
Commit Message Matters: Investigating Impact and
Evolution of Commit Message Quality

Jiawei Li
Donald Bren School of ICS

University of California, Irvine
Irvine, USA

jiawl28@uci.edu

Iftekhar Ahmed
Donald Bren School of ICS

University of California, Irvine
Irvine, USA

iftekha@uci.edu

Abstract—Commit messages play an important role in com-
munication among developers. To measure the quality of commit
messages, researchers have defined what semantically constitutes
a Good commit message: it should have both the summary of the
code change (What) and the motivation/reason behind it (Why).
The presence of the issue report/pull request links referenced
in a commit message has been treated as a way of providing
Why information. In this study, we found several quality issues
that could hamper the links’ ability to provide Why information.
Based on this observation, we developed a machine learning
classifier for automatically identifying whether a commit message
has What and Why information by considering both the commit
messages and the link contents. This classifier outperforms state-
of-the-art machine learning classifiers by 12% improvement in
the F1 score. With the improved classifier, we conducted a mixed
method empirical analysis and found that: (1) Commit message
quality has an impact on software defect proneness, and (2) the
overall quality of the commit messages decreases over time, while
developers believe they are writing better commit messages. All
the research artifacts (i.e., tools, scripts, and data) of this study
are available on the accompanying website [2].

Index Terms—Commit message quality, software defect prone-
ness, empirical analysis

I. INTRODUCTION

Software developers commit code changes during the course
of software development and maintenance using version con-
trol systems [34]. These code changes are usually accompanied
by commit messages written in natural language, which is
a free-form textual description of its corresponding change.
The message summarizes what happened in the change and/or
explains why the change was made [11], [44], [50].

These commit messages play a vital role in modern soft-
ware development, especially in Open-Source Software (OSS),
by serving as one of the communication channels through
which developers communicate the context of a change to
collaborators [47]. Commit messages are also regarded as the
documentation of software changes which can help program
comprehension and software maintenance [44] in long-lived
projects where commit messages might be the only source
of information left for future developers to understand what
changes were made and why those were made [65].

While it is evident that commit messages play an important
role in communication among developers, till recently there
was no approach for measuring the commit message quality

that considers the semantics of a commit message. Researchers
had defined various syntactic rules to measure the quality of
commit messages [4], [13], [15], but these approaches did not
capture the semantic meaning of a commit message. Tian et
al. [65] first defined what semantically constitutes a Good
commit message where they proposed that a Good commit
message should include both a summary of the changes in
the commit (noted as What) and a description of the reasons
or justifications for the changes (noted as Why). As long as
a commit message contained a link to the issue reports or
pull requests, the authors considered the commit message to
have provided Why information without examining the link
contents.

However, the presence of a link does not guarantee the
quality of the link content and the presence of Why infor-
mation. Researchers have shown that such links attached to
commit messages might become outdated, resulting in commit
messages that are difficult to understand [41]. In addition,
the contents of those links might be badly written or do not
provide any additional information. For example, in Figure 1,
the content of the pull request link attached to this commit
message only repeated what the commit message had stated.
1. There is no additional information in the link content for
getting the Why information.

(a) Commit Message

(b) Referenced Pull Request

Fig. 1: A Commit Message and its Referenced Pull Request
Link Content

Based on such observations we posit that it is necessary to
consider the contents of the links in order to decide whether
commit messages include Why information instead of simply

1shorturl.at/jrtvG

1

relying on the presence of a link. This prompted us to ask our
first research question:

RQ1: Does the issue report/pull request link referenced
in a commit message always provide Why information?

Since commit messages are heavily used for communication
among OSS developers, in the absence of other forms of
documentation (which is very common in the development
of some OSS projects [3]), low-quality commit messages can
have a negative impact on the overall quality of the software.
Therefore, following the state-of-the-art semantic definition
of a Good commit message [65], we take the first step to
investigate the impacts of commit message quality on software
quality, at a large scale.

In this work, we are specifically investigating the impact of
commit message quality on software defect proneness [63]. We
posit that low-quality commit messages can severely impede
developers’ comprehension of the existing code, which may
lead to software defects in the future. While prior research
investigated the relationships between commit message length
and defect proneness [8], they only relied on syntactic rules
to capture the quality of a commit message. They did not
consider the semantic quality of commit messages and their
association with defect proneness. This prompted us to ask
our second research question:

RQ2: How does commit message quality impact software
defect proneness?

