced architects understand the whole context of the design
project (3.91, between ”neutral” and ”somewhat agree”).
The following are some comments from the interviewed
software architects that highlight these aspects:

3SA 10: ”The quality of the solution with more experienced
people considers requirements that less experienced people will not
consider. Then we will have a more stable and robust solution with
more experienced people.”

3SA 7: ”It’s better because sometimes some decisions take a
lot of work and if the decision is made wrong by a less experienced
architect setting the course of a particular project in the next
three, four weeks, we will lose a lot of time. So the participation of
experienced architects at these meetings is imperative.”

3SA 18: ”The conversation is not the same level. You have
experienced architects it is almost that you are reading one another
mind. So it is more diagrammed and less talked about, and when
you have a discussion it is discussions that people go deeper or
that end up becoming a proof of concept because they do not have
a clear answer.”

In our survey, we also asked respondents whether they
felt that overall it is important to include experienced archi-
tects in whiteboard software architecture design meetings.
Among the 46 survey respondents, 37 respondents (80.43%)
strongly agree that it is important to include experienced
architects in the meeting, 6 (13.04%) somewhat agree, and 2
(4.35%) are neutral. The average Likert score for this state-
ment is 4.7 (i.e., between ”somewhat agree” and ”strongly
agree”).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 3: Architects’ Perceptions on Including Experienced Participants in Whiteboard Software Architecture Meetings.

Observation 4
The top five perceptions on including experienced
architects in whiteboard software architecture meet-
ings are: the quality of the architecture is influenced
by the participation of experienced architects; experi-
enced architects are important in a meeting to avoid
making the wrong decisions; experienced architects
are able to work with larger abstractions and have
a facility to discuss those abstractions; experienced
architects push edge cases, because they are aware
of their past mistakes in this regard; and experienced
architects understand the whole context of the de-
sign project.

Beyond ranking the effects on whiteboard meetings of
including experienced architects, we also asked the sur-
veyed architects to select the five most valued qualities that
experienced architects should exhibit out of the eighteen
identified in the discussion of Subsection 4.3.1. Table 3
shows these eighteen qualities, as organized in frequency
by which they were included in the top five.

Observation 5
Posses a foundation of architectural knowledge (pat-
terns, methods, and tools); ability to see and ana-
lyze trade-offs; experience in having designed sev-
eral architectures in the past; breadth of knowledge
across domains, applications, and abstractions; and
ability to both introduce ideas and serve as a spar-
ring partner for them, are the top five most valued
qualities for experienced architects participating in
whiteboard software architecture meetings.

Because most whiteboard software architecture meetings
involve a mix of novice and experienced participants, we

also asked the interviewed software architects about their
perception on mixed teams, which led to eighteen different
perceptions that we asked the surveyed software architects
to rank (see Figure 4). The top five perceptions are: a
mixed team is important for education; those who have less
experience learn more when those who have more experience are
present (average Likert score for this statement is 4.61, i.e.,
between ”somewhat agree” and ”strongly agree”), diversity
is important for a mixed team; not only in levels of experience,
but also in terms of different areas of expertise (4.52, between
”somewhat agree” and ”strongly agree”), a mixed team is
important to sharing the technical view of the decisions with
the team (4.15, between ”somewhat agree” and ”strongly
agree”), a team of mixed levels of experience is better for brain-
storming (4.04, between ”somewhat agree” and ”strongly
agree”), and a mixed team is good because the participants add
questions that one sometimes does not ask oneself (4.04, between
”somewhat agree” and ”strongly agree”). The following are
some comments from the interviewed software architects
that highlight these aspects:

3SA 9: ”I think we should have people with various levels of
experience, because those who have less experience learn more with
those who have more experience. The discussion becomes more
concentrated with experienced people, I think it is natural too, but
it is important for everyone to participate so that everyone has the
complete understanding of what is being discussed and everyone
can learn how to do it, because the less experienced in the future
will be those people who will lead these activities, so they need to
participate from the beginning.”

3SA 11: ”I do not think the result comes out better only
with experienced people. I think the outcome is best suited to
diversity as long as everyone is involved and participating and
have confidence in each other to participate. When there is such
confidence and comfort, I prefer a more diverse environment,
for even in the basic question insights arise, with people who
think differently, better insights emerge, so I see more diversity.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Diversity not only of experience, but also of background of areas.
At our whiteboard meetings, the person who is project manager,
who has a different background, a business analyst, a person of
operation, participates. The best insights come from this mix.”

3SA 6: ”When you are working with something that does
not exist and something innovative, it is interesting to have a
mix of people, even because you do not know what the roadmap
will be or how the architecture will materialize, how will be the
implementation itself, because a lot of architectural level, you can
have assertion, define interfaces among subsystems, but at the time
of going into the details, mainly, for integration between existing
systems, there are many details that only arise when we do a more
detailed design, and this kind of question, the novices are more
willing to do it for lack of knowledge and this makes you think,
explain, review the concepts and you even discovering what you
do not know what you thought you knew and that enriches the
discussion.”

In our survey, we also asked respondents whether it
is important to include both novices and experienced soft-
ware architects in whiteboard software architecture design
meetings. Out of the 46 respondents, 27 strongly agree, 17
somewhat agree, and 1 was neutral with respect to this
statement. The average Likert score for this statement is 4.5
(i.e., between ”somewhat agree” and ”strongly agree”).

Observation 6
The top five perceptions on including novice and
experienced participants in whiteboard software ar-
chitecture meetings are: a mixed team is important
for education; those who have less experience learn
more when those who have more experience are
present; diversity is important for a mixed team,
not only in levels of experience, but also in terms of
different areas of expertise; a mixed team is impor-
tant to sharing the technical view of the decisions
with the team; a team of mixed levels of experience
is better for brainstorming; and a mixed team is
good because the participants add questions that one
sometimes does not ask oneself.

4.4 Documentation (RQ3)
Even the most suitably designed software architecture is
useless if the people who need to use it do not know
what it is, cannot understand it well enough to apply it,
or misunderstand it and apply it incorrectly. All of the
effort, analysis, hard work, and insightful design on the part
of the architects will have been wasted. Thus, creating an
architecture is not enough. It has to be communicated in a
way that stakeholders can use it properly [45].

From the interviews, we learned that whether an ar-
chitect documents their whiteboard software architecture
meetings varies drastically, from never to always. We used
the survey to better understand how often they do. Among
the 46 survey respondents, 3 (6.53%) always document
what happens during the meetings, whereas 21 (45.65%)
document most of the time, and 11 (23.91%) only about
half of the time. Ten others (21.74%) infrequently document
what happens during the meeting and one (2.17%) does not
document ever. The following are some comments from our
software architects (SA) that highlight these aspects:

Ability Frequency

Posses a foundation of architectural knowledge
(patterns, methods, and tools)

29

Ability to see and analyze trade-offs 25
Experience in having designed several architec-
tures in the past

21

Breadth of knowledge across domains, applica-
tions, and abstractions

21

Ability to both introduce ideas and serve as a
sparring partner for them

19

Ability to communicate with the team 19
Depth of knowledge in a particular area of spe-
cialty (domain, technology)

16

Ability to facilitate fruitful discussions 15
Ability to mentor others 11
Understand failure cases 10
Experience in having participated in many differ-
ent projects

10

Ability to stop the team from going in the wrong
direction

8

Understanding of the architecture of other existing
systems

8

Many hours of hands-on software development 6
Awareness of technology trends 5
Ability to interact positively with the project man-
ager

4

Ability to diffuse interpersonal situations 2
Knowledge of existing design decisions and ratio-
nale

1

TABLE 3: Eighteen Most Valued Qualities for Experienced
Architects.

3SA 14: ”We always take pictures of the whiteboard. Some-
times we have to delete the whiteboard, so we take a picture, then
take it again, so sometimes we have three, four pictures of a single
meeting. Usually this is broken. If it is a very complex flow, we
digitize it in the sense of redoing that flow with some software,
with some presentation or in the same flow draw itself. Sometimes
we have to better specify what we have said, so we write a story
and sometimes we have to break the cases and better document
what each of those parts will be.”

3SA 8: ”I do not particularly like documentation very much
because it is very difficult to keep the documentation current with
reality. It is very common we left an architecture meeting, go
to a Wiki, we draw everything, we put text, images and I have
particularly never seen this evolve in conjunction with the code.
You get some of reference, initial, etc, but at some point this will
be outdated. At some point people will no longer update that. It’s
very difficult for any change people update the document to reflect
what’s happening. So I am particularly against documentation:
over documentation.”

4.4.1 Documentation Approaches
During the interviews, we also asked the software architects
to describe what forms of documentation are used. From the
answers, we identified fifteen different approaches, which
we seeded into the survey to understand how many of
them used each of the different approaches (see Table 4).
The top five documentation approaches are: photo(s) of the
whiteboard, Wiki pages, notes taken during the meeting by one
or more participants, notes produced/polished after the meeting,
and photo(s) with additional notes. The following are some
comments from our software architects (SA) that highlight
these aspects, together with the documentation approaches:

3SA 24: ”I never document in a formal way. So, many times,
what is happening is that you do is you designs things on the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 4: Architects’ Perceptions on Having a Mixed Team of Participants in Whiteboard Software Architecture Meetings.

whiteboard and you make photos and as I said you put them either
into a folder.” [Photo (s) of the whiteboard].

3SA 15: ”It usually depends on the type of discussion. If I
want to validate just one quick idea, just to discuss one detail,
usually we only take a photo of what is on the whiteboard. This
is very common. So we put the own photo of the Wiki directly,
to show that it had the discussion. We try to document and to
register, unless it is a type thing, we are going to join quickly and
to discuss a thing of half an hour. But usually, we usually take
a picture to remember what we discussed, but the general rule
is to take that and write a page or two. Not documenting is an
exception.” [Wiki pages].

Approach Frequency

Photo (s) of the whiteboard 38
Wiki pages 32
Notes taken during the meeting by one or more
participants

28

Notes produced/polished after the meeting 17
Photo(s) with additional notes 17
UML diagrams 15
Powerpoint slides 13
Informal record of decisions, alternatives, and ra-
tionale for choices

11

Informal record of decisions 10
User stories 9
Flow charts 8
We leave the whiteboard up (“Do not erase”) 7
Architecture Decision Records (ADRs) 6
Use cases 6
Filling of Jira issues, stories or epics with decisions 1

TABLE 4: Fifteen Approaches Used to Document
Whiteboard Software Architecture Meetings.

Observation 7
A majority (76.09%) of software architects always
or most of the time document what happens in
whiteboard software architecture meetings. Photo(s)
of the whiteboard; Wiki pages; notes taken dur-
ing the meeting by one or more participants; notes
produced/polished after the meeting, and photo(s)
with additional notes are the five most common
documentation approaches used by the software ar-
chitects to do so.

4.4.2 Reasons to Document the Meetings
Complementing whether software architects document
what happens in whiteboard software architecture meetings
and how they do so, we also sought to understand their pri-
mary reasons for investing time and effort in documenting.
From the interview sessions, we identified twelve reasons,
from which we asked each survey respondent to identify
five.

As shown in Table 5, the five reasons that were most
frequently selected—by a good margin—are: serve as a start-
ing point for follow-up discussion in future meetings; retain as
evidence for later of the decisions that were made; participants
forget; communicate the outcomes to others on the project; and
different participants have different beliefs regarding the outcomes
of a meeting; documenting helps disambiguate. The following
are some comments from the software architects that ex-
emplify some of these aspects, together with the reasons to
document the meetings:

3SA 13: ”They are of course used because you take this as a
starting point to continue the work. So, they are essential to the
participants and sometimes also to other interested people who get
the results by email. And later on they are looked at, as I said the
meetings are just the starting point to discuss part of a solution
or to provide some analysis that you can support next discussion



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

with data.” [Serve as a starting point for follow-up discussion
in future meetings].

3SA 14: ”The meeting cannot stay in people’s head, it needs
to be documented in some way. Someone needs to commit to trans-
ferring that knowledge that has been generated, sometimes on the
whiteboard itself or at other times in discussions, someone needs
to be documenting this so that it becomes a task.” [Participants
forget].

3SA 9: ”Every time we have a new person on the team,
we recommend [ed: them] to see the architecture documents and
present doubts or explain his understanding of the architecture. It
is to make sure [ed: they] understood what we designed. So, the
documents are used as reference, whenever someone has a doubt
about a piece or a component designed, we recommend the person
to go back to the architecture document.” [Use later to educate
new people on the project].

Reason Frequency

Serve as a starting point for follow-up discussion
in future meetings

38

Retain as evidence for later of the decisions that
were made

33

Participants forget 30
Communicate the outcomes to others on the
project

27

Different participants have different beliefs regard-
ing the outcomes of a meeting; documenting helps
disambiguate

26

Use later to educate new people on the project 14
Validate in detail whether the design ideas indeed
can work as intended

11

Train the team on the design 8
Enable reuse of the design ideas in other design
projects

8

Present a preliminary solution to the customer 5
Participants sometimes second-guess what they
did

5

Include as part of the design that we are handing
off to the customer (so they can do the implemen-
tation work)

3

TABLE 5: Twelve Reasons Why Software Architects Choose
to Document Whiteboard Software Architecture Meetings.

Observation 8
The top five reasons to document whiteboard soft-
ware architecture meetings are: serve as a starting
point for follow-up discussion in future meetings;
retain as evidence for later of the decisions that
were made; participants forget what was discussed;
communicate the outcomes to others on the project;
and different participants have different beliefs re-
garding the outcomes of a meeting/documenting
helps disambiguate.

4.5 From Whiteboard Architecture to Code (RQ4)

Documenting the outcomes emerging from a whiteboard
software architecture meeting is important, but equally im-
portant is recognizing that what initially has been designed
and documented may well change. Such changes may ac-
tually already emerge just from the act of documenting
(an architect more formally documenting decisions after a
meeting may realize that some aspect of the architecture

as designed has a flaw and decide to address the flaw on
the spot since it is not too difficult) or may happen later
(for example, when the architect debriefs the team on the
decisions made and in the process of explaining realizes an
issue, or when a developer responsible for making some
changes in the midst of making those changes encounters a
problem in how the envisioned changes are incompatible
with some aspect of the current code). While much has
been said to date about the problem of architectural decay
[24] and erosion [46], little work to date has studied what
kind of decay and erosion happen (exceptions exist, e.g.,
[47]) and no work to date has examined the deviations from
whiteboard software architecture meetings to eventual code.

In our interviews, we asked architects about what kinds
of changes they have witnessed being made to the archi-
tectural designs and plans they have created in whiteboard
software architecture meetings. Table 6 shows the ten differ-
ent aspects that were recounted by the software architects, in
order of how often they were experienced by the surveyed
software architects. The top five aspects that change from
the whiteboard to implementation are: interface of major
components in the architecture; implementation details; a small
handful of components in the architecture; detailed modules inside
architectural components; and database schema. The following
are some comments from the interviewed software archi-
tects that highlight these aspects, together with the kinds of
changes:

3SA 9: ”I think when you do not think of all the details. I
remember that we were once designing part of the KNoT device
protocol and we thought and wrote it on the whiteboard, but
we did not think at all. So we had to add more things we had
not thought about when we were designing. They are things like
that. They are parts of the implementation that you do not think
about when you’re on the whiteboard, but then you realize you
need it in implementation. It is which I think usually changes.”
[Implementation details].

3SA 8: ”What I see to change is usually the format of the
messages. We define the messages with certain attributes and
then we see that something is missing and we have to adjust
with more or less attributes due to performance, for example,
the payload got too big and we need to decrease the payload
due to performance or we need to send more attributes because
the domain or functional requirement changed on the other side
and we will need to consume more information than what was
originally intended. It is something that usually changes a lot over
the life of an application. It is something I see happen frequently,
we define that the message will be this and for some reason we
have to change that message or increase or decrease for some
reason.” [Format of messages connecting various parts of the
architecture].