Similar to any other artifacts in an OSS project, commits
evolve over time in terms of size, the number of unique
commit messages, etc. [4] While only one prior research
investigated the evolution of commit message quality [4], they
studied the evolution of commit message quality in 5 projects
by measuring (among others) the number of unique commit
messages and found that the quality of commits declined over
time. They did not consider either the syntactic or semantic
quality of the commit message. As a result, there is still a lack
of understanding regarding the evolution of commit message
quality over time. In this study, we aim to fill this gap by
analyzing the evolution of commit message quality at a large
scale, considering the semantic quality of commit messages to
answer the following research question:

RQ3: How does the quality of the commit messages in
OSS projects evolve over time?

To answer our RQs, we conducted formative interviews
with 13 OSS developers and performed empirical analyses on
32 Apache projects. We opted to investigate Apache projects
because these projects have well-documented discussion pro-
cedures and long histories (i.e., 16k commits on average).
We manually checked commit messages with issue report/pull
request links to investigate if these links have quality issues
that hamper their ability to provide Why information (RQ1).
Then, we manually labeled commit messages with links from
the dataset curated by Tian et al. [65] and used Machine
Learning (ML) classification to identify Good commit mes-
sages by considering both commit messages and link contents
(What and Why). Through the interviews, we found developers
agreed that commit message quality has an impact on software

defect proneness (RQ2). We also asked our interviewees about
the evolution of their own commit message quality over time
(RQ3). To triangulate our results, we surveyed 93 developers
who had contributed to 32 Apache projects. Finally, using
our ML classifier, we conducted empirical analyses to further
understand the impact of commit message quality (RQ2) and
its evolution (RQ3).

The significance of our contributions are following:
(1) We show that issue/pull request link content should be

considered when measuring commit message quality.
(2) We analyze the impact of commit message quality on

OSS software defect proneness.
(3) We analyze the evolution of commit message quality.
The remainder of this paper is organized as follows: In

Section II, we review related research on commit message
quality. We outline our data labeling, collection, and analysis
pipeline in Section III. Next, we present our observations in
Section IV. Then, we discuss the implications for our study in
Section V. Section VI shows potential threats to the validity
of our reported findings. Finally, we conclude with a summary
of the key findings in Section VII.

II. RELATED WORKS

A. Commit Message Quality Measurement and Evolution

Various syntactic rules for measuring commit message qual-
ity have been proposed. Chahal et al. [13] composed ten rules
and 11 relevant attributes for measuring commit message qual-
ity and built a model that could determine commit message
quality. Chen et al. [15] focused on measuring the quality of
commit messages based on their expressiveness measured by
commit message length, uniqueness of commit message title,
and word frequency. However, these rules and attributes only
considered the syntactic characteristics of a commit message
to evaluate its quality while ignoring the semantics.

More recently, Tian et al. [65] defined what semantically
constitutes a high-quality commit message. They showed that
a Good commit message should include both a summary of
the changes in the commit (noted as What) and a description
of the motivations for the changes (noted as Why). However,
they assumed that Why information is present as long as the
issue report/pull request links are mentioned in the commit
message without considering the content of those links. In our
study, we measure commit message quality by considering the
information from both the commit message and the content of
the issue report/pull request links associated with it.

Researchers have studied commit message quality evolution.
Agrawal et al. [4] used the size of commit comments, the
ratio of the total number of unique commit messages to the
total number of commits, and the number of unique commit
messages as a proxy for measuring commit message quality.
Their results showed that the quality of commits declines over
time. However, their proposed metrics did not evaluate the
quality of commit message content. In our study, we measured
commit message quality by considering the semantics of both
commit message content and the content of the associated link.

2

B. Evaluation of Generated Commit Message from Commit
Message Generation (CMG) Techniques

To improve the overall quality of commit messages and
standardize the writing style, Commit Message Genera-
tion (CMG) techniques have been widely studied by re-
searchers [12], [19], [34], [36], [42], [44], [64], [68]. All of
these approaches rely on reference messages that are written
by software developers to evaluate their techniques. However,
prior works showed that developer-written messages may not
always be of high quality [24], [43], [65]. So automated ap-
proach for measuring the quality of the commit message using
its content is needed. In this work, we focus on developing an
ML classifier that measures the quality of the commit message
using a semantic aware commit message quality measurement
criterion [65].