Observation 9
The top five aspects that change from whiteboard
architecture to implementation are: Interface of ma-
jor components in the architecture; Implementation
details; A small handful of components in the archi-
tecture; Detailed modules inside architectural com-
ponents; and Database schema.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Aspect Frequency

Interface of major components in the architecture 34
Implementation details 28
A small handful of components in the architecture 24
Detailed modules inside architectural components 21
Database schema 20
Driving scenarios 19
Format of messages connecting various parts of
the architecture

13

Overall architectural solution 13
Key algorithms 7
Change of proposed implementation (time or
scope)

1

TABLE 6: Ten aspects that change from sketch to
implementation.

4.5.1 Rationale for Changes

After identifying the aspects that change from sketches to
code, a natural step was to understand the rationale for the
changes. Using a similar approach, from the interviews with
the software architects we identified seventeen reasons to
make changes from whiteboard architecture to implemen-
tation and then asked the surveyed software architect to
mark the five that they experienced most frequently. Table
7 shows the seventeen reasons to make changes together
with their frequency. The top five reasons to change are:
certain aspects of the solution are over-simplified and turn out
to be more complex; architects discover a better solution than the
original at the whiteboard; multi-dimensionality of the problem –
qualities that were not considered (or merely lightly considered)
during the whiteboard meeting are negatively affected by the
planned solution; the project is Agile, and thus had to respond to
new circumstances; and performance. The following are some
excerpts from the interviews that highlight a pair of these
aspects, together with the rationale for the changes:

3SA 19: ”Good question. What sometimes changes, in fact,
does not change so much because what we do on the whiteboard
is very macro, it is an overview, it does not go as far as detail,
but what sometimes changes is that sometimes you think of
using a technology, a framework, and when you go to Google,
Stack overflow, or talking to a colleague, you discover another
technology is better. For example, a text search with Solr, and
you find out that everyone is using Elastic Search, and you
think: let’s use Elastic Search. So you find you have a more
interesting alternative.” [We discovered a better solution than
the original we devised at the whiteboard].

3SA 13: ”So, sometimes you get to know more details about
some aspects so, we have multi-dimensional problems usually. So,
this is embedded software which is variable, being embedded it is
also resource-constrained, it is real-time running on the multicore
processors and there are also some other architectural qualities,
maintainability and so on that need to be addressed. So, frequently
the whiteboards discussions concentrate on some specific quality
or on some specific problems. Only then you realize: Ok if we
do it that way then maybe a third or fourth architectural quality
will suffer.” [Multi-dimensionality of the problem – qualities
that were not considered (or merely lightly considered)
during the whiteboard meeting are negatively affected by
the planned solution].

Reason Frequency

Certain aspects of the solution were over-
simplified and turn out to be more complex

28

We discovered a better solution than the original
we devised at the whiteboard

23

Multi-dimensionality of the problem – qualities
that were not considered (or merely lightly con-
sidered) during the whiteboard meeting are nega-
tively affected by the planned solution

23

The project is Agile, and thus had to respond to
new circumstances

23

Performance 19
Customer requirements changed midstream 17
Technology/platform limitations 17
Team made false assumptions 14
Difficulty in mapping the high-level solution to
actual code

9

Scalability 9
Certain predictions of how the architecture would
behave did not hold up

8

Reliability 7
Lack of having documented what we did at the
whiteboard

3

Team misunderstood the architectural design 3
Social problems with the team 2
All the above at different times, it is very context
dependent

1

The original meeting was not conducted very well
and thus not effective

1

TABLE 7: Seventeen Reasons to Make Changes from
Whiteboard Architecture to Code.

Observation 10
The top five reasons to make changes from sketches
to implementation are: certain aspects of the solu-
tion are over-simplified and turns out to be more
complex; architects discover a better solution than
the original at the whiteboard; multi-dimensionality
of the problem – qualities that were not considered
(or merely lightly considered) during the whiteboard
meeting are negatively affected by the planned solu-
tion; the project is Agile, and thus had to respond to
new circumstances; and performance.

4.5.2 Missing Meeting Aspects as Potential Causes
One somewhat unexpected theme that emerged from the in-
terviews is that the architects talked about ‘what could have
been’: aspects of whiteboard software architecture meetings
and how they were conducted that, had they been done
differently, could perhaps have avoided future changes
being necessary. Based on the interviews, we identified
sixteen such aspects from which, once again, each surveyed
software architect could tag five as ’missing aspects’: aspects
that had they been incorporated better may have improved
prior meetings.

The top five aspects that resulted were: sufficient infor-
mation about the problem to design the solution; understanding
of the relative priority of various design considerations; metrics
that delineate ‘success’ of the architectural design; validity of
assumptions about decisions, as to whether they hold up at imple-
mentation time; and details about the envisioned implementation.
Table 8 shows the sixteen aspects in order of frequency in
which they were tagged by the surveyed architects. The
following are some comments from the software architects:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

7SA 12: ”That’s a good question. I think it’s the depth of the
impact of architecture on the solution. Sometimes this happens, for
example, we integrate a video platform of a television channel with
110 thousand videos approximately. We drew the entire model
while we did not have the total volume of videos from the customer.
Sometimes we have little knowledge of the whole context the
solution requires and this has a lot of impact on implementation.
It makes a very big difference you implement a solution for 10,000
and another for 110 thousand videos with 3T of storage. What
is missing sometimes on the whiteboard is enough information to
get the solution.” [Sufficient information about the problem
to design the solution].

7SA 8: ”Success criteria and evaluation criteria. Whether it
is good or not and how we are going to measure things. As we
measure performance, uptime, fault tolerance, this kind of thing
is invariably missing.” [Metrics that delineate ‘success’ of the
architectural design].

Aspect missing Frequency

Sufficient information about the problem to design
the solution

29

Understanding of the relative priority of various
design considerations

24

Metrics that delineate ‘success’ of the architectural
design

19

Validity of assumptions about decisions, as to
whether they hold up at implementation time

19

Details about the envisioned implementation 19
Certain requirements 18
Agenda for the meeting 14
Details about the current implementation 13
Test cases governing the architectural design 9
Dependencies among the various whiteboard
sketches

9

Context diagram 9
Interfaces among the components 8
Structure of the messages exchanged by the com-
ponents

2

An overview of the project 2
Clear problem to be solved 1
Clear next steps and assigned responsibilities 1

TABLE 8: Sixteen Aspects Missing from Whiteboard
Software Architecture Meetings that Could Have Improved

the Outcomes.

Note how these factors represent a mix: some concern
having additional information at hand, some the conduct of
the meeting itself, some additional angles of the design that
they wished they had worked out in more detail, and some
the criteria by which the architecture eventually would be
judged.

Observation 11
The top five aspects missing from the whiteboard
software architecture discussions are: sufficient in-
formation about the problem to design the solution;
understanding of the relative priority of various de-
sign considerations; metrics that delineate ‘success’
of the architectural design; validity of assumptions
about decisions, as to whether they hold up at im-
plementation time; and details about the envisioned
implementation.

4.6 Digital Tools (RQ5)

Previous research has shown that different kinds of media
are used for architecture design. Beyond the whiteboards,
these media may include scrap paper to informally sketch
and model, but also software tools like Photoshop and
Powerpoint [30]. The past decade years also has seen the
emergence of a new crop of tools, such as the Microsoft
Surface and other devices which enable touch based design
and cloud-based, remote collaboration oriented whiteboard
tools such as Gliffy4 and Miro5. These kinds of tools offer
new opportunities, both in terms of how tams work together
and who is brought into meetings (e.g., remote participation
is much easier so meetings can be more inclusive) and
in terms of moving outcomes downstreams (e.g., many of
these tools have export capabilities, some are tightly inte-
grated with other tools such as Wikis and task managers).
Thus, it is important to understand software architects’
perceptions about these digital tools and the impact on their
activities. We used the survey to do so.

Among the 46 survey respondents in our survey, 21
(45.7%) software architects already had experience in us-
ing a digital whiteboard tool in their software architecture
design meetings. Twenty-five (54.3%), however, had never
used such a tool. We asked the participants about whether
they currently still use a digital whiteboard tool in the
meetings, with 10 (21.7%) of the participants actively using
such a tool and 36 (78.3%) not (even if they had experi-
mented with these kinds of tools before). Finally, we asked
the participants whether they would like to use a digital
whiteboard tool in a software architecture design meeting:
34 (73.9%) participants said that they would like to use such
tool and 12 (26.1%) preferred not to. The following are some
comments in this regard:

3SA 7: ”Perhaps, one thing I have great curiosity about being
used are the digital whiteboard meetings that store those artifacts
in some media shared among all team members. I do not remember
seeing this working on any team. In fact, I’ve never been involved
in any project that has used something like Microsoft Surface.
Something you scribbled on the spot and everyone could record
that to be shared later. To be kept as a whiteboard record without
being a photo, something that you could search over, something
that you could consult very fast without being an image basically.
Perhaps this changed the performance of architectural meetings or
perhaps facilitated employee turnover, entering or leaving a new
developer or team developer, he could gain access to architectural
evaluations history, architectural meeting history, and everything
that was written in that digital whiteboard. I wanted to have this
notion, but I have not, I do not know a team that has used this kind
of digital artifact to make life easier. I’m more curious actually.”

7SA 28: ”The idea of using digital whiteboards is a good
one, but I’ve never done it. I guess because the current solutions
available neither offer satisfactory latency nor they provide the
natural and seamless experience that make whiteboards meetings
appealing in the first place.”

4. https://www.gliffy.com/
5. https://miro.com/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Observation 12
45.7 % of software architects already used a digital
whiteboard tool in a software architecture meeting.
However, only 21.7% of them are currently using a
digital whiteboard tool in their projects.

5 IMPLICATIONS

Our study takes a look at software architecture meetings
at the whiteboard, with its findings representing a first set
of observations concerning these meetings. Some of the
findings align with findings that have been made about
whiteboard meetings more broadly. As one example, the
fact that architects go to the whiteboard for a variety of
reasons aligns with programmers using the whiteboard for
many different reasons [20]. Other findings align with the
literature on expertise and the roles that experts and novices
play in creative endeavors by, for instance, confirming that
the questions asked by novices can cause experts to reflect
more deeply and as a result reassess assumptions that
hitherto had not been considered important to discuss [48].
Our paper anchors these general findings into the specifics
of whiteboard software architecture meetings and combines
them with other, original findings pertinent to this setting.
Below, we discuss the collective implications for research,
practice, and tools.

Research. Different meetings will feature a different mix
of levels of experience in participants (e.g., mostly novices,
a relatively even mix of experienced architects and novices,
mostly experienced, exclusively experienced). Some of this
will depend on the purpose of the meeting as well as the
stage of development of the architecture. The perceptions
of the architects as discussed in Section 4.3 on what they
believe the effects of different levels of experience are on
how the meetings proceed remain perceptions. The fact that
many of the perceptions receive a significant amount of
agreement from the surveyed architects implies it is likely
that many of these perceptions are largely accurate. At the
same time, it is important to verify these perceptions with
rigorous studies on the impact of the mix of experience in
team composition on both how whiteboard software archi-
tecture meetings proceed as well as their eventual outcomes.
For instance, one of the software architects observed: ”The
quality of the solution with more experienced people considers re-
quirements that less experienced people will not consider. Then we
will have a more stable and robust solution with more experienced
people.” Yet, as we already mentioned, it is also believed
that novices can cause experienced architects to reconsider
aspects of their design because of seemingly ‘ignorant’ ques-
tions, which equally can impact the resulting quality. Exactly
where the balance lies will need to be studied carefully,
perhaps along the lines of the experiments of [49], [50],
[51], [52] .

The behavioral and psychological aspects of these kinds
of meetings should also be further investigated. Our find-
ings are varied in this regard, ranging from the perception
that novice participants may be ”afraid to speak”, to the
”difficulty to reach agreement” with merely experienced
people, to the impact of ”inflexible participants” and ”dom-
inant know-it-all personalities”, to the importance of good

facilitation to having a successful meeting. ”Another advice
has to do with facilitation as well. It is making sure everyone
in the meeting is heard. Sometimes we have more talkative and
less talkative people and sometimes we have opinions that are
left out because some people are more shy or not so vocal. So
to have an effective meeting, facilitation is a crucial point.”
Studies examining meeting conduct and people interactions
exist in a more general sense (e.g., [53], [54]), but the
domain of software and particularly software architecture
has not been studied to date in that regard. With software
exhibiting unique characteristics and challenges when it
comes to meetings at the whiteboard, observational studies
considering these aspects are welcome.

The connection from whiteboard software architecture
meetings to eventual code should also be further inves-
tigated. As one architect commented: ”It depends a lot on
the context. But the ones I’ve worked with most intensely, they
were performance decisions. For example, some specific strategy
of data processing. Which strategies were going to be used. It
was fully reflected in the code. Because we drew the threads, how
many threads would be used, what size the data chunk would
be considered, who would play the role of the reader, who was
going to turn the data, and who was actually going to save,
so in that case it was reflected directly in the code. Not all of
them are, but these and others related to performance problems,
which I remember and participated in, all reflected in the code.”
Such detailed traceability of in this case architectural design
decisions is rarely the case. Indeed, from our findings, it
is clear that the architects are keenly aware a disconnect
exists, that a range of canonical changes tend to be necessary
when an architecture as designed is refined into actual code,
and that proper ways of documenting what happens at the
whiteboard to inform future development remain lacking.
The use of Architectural Decision Records (ADRs) has re-
cently gained some traction (six out of 46 surveyed said
they have used ADRs, conform Table 4 and the literature
is also reporting on the role of ADRs [55]), with one of
the architects commenting: ”Lately, we are experimenting with
a technique called ADR, a template that we put in archives of
the repository we are developing that documents the decisions.
Then you open a pr file, with that decision, someone approves
immediately and gets that decision. In general, it is a very simple
and short document, sometimes it does not reach half a page of
a document, but we record a decision that we want to record
and return to it when we are making other decisions.” How
the use of ADRs influences the ability to better connect
whiteboards meetings to code is unknown and ADRs are
merely one of multiple possible approaches. While studies
exist of architectural decay and erosion in the literature
(e.g, [24], [46], [47]), these studies tend to compare the as
designed architecture with the as implemented architecture.
Exactly how and why decay and erosion took place over
the life of a system, however, is not documented (i.e., the
various reasons from Table 7 mapped onto actual moments
and context within the development project). Field studies
that examine precisely where and when breakdowns occur,
how teams overcome those breakdowns, and what tools
were in use yet failed to provide the necessary support are
necessary.

We also note that, while our study was agnostic whether
the whiteboard meetings were entirely collocated, fully re-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

mote, or hybrid, we note that many architects imagined and
recited collocated meetings in their answers. While we did
ask the interviewed and surveyed architects about their use
of and interest in electronic whiteboard tools to support
distributed participation, such use is still limited and it is
therefore important to in future more explicitly focus on
the needs in distributed and hybrid settings, particularly
given today’s COVID-19 induced reality but certainly not
exclusively so as distributed work equally took place before
COVID-19: ”We’ve got hugely distributed teams so face to face
meetings are becoming less and less important. In fact, I’ve been
working almost entirely remotely with people so we kind of we
do sometimes have we can make a virtual whiteboard at design
meetings but you know I think the tools for that are fairly
primitive now, right.” A great many studies are emerging
at this time surrounding the topic of remote and hybrid
meetings (e.g., [56], [57]), including some emerging work on
maintenance design by an architecture team [58], yet a focus
on the creative and design aspects of whiteboard software
architecture meetings remains absent.

Finally, we note that the capture of information from
these meetings is considered important [59], but little to
no studies exist of how their importance actually plays
out downstream in practice. Intuitively, the architects know
they need to capture what was being discussed, but scant
literature exists that shows the benefits of doing so: when
is this info used, by whom, how is it making a difference,
and what happens when the information is not available?
Such studies could change improve the understanding as to
why one should capture outcomes from the meetings in a
concrete form.