C. Impact of Commit Message Quality

Very few research works have investigated the impact of
commit message quality. Barnett et al. [8] analyzed the re-
lationship between the defect proneness and commit message
detail (i.e., the length of the commit message). They found that
including commit message length as a feature could add ex-
planatory power to Just-In-Time defect prediction models [51].
However, they did not consider the impact of including What
and Why information on software defect proneness. Santo et
al. [59] pointed out that software build failure is marginally
related to the “unusualness” of commit message measured by
large language models. In addition, Lu et al. [46] explored
the association between the topics extracted from commit
messages and technical debt. Their results showed that detailed
commit messages are negatively associated with technical
debt, while empty commit messages may have a positive
association. All of these studies only considered syntactic
rules for measuring the commit message quality. However, to
have an accurate measure of a commit message quality, it is
necessary to consider the semantics [65]. In this study, we take
the first step to analyze the impact of commit message quality
on software defect proneness by using the most state-of-the-
art quality definition that considers the semantic information
of not only the commit message but also the link content
associated with the commit.

III. METHODOLOGY

Our goal was to investigate whether the issue report/pull
request link referenced in a commit message always helps
to provide Why information. Then, we aimed to analyze the
impact and evolution of commit message quality in OSS
projects. In the following subsections, we detail the applied
methodology. Figure 2 shows an overview of our methodology.

A. Formative Interviews

We start our investigation by exploring how developers
perceive the use of issue report/pull request links in commit
messages, their commit message writing quality evolution,
and the impact of commit message quality on software defect
proneness. We conducted semi-structured interviews with 13

Fig. 2: Overview of Research Method

OSS contributors. We recruited the participants by using
social network sites. On average, they have 3 years of OSS
development experience and are currently working as software
engineers in the industry.

The interviews were done remotely using Zoom, lasting
around 20 minutes each. Most questions we asked during
the interviews were about the impacts of not including What
or Why information on software defect proneness. We also
asked the participants about their own commit message writing
style and its evolution in terms of What and Why. See
supplementary [2] for interview questions.

B. Large Scale Online Survey

To further validate our findings from the interviews and
acquire a more generalized perception, we surveyed a larger
population of OSS developers who had contributed to Apache
projects. We decided to use Apache since these projects have
a well-defined and adhered process for code contribution, and
they are established OSS projects that were studied by a
number of previous works [5], [47].
Survey design: Our survey comprised 20 questions, a mix
of multiple-choice, Likert scale, and open-ended questions
(see supplemental for the survey questions [2]). The survey
included demographics questions (Q2-Q3), questions about
participants’ writing styles for commit messages (Q4-Q5),
questions about participants’ opinions and expectations for the
links in terms of providing Why information for commit mes-
sages (Q13-Q14), question about their awareness of commit
message writing guidelines (Q15), questions about the impacts
of commit message quality on software defect proneness (Q11-
Q12), and finally questions about participants’ perceptions of
their own commit message writing quality evolution (Q17-
Q18). In addition, we also include “Text entry” options to
allow developers to provide additional commit message quality
impacts on software development activities (Q6-Q10), the
reasons for their commit message writing change trends (Q19),
and other possible metrics that can also be considered to
estimate commit message quality (Q16). We conducted five
pilot studies with two graduate students and three professionals
with OSS experience. The participants for the pilot were
identified using snowball sampling [29]. After each pilot study,
we collected feedback and refined the survey based on the
feedback. The pilot survey responses were used solely to
improve the questions and these responses were not included
in the final results.

3

Survey participants: In order to identify participants, we relied
on 32 Apache projects in the list curated by Mannan et al. [47],
where referencing to issue report/pull request links in commit
messages is a common practice. The details of the project
selection are explained in Section III-D. We used the GitHub
API [52] to mine contributor emails from these 32 projects.
After removing emails of accounts that were deleted or private,
we were left with 2,771 developer email addresses in total.
Survey responses: We used Qualtrics [55] as a distribution
platform to deploy our survey. We emailed the survey to 2,771
developers (following university-approved IRB protocol), and
114 emails bounced (giving 2,657 valid emails). To increase
survey participation, we followed the best practices described
by Smith et al. [62], such as sending personalized invitations
and allowing participants to remain anonymous. We also sent
a reminder email after the first week. Thus, the survey was
open for two weeks in total, during which we received 93
responses or a response rate of 3.50%. The response rate is
consistent with other studies in software engineering [65].
Survey data analysis: In our survey, over half (55.26%) of
our respondents had 2 to 10 years of open-source experience,
and 31.58% were senior contributors with over 20 years
of programming experience. We quantitatively analyzed the
closed-ended questions to understand developers’ expectations
related to including links, commit message quality’s impact
on software defect proneness, and evolution of their commit
message writing quality.

C. Manual Analysis

We did a manual inspection to check whether issue re-
port/pull request links always provide Why information. We
used the same commit message dataset used by Tian et al.
[65], which includes 1,597 commit messages from 5 large
and popular Java OSS projects. Each message was labeled
based on the information it included (i.e., Why, What). The
detailed dataset construction process can be found in [65].
Since we are interested in commit messages that have issue
report/pull request links, we identified 611 commit messages
meeting this criterion. Then, we manually analyzed them to
check if there exist issues that hamper the links’ ability to
include Why information. To do so, we followed an open
coding protocol [27] to find and categorize the potential link
quality issues from the 611 commit messages. Specifically, two
authors of this study independently checked all 611 commit
messages by examining both the link contents and the commit
messages for Why information. In case Why could not be found
in both of them, we coded the issues into types. During the
analysis, each emerging category was compared with existing
ones to determine if it is a new category through multiple com-
parison sessions. Finally, the two authors exchanged ideas for
the categorization and reached a consensus through negotiated
agreement [25].

D. Commit Message Quality Analysis

In this section, we detailed the approach we used to analyze
commit message quality’s impact on software defect prone-

ness, and its evolution in OSS projects.
Project Selection: First, we decided to focus on projects
using Java since it is one of the most widely-used pro-
gramming languages [66]. Second, we selected 32 Apache
projects written in Java on Github. We decided to focus on
Apache projects since numerous prior research papers have
used Apache projects as the subject of analysis [14], [26],
[39]. Our rationale is that since Apache projects are more
systematic and mature with structured guidelines for project
contribution [1], contributors are more likely to write relatively
high-quality commit messages in these projects. So any effect
we see of commit message quality on defect proneness in
these projects is going to be many-fold worse in projects
that lack structured guidelines for project contribution. We
collected project duration, developer profile, and project size
by analyzing the git repositories. In total, we gathered 520,306
commits. Table I provides a summary of our selected Apache
projects.

TABLE I: Project Statistics

Dimension Max Min Average Median
Line count 2,593,845 58,656 592,070.2 430,215.5
Duration
(weeks) 669 228 437.7 415.5

Developer 1,044 12 171.2 79.5
Commits 35,471 4,242 16,259.6 14,247.5

Training Data Refinement: Since it is impractical to manually
evaluate the quality of thousands of commit messages, we de-
cided to use ML technique. While Tian et al. [65] had already
trained ML classifiers to identify what type of information
(i.e., Why, What) is contained in a commit message, they only
considered the textual part of a commit message and treated
the presence of links as providing Why without examining
the link contents during their manual labeling of the training
dataset. We improve upon the training dataset from Tian et
al. [65] by considering information from both link content
and commit message.

We used the definition of Why and What provided by
Tian et al. [65] and looked for information that should be
in a commit message, and manually checked 611 commit
messages that contained issue report/pull request links. The
two authors of this study labeled those 611 commit messages
independently to determine if they contain Why information
while retaining labels about What. To be more specific, we first
checked the commit message’s textual content to see whether
it contains Why information. If Why information was not found
in the commit message, we examined the content of the link
referenced in it to check if the link content provided Why
information. After labeling the 611 messages, Cohen’s kappa
coefficient of agreement between the two authors was 0.95,
which is a perfect agreement [40]. As for the messages the
two authors did not agree on, we held meetings to resolve 7
(approx. 1.15%) disagreements.
ML Classifier Training: With our refined version of the
training dataset, we built three separate binary classifiers for

4

identifying What, Why, and Good (which considered both
What, and Why).

Since we considered the referenced link content along with
the message body to determine a commit message’s quality,
we extracted link content titles as the titles of issue reports/pull
requests usually summarize all valuable information [70], [71].
We then replaced the links in commit messages with the
extracted titles to prepare the enhanced commit messages.