Practice. From our study, several important suggestions
arise for practicing software architects and how they choose
to conduct and engage in whiteboard software architecture
meetings. First and foremost is the consideration that ar-
chitects should carefully select the right mix of participants
to the meeting. While this sounds in some ways is too
straightforward and perhaps even redundant advice, as
architects typically do consider whom they invite to the
meetings and why, three dimensions stand out to which
they should pay particular attention: experience, different
perspectives, and relevant expertise. In terms of experience,
the architects that we studied strongly feel that mixed levels
of experience should be brought into the room, from highly
experienced architects to much more novice architects. Each
group challenges the other, causing broader discussions to
take place that both consider aspects of the architecture that
otherwise would not be considered and teach the novices
how to become better architects through their participation
(a key trait of experienced software designers is continuous
learning about new technologies and other types of systems
as key traits).

Beyond such mixed levels of experience, including meet-
ing participants who bring different perspectives to the
discussion is crucial: ”What also helps when you have 2-4
participants is that they should have different perspectives, so they
come from different organizational background or have a different
expertise focus. You cannot know everything as a single person
and if you get the second person which is similar to you from
the profile it does not double the knowledge. But if you have a
few people with different perspectives then you shed light from

different directions on the problem and usually someone has a
different perspective and sees other aspects of the problem which
you could not come with because you do not even know that such
thing exists”. Complementing experience and perspective is
the importance of including people who have the relevant
expertise: ”Another aspect is to bring the right people to the
meeting. I have seen meetings that were not effective because we
did not have the right people at the meeting. Let’s discuss deploy,
containerization, but no one knows enough of Docker to talk about
it, does not know what the possibilities are, etc., so bringing people
who know how to talk about it is important to get the findings
faster”. It still happens all too frequently that meetings are
conducted that fail these inclusion criteria.

Hand-in-hand with whom to bring into the meeting is
the fact that architects should promote psychological safety
for the participants. ”Promote psychological safety, that is,
psychological security for people to express opinions, so they do
not feel frightened. When you are going to make a comment,
which is a complete bullshit, that’s fine, this should not have a
consequence, it should not be mocking an opinion of a person who
is sincere and is willing to contribute to the meeting. So the person
leading the meeting needs to worry about all of these aspects so
he can extract the most value from it”. The importance of such
psychological safety is well-known in the literature on how
to conduct high-quality meetings (e.g., [60], [61]), but it is
an important reminder for architects to recognize that one
of their roles in these meetings is to create a welcoming and
open environment for discussion.

Other well-known strategies for conducting high-quality
meeting were recognized by the architects, ranging from
making sure that everyone is heard (”Sometimes we have
opinions that are left out because some people are more shy or
not so vocal. So to have an effective meeting, facilitation is a
crucial point”.), defining and publicizing an agenda well
before the meeting (”I think that it is very important to have
a meeting agenda. Sometimes it happens the meeting gets away
from the topic and what we do is to set another meeting for
the new, another topic. We try to stay focused on the problem
that we have on our hands and use the time exactly for that”.),
to sharing relevant materials beforehand so that meeting
time can be spent constructively considering materials that
have been read by the participants before the meeting starts
rather than actually reading the materials on the spot, to
including a ”facilitator” (”Regarding agreeing and making the
meeting effective, it has a bit of facilitation as well. If facilitation is
active, we can reach conclusions faster. Usually we are discussing
a diagram or some proposals and we have opposing opinions,
different proposals, and sometimes the quickest conclusion is: let’s
test both. And there must be a maturity in the facilitation to reach
that consensus quickly.”). In many ways, whiteboard software
architecture meetings are just another type of meeting, so
it is not surprising that these kinds of general lessons
also apply here. We do note the importance of sharing
relevant materials beforehand. From Table 8, it is clear that
a significant problem in these meetings is a lack of critical
information, with the top four being insufficient information
of the problem, knowledge of the relatively priority of var-
ious design considerations, metrics that delineate success,
and an understanding of the assumptions being made and
how valid those assumptions are. This is information that
an architect could and should prepare beforehand, as it



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

otherwise can become quickly lost in the discussion or, more
likely yet, be seen in the meeting as a distraction from
progress when participants choose to bring up not knowing
something and asking for clarification, or, worse yet, simply
be forgotten to be brought into the discussion.

The role of the architect themselves is also important in
setting an example for others to follow. For instance, expe-
rienced software architects must defend their decisions but
not be hostage to them: ”You can discuss and understand the
arguments, defend your proposal and also have the discernment,
although difficult, that if another alternative presented is better
than yours, you can also understand that it is the one that should
be chosen”. Similarly, experienced architects typically set an
example in explicitly seeking out to think about and discuss
corner cases [37]: ”Because sometimes we are just thinking about
the happy flow and what are the possible shits that will happen?
So having a person who is going to be provoking this, provoking in
a way that everyone can hear the opinion of each other, I think it is
a very well conducted meeting. Any meeting that is very partial,
only one person talking too much is a meeting that is not being
well conducted.” In so setting the tone, the architect invites
perspectives and ideas and also shows how to examine the
emerging design or architectural changes from all angles,
without necessarily being negative about it. After all, it is a
work in progress and its eventual quality is essential.

Documentation is something that must be considered
carefully. On the one hand, the meeting cannot stay in
people’s heads. On the other hand, it is important to not
spend too much effort documenting: ”Because it will change
and it is very difficult to maintain the consistency of what is in the
code with this abstraction which is its architecture. It is to spend
bullet with deceased dead. It should be used as a reference, as I said:
you say when we started was like that and we changed because of
these aspects, it is much more static you document the principles
that were used in your architecture than the architecture draw.”
That said, it is clear that the interviewed and surveyed
architects firmly believe some form of documentation is
needed, but still struggle with the best ways of doing so.
In terms of concrete advice, it might be worthwhile to focus
the documentation aspects on those parts of the architecture
that are likely to change (conform Table 6). This is somewhat
a counter-intuitive idea, as normally one tends to concen-
trate on documenting those parts of the architecture that are
well understood and firm. Yet, documenting those parts that
are more likely to change has the potential benefit of creating
artifacts that can be discussed earlier (and thus with less
potential cost in terms of already implemented code) and
that, by virtue of perhaps being documented as tentative
can invite such further discussion. Moreover, when changes
are needed, they can be done with an explicit representation
of what was discussed in the past, which represents an
important starting point and avoids having to re-invent the
wheel or re-constructing the prior discussion.

Tools. Beyond the traditional physical whiteboard with
pens and an eraser, which still continues to be used often
for in-person meetings, many tools have been developed
that provide a virtual whiteboard experience, enabling team
of remote participants to work together (e.g., Miro6, Jam-

6. https://miro.com/

board7, Mural8, ConceptBoard9). Particularly over the past
few years, these tools have become increasingly popular and
have seen a significant expansion in the types of features
they include. That said, from the interviews and the sur-
vey, room for improvement exists. One aspect concerns the
relationships among whiteboard sketches. When they work
at the whiteboard, whether in a single meeting or across a
series of meetings, architects tend to produce a wide range
of sketches [22]. These sketches relate to one another in all
sorts of ways, be it one sketch being a refinement of another,
a sketch offering an alternative to another sketch, or some
sketch providing a UI that is tied closely to the architecture
being worked on in another sketch, among others. Such
relationships can help both in understanding the sketches
at some later point in time as well as in organizing them
proactively for later usage. ”Because you always try to be
fast so to say and to focus on certain aspects. But also, as a
whiteboard does not really allow for it you don’t go back and look
at a series over maybe five to 10 sketches aligned with each other
again. And as you’re not really doing that and you’re not really
creating consistency, this is often missing in the end.” The kind
of functionality being explored in Calico to explicitly type
the relationship between different whiteboards may provide
a starting point for providing this kind of functionality [62].

Another aspect that was mentioned frequently was col-
laborative design. Nearly every virtual whiteboard already
supports multiple participants working in parallel on the
same sketch, meaning that, on the one hand, collaborative
design is already supported. On the other hand, as one
software architect said:”So there’s a lot of challenges for that.
It’s time zones, as well as well as the technology that lets us do
collaborative design online. So I think that a lot more research
needs to be done into how to do distributed collaborative designs.
How people can work together when they’re not physically co-
located. We have a lot of it, if we’re timezone compatible like I
do a lot of work with people. So, we’re only an hour off and we
have communication mechanisms you know instant messaging
mechanisms of various kinds of let up but let us ping somebody.
Kind of like just walking down to the cube and talking to them.
But then to do it to actually do any kind of design it usually
generates just into a voice call it with no other tools, so it gets to
be kind of hard to manage.” What this comment points to is a
mode of work that blends synchronous and asynchronous
participation. Existing tools are ill-equipped for such work,
focusing on support for synchronous collaboration. That
said, features such as commenting through sticky notes do
begin to move in the right direction, but more is needed,
both in terms of actually understanding what the needs of
architects are when it comes to such blended group work
and how to best support those needs.