We selected BERT [21] to tokenize and embed the enhanced
commit messages into numeric vectors since using such em-
bedding has shown outstanding performance in text classifi-
cation tasks [28]. The vectors were then input into various
ML classification architectures. In this study, we considered
the most widely-used ML classification techniques, includ-
ing Bidirectional Long Short-Term Memory (Bi-LSTM) [60],
Bidirectional Gated Recurrent Units (Bi-GRU) [17], [60],
XGBoost [16], and Support Vector Machine (SVM) [69]. Bi-
LSTM was used by Tian et al. [65], so we selected it for
comparison purposes.

To ensure the best performance, we applied hyper-parameter
tuning to all classifiers. By applying GridSearch [35] and
BayesSearch [9] on a wide range of hyper-parameters, we
found the optimal hyper-parameters for each classifier. Due
to space limitations, we provide the selected hyper-parameters
in our replication package [2]. The models were trained and
evaluated using 10-fold cross-validation. That is, the data was
randomly divided into ten equal splits, and nine of them were
used for training and one for evaluating performance. We
trained our models using this method ten times and reported
the mean scores. To further boost our classifier’s performance,
we used majority/hard voting [56] to ensemble the three top
classifiers among the compared classifiers, namely, Bi-LSTM,
Bi-GRU, and XGBoost.

In addition, we also tested the trained Bi-LSTM classifier
from Tian et al. [65] on our newly labeled dataset to see if
their model’s performance was negatively affected by their
limitation in dataset labeling. Table II shows the precision,
recall, F1, and accuracy scores of all classifiers, which shows
that the ensemble ML classifier outperformed Tian et al.’s
classifier for both Why and Good. Since the label for What
did not get changed, the performance for the What classifier
remained almost the same with a difference of 0.02. We also
present the confusion matrix of our ensemble ML model that
classifies Why information in Figure 3. We can infer from
the confusion matrix that neither class (Why, No Why) is
disproportionately impacted by the misclassifications. For the
rest of the paper, we use the classification results by the
ensemble ML classifier.
Analysis of Commit Message Quality’s Impact on Defect
Proneness: To answer RQ2, we aimed to investigate if there
is any difference in the commit message quality of the
commits related to a defect-introducing commit and a non
defect-introducing commit. We deployed a widely-used defect-
introducing commit detection tool SZZUnleashed [10] to iden-
tify defect-introducing commits across the collected commit
histories. Due to the fact that all Apache projects in our

Fig. 3: Confusion Matrix for “Why” Predictions

analysis have long commit histories (average 16k commits),
we could not manage to finish running SZZUnleashed on
all our selected projects even after running the analysis for
two months. We ended up analyzing 238k commits from 17
projects.

Then, we used RefMiner [67] to detect refactoring commits
and then excluded them from our analysis because such
commits did not change the behavior of the code regardless
of the quality of its preceding commits. This left us with
185,026 commits. We also filtered out bot commit messages
using the same approach as in [22], [65]. That is, we
analyzed the variability of all contributors’ commit message
writing patterns, and we identified bots if the variability of
the messages generated is lower than a threshold proposed by
[22]. After filtering, we have 91,926 commits for our commit
message quality impact analysis.

Next, for every remaining commit, we set a window in the
commit history that contains a number of commits preceding
every commit in terms of commit date and calculated Window
Quality Score using 1. The Window Quality Score represents
an estimate of the commit message quality where Positive
labels in the equation stands for the fact that a commit message
has Why, What, or both. We should note that we did not
calculate the Window Quality Score for those initial commits
that have fewer preceding commits than the window size
because we believed they did not have enough history for us
to analyze the commit message quality impact.

Choosing a proper window size can be challenging. For
example, if the window size is small, we would face difficulties
in capturing the long-term effect of commit message quality.
On the other hand, if the window size is large, old commits far
back in the commit history would be analyzed that might not
actually have an impact on the current commit at all. So, we
conducted our experiments on a wide range of window sizes.
Specifically, we set 5, 10, 20, 50, 100, 200, 400, 800, and 1000
as our window sizes. Finally, we used Welch’s t-test [58] and
Cohen’s D [23] to analyze the difference in Window Quality
Score between defect-introducing commits and non defect-
introducing commits. We decided to use Welch’s t-test because
it does not assume equal variance between groups but only
assumes normality of the data. Since we are performing multi-
ple tests, we have to adjust the significance value accordingly
to account for multiple hypothesis corrections. We use the
Bonferroni correction [30], which gives us an adjusted p-value

5

TABLE II: ML classification techniques evaluation

Techniques F1 Precision Recall Accuracy
Why What Good Why What Good Why What Good Why What Good

Bi-LSTM from [65] 0.685 0.951 0.653 0.860 0.970 0.820 0.570 0.932 0.543 0.671 0.913 0.700
Bi-LSTM 0.787 0.926 0.718 0.711 0.922 0.634 0.880 0.929 0.827 0.699 0.875 0.665
Bi-GRU 0.781 0.927 0.722 0.723 0.918 0.648 0.848 0.937 0.815 0.703 0.875 0.679
XGBoost 0.803 0.925 0.699 0.751 0.871 0.704 0.860 0.987 0.697 0.729 0.867 0.687

SVM 0.781 0.921 0.652 0.751 0.864 0.682 0.823 0.989 0.648 0.711 0.859 0.661
Ensemble ML 0.808 0.935 0.744 0.740 0.916 0.657 0.890 0.956 0.857 0.730 0.888 0.691

of 0.006.

Window Quality Score = # Commits with positive labels in the window
Window size (1)

One of the limitations of the above-mentioned commit-
level analysis is that unrelated commits also get analyzed. For
example, not all preceding commits in the analysis window
changed the files that are being modified by the current
commit. To mitigate this, we conducted a file-level analysis.
We followed a similar procedure as commit-level analysis. The
only difference was that only those preceding commits were
considered that modify the files that were also being modified
by the current commit. If the total number of preceding
commits that changed the same files that were also changed
by the current commit is less than the set window size, we
use this total number as the denominator rather than the
window size in Equation 1. We also excluded those commits
that changed more than 100 files since such commits might
introduce noise that is caused by routine maintenance (i.e.,
typo fixes, copyright updates.) [48]. Finally, we analyzed the
score difference by using Welch’s t-test and effect size using
Cohen’s D.

Barnett et al. [8] have found commit message length in
terms of the word count (Commit Message Volume) has an
association with defect proneness. However, they did not
consider measuring commit message quality in terms of What
and Why. In this study, we wanted to check whether our
Window Quality Score in terms of What and Why has a
stronger association with defect proneness compared to Com-
mit Message Volume. In order to do so, we built a Generalized
Linear Regression model (GLM) [32]. The dependent variable
(whether the commit is a defect-introducing commit or not)
follows a Poisson distribution. Therefore, we used a Poisson
regression model with a log linking function. The independent
variables were What and Why, and Commit Message Volume.
In order to calculate Commit Message Volume for each commit
message, we used NLTK [45] to remove common stop words
and then tokenize the message to get the word count.

After collecting these metrics, we checked for multi-
collinearity using the Variance Inflation Factor (VIF) of each
predictor in our model [18]. VIF describes the level of multi-
collinearity (correlation between predictors). A VIF score
between 1 and 5 indicates a moderate correlation with other
factors. We found that all three independent variables had a

VIF score greater than five. So instead of using all factors
at once, we built three separate models using each of the
independent variables. This step was necessary since the
presence of highly correlated factors forces the estimated
regression coefficient of one variable to depend on other
predictor variables that are included in the model. Finally, we
conducted Welch’s t-test [58] and Cohen’s D analysis [23] on
the model’s coefficients to understand if one is statistically
more associated than another with defect proneness across all
window sizes.

One important point to note is that our goal was not to
build a state-of-the-art defect prediction model. Our goal was
to check the level of association of What, Why in comparison
to Commit Message Volume. Hence, we did not build a full-
placed defect prediction model using the state-of-art features
identified in defect prediction literature and focused only on
comparing between What, Why, and Commit Message Volume.
Commit Message Quality Evolution Analysis: To investigate
how software artifacts evolve over time, researchers have used
releases, individual commits, and discrete-time units (years,
months, weeks, days) [5], [33]. Individual commits would be
too fine-grained for our purpose. Therefore, following previous
works [5], [47], we selected “week” as our unit of analysis
because it provides us with enough information for analyzing
the evolution of commit message quality. We cut off our
analysis at 415 weeks (median duration of all selected projects)
to prevent extremely long-lived projects skewing our results.