Search and retrieval features were also mentioned. ”Per-
haps, one thing I have great curiosity about being used are the
digital whiteboard meetings that store those artifacts in some me-
dia shared among all team members. I do not remember seeing this
working on any team. Something you scribbled on the spot and
everyone could record that to be shared later. To be kept as a white-
board record without being a photo, something that you could

7. https://workspace.google.com/products/jamboard/
8. https://www.mural.co/
9. https://conceptboard.com/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

search over, something that you could consult very fast without
being an image basically.” While existing virtual whiteboards
do support keeping whiteboards and their sketches around
in perpetuity, and while existing features such as folders and
tagging help, the more sketches are kept, the more difficult it
becomes to locate that one sketch one might need. Research
has studied tagging as a means of retrieving video segments
(e.g., [63]), handwriting recognition so to beautify and make
machine readable—and thus searchable—handwritten text
in sketches (e.g., [64], [65]), and voice-based snapshots to
capture and make searchable important design moments
(e.g., [66], [67]), all of which could provide inspiration and a
technical basis for more advanced support in existing virtual
whiteboards.

Finally, better support for the transition from sketches
to other, downstream artifacts was also identified as an
important feature to be developed. ”If we had a smarter way of
recording it on whiteboard, as if it was a whiteboard, using simple
scratches and boxes, this would automatically be transformed or
suggested a certain transformation to the digital artifact as if it had
constructed classes or class diagrams or component diagrams or
sequence diagrams based on their whiteboard scratches. Perhaps,
what is still missing is to understand that this transition is
necessary, because the whiteboard is extremely useful, but often
badly recorded, we cannot search it, we cannot verify what was
decided at the previous meeting for the which is being decided now,
we cannot compare the decisions and know that you’ve been wrong
for three months and that three-month error could be recorded
somewhere. So I think the transition for the digital should be
smarter, something like: ”look, you are trying to write a structure
that some time ago you have already defined, you do not want to
reuse what you did? Or you’re trying to make an implementation
much like another system that did the same thing in a particular
architecture sharing repository, let’s say.” We make two obser-
vations about this desire and particular comment. First, we
note that it once more points to the prior point of needing
better facilities to search for past content. Second, we note
that part of what is being asked for already exists: current
virtual whiteboards can turn hand-drawn sketches into
more formal diagrams and representations that can then
be exported to various other tools. The comment, however,
seeks a much deeper integration, one in which such more
formal documents and even prior sketches are fed back into
the virtual whiteboard experience to more deeply assist the
architects at work. Other comments similarly highlighted
the need for not just supporting designing in the right
notation, but to actually offer more ‘smart support’ for the
activities at hand.

Education. The insights we garnered provide fertile
ground for how students are educated in the topic of
software architecture as well. Beyond the need to cover
architecture as a separate topic (which many programs do
only peripherally so, although exceptions exist [68], [69]),
perhaps the most important factor is to teach the impor-
tance of architecture meetings at the whiteboard: what is
typically discussed, how to conduct them, what kinds of
perspectives should be brought to the discussion, the role of
sketches in supporting the discussion taking place, and how
to take those sketches into further development activities,
and more. Given that the architecture forms the core of
any system, and given that much of architecture design

and refinement takes place at the whiteboard, the need for
careful consideration how to teach these topics best is high.
Existing courses on how to design software (e.g., [70], [71],
[72]) as well as software maintenance (e.g., [73], [74]) might
provide both inspiration and serve as potential starting
points in this regard.

Beyond traditional courses in degree programs, we also
suggest more advanced, turn-key architecture courses in
which the human and social aspects of meetings are ex-
plored side-by-side with the technical considerations that
go into architecture design and evolution. Topics in such a
course should include team composition, the importance of
mixed level participation, proper meeting organization and
conduct, and perhaps particularly what architects can do to
ensure that less information is missing from the meetings
they conduct.

6 THREATS TO VALIDITY

In this section, we discuss several threats to validity for our
study.

Conclusion Validity. Threats to conclusion validity are
concerned with issues that relate to the treatment and the
outcomes of the study, including, for instance, the choice
of sample size and, as another example, the care taken
in the implementation of a study [75]. In our work, we
conducted interviews with open-ended questions in which
the participants were asked to provide their perceptions
and point-of-views. The interviews were then corroborated
through a survey. The interviews were conducted at 18
different companies and when they happened within the
same company, the participants were warned not talk to
each other about it to avoid bias. In addition, we requested
and were given access to experienced software architects at
each company, to avoid the interviewees not possessing the
necessary deep and long-term experience and knowledge
in our area of investigation. We approached the design and
implementation of the survey with the same level of care.
Another aspect that is critical for conclusion validity is the
quality of the material used in the study. Thus, to ensure that
the interview prompt and survey instrument were of high
quality, a pilot interview was conducted with a software
architect and a survey pre-testing was performed with two
software architects. Finally, to avoid the threat of drawing
false conclusions based on the interview data, we carefully
validated our interviews and findings with the participants
as we performed analysis, asking for clarification when so
needed.

Internal Validity. To reduce introducing interviewer bias
during the interviews, we kept our questions open-ended
and let participants talk most of the time. Additionally, it
is possible that the participants might not have mentioned
some points that, given more time to think, they could have
brought up. To ameliorate this, we concluded the interviews
by asking the participants whether they had any further
thoughts and gave them ample time to respond before
concluding the interviews. Similarly, we concluded the sur-
vey with a question as to whether survey participants had
any additional thoughts they wanted to share. Interviewing
participants remotely might also introduce some bias as
compared to interviewing in person, for instance, by the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

interviewees giving shorter, incomplete, or unclear answers.
We attempted to reduce this bias by following up with the
interviewees if we felt an answer needed more clarification
for us to be able to understand it in retrospect. Because
they were derived from the answers from the interviews,
a possibility exists that the questions on the survey might
not have been sufficiently representative (e.g., additional as-
pects that change from sketch to implementation, additional
approaches to document whiteboard software architecture
meetings). This was mitigated by the ability for the sur-
vey participants to provide additional thoughts through an
open-ended question at the conclusion of the survey. Finally,
while our analysis was systematic, other researchers may
discern different aspects than ours.

Construct Validity. There are threats to construct validity
from the lack of a clear definition of a software architect.
Nevertheless, in general, participants understood that we
meant an experienced member in the development team
responsible for making high-level design choices, validat-
ing them, and communicating those decisions to relevant
stakeholders. In addition, we verbally clarified whenever
there appeared to be some kind of confusion, both at the
start of the interviews and throughout. Another threat to
construct validity is related to the potential problem of
evaluation apprehension [75]. It was mitigated by letting the
participants know they would remain anonymous as well as
by assuring them that all information gathered during the
interviews and survey would solely be used only by the
research team and never shared beyond.

External Validity. Our 27 interviews were conducted
with software architects working in 18 different companies.
Though these interviews yielded important insights, it can
be considered a small sample. In addition, we only sampled
software architects from five countries and findings may
not generalize to other countries and companies. The same
threat exists concerning the participants in the survey. Even
though the respondents reside in 9 countries across four
continents, our findings may not generalize to represent the
experiences and perceptions of all software architects.

7 CONCLUSION

Becoming a software architect takes time and effort. In
addition to having serious technical responsibilities in being
the person who is primarily responsible for the software
architecture and making architectural decisions, a software
architect is also responsible for the many social aspects in-
volved in the design and implementation of the architecture,
including the subject of our study: conducting whiteboard
software architecture meetings and bridging the outflow
from these meetings to implementation. To date, such meet-
ings have not been studied in detail and the realities of
transferring results from the meetings to implementation
also are not fully understood yet.

In this paper, we contribute a mixed qualitative and
quantitative study to investigate software architects’ percep-
tions on whiteboard software architecture meetings. Based
on interviews with 27 experienced architects and a subse-
quent survey with an additional 46 experienced software
architects, our study yields twelve observations that range
from reasons why software architects go to the whiteboard

and perspectives on including experts and novices in the
meetings, through how they document the outcomes of the
meetings and why they document, to the kinds of changes
they witness when the outcomes of the whiteboard meet-
ings transition to implementation and the reasons for those
changes. Our study is the first study of this kind, with the
findings giving rise to further study, offering concrete advice
for practicing architects, providing guidance for future tool
design, and suggesting new topics for educating future
software architects.

8 ACKNOWLEDGMENTS

We thank all the software architects who participated in our
interviews and survey.

REFERENCES

[1] M. Fowler, “Who needs an architect?” IEEE Softw., vol. 20, no. 5,
pp. 11–13, Sep. 2003.

[2] P. C. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy,
and P. Verma, “The duties, skills, and knowledge of software
architects,” in Sixth Working IEEE / IFIP Conference on Software
Architecture (WICSA 2007), 6-9 January 2005, Mumbai, Maharashtra,
India, 2007, p. 20.

[3] M. E. Conway, “How do committees invent?” Datamation, April
1968. [Online]. Available: http://www.melconway.com/research/
committees.html

[4] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987.

[5] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organi-
zations, and process improvement,” IEEE Software, vol. 11, no. 4,
pp. 36–45, 1994.

[6] P. Kruchten, “What do software architects really do?” Journal of
Systems and Software, vol. 81, no. 12, pp. 2413 – 2416, 2008.

[7] J. F. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The lone-
some architect,” Journal of Systems and Software, vol. 84, no. 9, pp.
1424–1435, 2011.

[8] V. Clerc, P. Lago, and H. van Vliet, “The architect’s mindset,” in
Software Architectures, Components, and Applications, Third Interna-
tional Conference on Quality of Software Architectures, QoSA 2007,
Medford, MA, USA, July 11-23, 2007, Revised Selected Papers, 2007,
pp. 231–249.

[9] U. van Heesch and P. Avgeriou, “Mature architecting - A survey
about the reasoning process of professional architects,” in 9th
Working IEEE/IFIP Conference on Software Architecture, WICSA 2011,
Boulder, Colorado, USA, June 20-24, 2011, 2011, pp. 260–269.

[10] K. Power and R. Wirfs-Brock, “Understanding architecture deci-
sions in context - an industry case study of architects’ decision-
making context,” in Software Architecture - 12th European Conference
on Software Architecture, ECSA 2018, Madrid, Spain, September 24-28,
2018, Proceedings, 2018, pp. 284–299.

[11] E. Woods, “Should architects code?” IEEE Software, vol. 34, no. 5,
pp. 20–21, 2017.

[12] I. Rehman, M. Mirakhorli, M. Nagappan, A. A. Uulu, and
M. Thornton, “Roles and impacts of hands-on software architects
in five industrial case studies,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 117–127.

[13] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[14] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Apply-
ing empirical software engineering to software architecture: chal-
lenges and lessons learned,” Empirical Software Engineering, vol. 15,
no. 3, pp. 250–276, 2010.

[15] P. O. Antonino, A. Morgenstern, and T. Kuhn, “Embedded-
software architects: It’s not only about the software,” IEEE Soft-
ware, vol. 33, no. 6, pp. 56–62, 2016.

[16] M. Erder and P. Pureur, “What’s the architect’s role in an agile,
cloud-centric world?” IEEE Software, vol. 33, no. 5, pp. 30–33, 2016.

[17] E. Y.-L. Do and M. D. Gross, “Reasoning about cases with di-
agrams,” in Third Congress on Computing in Civil Engineering,
American Society of Civil Engineers, 1996, pp. 314–320.

http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

[18] K. Henderson, On Line and on Paper: Visual Representations, Visual
Culture, and Computer Graphics in Design Engineering. Cambridge,
MA, USA: MIT Press, 1998.

[19] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 492–501.

[20] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: How and why software developers use drawings,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’07. New York, NY, USA: ACM, 2007, pp. 557–
566.

[21] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek,
“Supporting informal design with interactive whiteboards,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’14. New York, NY, USA: ACM, 2014, pp. 331–
340.

[22] ——, “How software designers interact with sketches at the white-
board,” IEEE Trans. Software Eng., vol. 41, no. 2, pp. 135–156, 2015.

[23] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation
on the relationship between design and architecture smells,” Em-
pir. Softw. Eng., vol. 25, no. 5, pp. 4020–4068, 2020.

[24] R. Li, P. Liang, M. Soliman, and P. Avgeriou, “Understanding
software architecture erosion: A systematic mapping study,” J.
Softw. Evol. Process., vol. 34, no. 3, 2022.

[25] U. Dekel and J. D. Herbsleb, “Notation and representation in
collaborative object-oriented design: an observational study,” in
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2007, October 21-25, 2007, Montreal, Quebec, Canada. ACM,
2007, pp. 261–280.

[26] M. Petre and A. V. D. Hoek, Software Designers in Action: A Human-
Centric Look at Design Work, 1st ed. Chapman Hall/CRC, 2013.

[27] K. Nakakoji, Y. Yamamoto, N. Matsubara, and Y. Shirai, “Toward
unweaving streams of thought for reflection in professional soft-
ware design,” IEEE Software, vol. 29, no. 1, pp. 34–38, 2012.

[28] J. Walny, J. Haber, M. Dörk, J. Sillito, and S. Carpendale, “Follow
that sketch: Lifecycles of diagrams and sketches in software devel-
opment,” in 2011 6th International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), 2011, pp. 1–8.

[29] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 530–541.

[30] S. Baltes, P. Schmitz, and S. Diehl, “Linking sketches and diagrams
to source code artifacts,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 743–746.

[31] S. Baltes, F. Hollerich, and S. Diehl, “Round-trip sketches: Support-
ing the lifecycle of software development sketches from analog
to digital and back,” in 2017 IEEE Working Conference on Software
Visualization (VISSOFT), 2017, pp. 94–98.

[32] D. Wüest, N. Seyff, and M. Glinz, “FLEXISKETCH TEAM: col-
laborative sketching and notation creation on the fly,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2. IEEE Computer
Society, 2015, pp. 685–688.

[33] S. G. Samuelsson and M. Book, “Towards sketch-based user in-
teraction with integrated software development environments,”
in ICSE ’20: 42nd International Conference on Software Engineering,
Workshops, Seoul, Republic of Korea, 27 June - 19 July, 2020. ACM,
2020, pp. 181–184.

[34] F. Buschmann, “A week in the life of an architect,” IEEE Software,
vol. 29, no. 3, pp. 94–96, 2012.

[35] E. Woods, “Return of the pragmatic architect,” IEEE Software,
vol. 31, no. 03, pp. 10–13, may 2014.

[36] J. Klein, “What makes an architect successful?” IEEE Software,
vol. 33, no. 1, pp. 20–22, 2016.

[37] M. Erder and P. Pureur, “What type of people are software
architects?” IEEE Software, vol. 34, no. 4, pp. 20–22, 2017.

[38] J. Klein, “How does the architect’s role change as the software
ages?” in Fifth Working IEEE / IFIP Conference on Software Archi-
tecture (WICSA 2005), 6-10 November 2005, Pittsburgh, Pennsylvania,
USA, 2005, p. 141.

[39] P. Sarang, “Setting up architect team,” in Sixth Working IEEE / IFIP
Conference on Software Architecture (WICSA 2007), 6-9 January 2005,
Mumbai, Maharashtra, India, 2007, p. 18.

[40] R. Premraj, G. Nauta, A. Tang, and H. van Vliet, “The
boomeranged software architect,” in 9th Working IEEE/IFIP Confer-
ence on Software Architecture, WICSA 2011, Boulder, Colorado, USA,
June 20-24, 2011, 2011, pp. 73–82.

[41] I. Seidman, Interviewing as Qualitative Research: A Guide for Re-
searchers in Education and the Social Sciences, 3rd Edition. Teachers
College Press, 2006.

[42] J. Saldana, The Coding Manual for Qualitative Researchers. SAGE
Publications, 2015.

[43] J. Mason, Qualitative Researching. Sage Publications, 2018.
[44] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,”

in Guide to Advanced Empirical Software Engineering, 2008, pp. 63–
92.

[45] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
P. Merson, R. Nord, and J. Stafford, Documenting Software Archi-
tectures: Views and Beyond, 2nd ed. Addison-Wesley Professional,
2010.

[46] J. van Gurp and J. Bosch, “Design erosion: problems and causes,”
J. Syst. Softw., vol. 61, no. 2, pp. 105–119, 2002.

[47] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley, “Archi-
tecture consistency: State of the practice, challenges and require-
ments,” Empir. Softw. Eng., vol. 23, no. 1, pp. 224–258, 2018.

[48] J. H. Lee and M. J. Ostwald, “The relationship between divergent
thinking and ideation in the conceptual design process,” Design
Studies, vol. 79, p. 101089, 2022.

[49] “A comparison of how novice and experienced design engineers
benefit from design guidelines,” Design Studies, vol. 63, pp. 204–
223, 2019.

[50] “Situated emotion and its constructive role in collaborative design:
A mixed-method study of experienced designers,” Design Studies,
vol. 75, p. 101020, 2021.

[51] “Problem framing and cognitive style: Impacts on design ideation
perceptions,” Design Studies, vol. 74, p. 101015, 2021.

[52] “The story novice designers tell: How rhetorical structures and
prototyping shape communication with external audiences,” De-
sign Studies, vol. 82, p. 101133, 2022.

[53] C. A. Gorse and S. Emmitt, “Communication behaviour during
management and design team meetings: a comparison of group in-
teraction,” Construction Management and Economics, vol. 25, no. 11,
pp. 1197–1213, 2007.

[54] “The dynamics of micro-conflicts and uncertainty in successful
and unsuccessful design teams,” Design Studies, vol. 50, pp. 39–69,
2017.

[55] O. Kopp, A. Armbruster, and O. Zimmermann, “Markdown archi-
tectural decision records: Format and tool support,” in Proceedings
of the 10th Central European Workshop on Services and their Compo-
sition, Dresden, Germany, February 8-9, 2018, ser. CEUR Workshop
Proceedings, vol. 2072. CEUR-WS.org, 2018, pp. 55–62.

[56] S. D’Angelo and D. Gergle, “An eye for design: Gaze visualiza-
tions for remote collaborative work,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018. ACM, 2018, p. 349.

[57] D. Ford, M. D. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. S.
Maddila, J. L. Butler, B. Houck, and N. Nagappan, “A tale of
two cities: Software developers working from home during the
COVID-19 pandemic,” ACM Trans. Softw. Eng. Methodol., vol. 31,
no. 2, pp. 27:1–27:37, 2022.

[58] A. M. Soria, A. van der Hoek, and J. E. Burge, “Recurring dis-
tributed software maintenance meetings: Toward an initial under-
standing,” in 15th IEEE/ACM International Workshop on Cooperative
and Human Aspects of Software Engineering , CHASE@ICSE 2022,
Pittsburgh, PA, USA, May 21-22, 2022. IEEE, 2022, pp. 21–25.

[59] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10
years of software architecture knowledge management: Practice
and future,” J. Syst. Softw., vol. 116, pp. 191–205, 2016.

[60] L. Delizonna, “High-performing teams need psychological safety.
here’s how to create it,” Harvard Business Review, vol. 8, pp. 1–5,
2017.

[61] “Psychological safety: A systematic review of the literature,” Hu-
man Resource Management Review, vol. 27, no. 3, pp. 521–535, 2017.

[62] N. Mangano, A. Baker, M. Dempsey, E. O. Navarro, and A. van der
Hoek, “Software design sketching with calico,” in ASE 2010, 25th
IEEE/ACM International Conference on Automated Software Engineer-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

ing, Antwerp, Belgium, September 20-24, 2010. ACM, 2010, pp.
23–32.

[63] I. Bartolini, M. Patella, and C. Romani, “SHIATSU: tagging and
retrieving videos without worries,” Multim. Tools Appl., vol. 63,
no. 2, pp. 357–385, 2013.

[64] S. Whittaker, P. Hyland, and M. Wiley, “Filochat: handwritten
notes provide access to recorded conversations,” in Conference
on Human Factors in Computing Systems, CHI 1994, Boston, Mas-
sachusetts, USA, April 24-28, 1994, Conference Companion. ACM,
1994, p. 219.

[65] B. Plimmer and I. Freeman, “A toolkit approach to sketched
diagram recognition,” in Proceedings of the 21st British HCI Group
Annual Conference on HCI 2007: HCI...but not as we know it -
Volume 1, BCS HCI 2007, University of Lancaster, United Kingdom,
3-7 September 2007. BCS, 2007, pp. 205–213.

[66] L. Stifelman, B. Arons, and C. Schmandt, “The audio notebook:
paper and pen interaction with structured speech,” in Proceedings
of the CHI 2001 Conference on Human Factors in Computing Systems,
Seattle, WA, USA, March 31 - April 5, 2001. ACM, 2001, pp. 182–
189.

[67] A. M. Soria and A. van der Hoek, “Collecting design knowl-
edge through voice notes,” in Proceedings of the 12th International
Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE@ICSE 2019, Montréal, QC, Canada, 27 May 2019. IEEE /
ACM, 2019, pp. 33–36.

[68] P. Lago and H. van Vliet, “Teaching a course on software architec-
ture,” in 18th Conference on Software Engineering Education Training
(CSEET’05), 2005, pp. 35–42.

[69] A. Van Deursen, M. Aniche, J. Aué, R. Slag, M. De Jong, A. Ned-
erlof, and E. Bouwers, “A collaborative approach to teaching
software architecture,” in Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE ’17,
2017, p. 591–596.

[70] J. I. Benedetto and J. Navón, “Exploiting group shuffling dynamics
to convey the importance of good software design,” in ICSE-SEET
2020: 42nd International Conference on Software Engineering, Software
Engineering Education and Training, Seoul, South Korea, 27 June - 19
July, 2020. ACM, 2020, pp. 193–196.

[71] Z. Li, “Using public and free platform-as-a-service (paas) based
lightweight projects for software architecture education,” in ICSE-
SEET 2020: 42nd International Conference on Software Engineering,
Software Engineering Education and Training, Seoul, South Korea, 27
June - 19 July, 2020. ACM, 2020, pp. 1–11.

[72] S. A. Rukmono and M. R. V. Chaudron, “Guiding peer-feedback
in learning software design using UML,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering: Software Engineer-
ing Education and Training, ICSE (SEET) 2022, Pittsburgh, PA, USA,
May 22-24, 2022. IEEE, 2022, pp. 122–133.

[73] M. Petrenko, D. Poshyvanyk, V. Rajlich, and J. Buchta, “Teaching
software evolution in open source,” Computer, vol. 40, no. 11, pp.
25–31, 2007.

[74] K. Gallagher, M. Fioravanti, and S. Kozaitis, “Teaching software
maintenance,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2019, pp. 353–362.

[75] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

PLACE
PHOTO
HERE

Michael Shell Biography text here.

John Doe Biography text here.

Jane Doe Biography text here.


	1 Introduction
	2 Related Work
	2.1 Studies of Sketching and Whiteboard Use
	2.2 Studies of Software Architects

	3 Research Design
	3.1 Interviews
	3.2 Survey

	4 Results
	4.1 Whiteboard Software Architecture Meetings
	4.2 Reasons to Conduct Whiteboard Software Architecture Meetings (RQ1)
	4.3 Experience (RQ2)
	4.3.1 Important Aspects of Experience
	4.3.2 Team Composition.

	4.4 Documentation (RQ3)
	4.4.1 Documentation Approaches
	4.4.2 Reasons to Document the Meetings

	4.5 From Whiteboard Architecture to Code (RQ4)
	4.5.1 Rationale for Changes
	4.5.2 Missing Meeting Aspects as Potential Causes

	4.6 Digital Tools (RQ5)

	5 Implications
	6 Threats to Validity
	7 Conclusion
	8 Acknowledgments
	References
	Biographies
	Michael Shell
	John Doe
	Jane Doe