Using the ML classifier’s predictions on all human-written
commit messages (246,735 commits in total after filtering out
bots from 32 projects), we had an estimate of the quality for
each commit message in terms of (Why, What, Good). To
compare the overall commit message quality across weeks, we
normalized the labeled data by calculating the ratio between
the number of positive labeled commits (i.e., the commit’s
corresponding message contains Why, What, or Good) to the
number of all the commits made in the particular week (Weekly
Quality Score in Equation 2), which gave a score between 0
and 1. To get a bigger picture, we averaged the Weekly Quality
Score of all projects resulting in a quality score for each week
across all projects. This overall quality score was then used
in our analysis since our goal is to investigate the general
evolution trends of commit message quality across projects.
Finally, we performed a Spearman correlation [53] analysis
on the ratio scores and week numbers to estimate the overall
commit message quality evolution trend over time.

6

It’s widely accepted that a relatively small number of core
developers are responsible for more than 80% of the contri-
butions in any OSS projects [47]. We used this principle to
classify a developer as a core developer if they are among the
top 20% of the developers in terms of the number of commits
authored, and a non-core developer otherwise [5], [47], [49].
In this study, we used emails as developers’ identifiers. We
collected their emails and contributions by using git commands
(i.e., git log) in the downloaded git repositories. Then, similar
to the overall commit message quality evolution analysis,
we calculated Weekly Quality Score (Equation 2) for each
group of developers across weeks (i.e., out of all the commit
messages written by a group of developers in a week, how
many of them have What, Why, or Good). We then averaged
the Weekly Quality Score across all projects for analyzing a
general evolution trend.

Weekly Quality Score = # Commits with positive labels in a week
Commits made in a week (2)

IV. RESULTS

We organized the results of this study based on our research
questions in Section I.

A. Inclusion of Why information by attaching links

Our manual inspection of the commit messages found
several commits with different types of issues that negatively
affected the links’ ability of providing Why information. We
list the identified issues below:
Broken Link URL: The links in the commit messages are
broken with 404 error message returned. We found 1 such
commit. The information contained in the links would be lost
if the link is broken [37]
Content Repetition: The link contents simply repeat what the
commit messages have stated. No additional information such
as Why could be acquired. [38] We found 59 such commits.
Badly Written Texts: The link contents are either written in
poor English making the meaning elusive (i.e. “I18N effort
for dubbo code base - dubbo-plugin”, “duplicate decrease for
ExecuteLimitFilter onError #4380”) or the link content only
contains several words that make pinpointing Why information
difficult (i.e. “DER encoder”). [7] We found 9 such commits.
Additional Information on What: The link contents only
provide additional What information for the commit messages
(i.e. Commit message: add @SPI annotation (#6436), Link
content: add @SPI annotation to ExtensionFactory #6436) [6].
We found 21 such commits.

From the problem categories listed above, we could see that
the most common one is Content Repetition. This contradicts
what the developers expect from a link since majority of our
survey respondents (89.77%) expected additional information
in the links when the commit message itself does not provide
Why.

Observation 1: Contrary to developers’ expectations,
15% of issue reports/pull requests do not provide Why

information when referenced in a commit message.

Since there exist quality issues that hamper issue report/pull
request links’ ability to provide Why information, considering
both commit messages and link contents becomes important to
determine if commit messages include Why information. Fol-
lowing this principle, we found 89 (14.57%) commit messages
that were incorrectly labeled as having Why in Tian et al.’s
original dataset after our training data refinement. Then, we
trained ML models using our refined training dataset, and the
performance of the models for classifying Why gets improved
by up to 12% in the F1 score (Table II), which also indicates
that it is necessary to consider referenced link contents in
addition to commit message to estimate its quality.

Observation 2: It is necessary to consider both commit
messages and link contents while estimating a commit
message’s quality.

B. Impact of Commit Message Quality

Commit-level analysis: In this study, we used Window
Quality Score (Equation 1) to estimate the commit message
quality of commit history for every commit (See Section for III
details). Next, we used Welch’s t-test [58] to check if the Win-
dow Quality Score between defect-introducing commits and
non defect-introducing commits are statistically significantly
different or not. We also used Cohen’s D [23] to measure the
effect size.

We list our results in Table III. Results show that the
difference is statistically significant across all window sizes
for What, Why, and Good, indicating that the commit message
quality of prior commits does have an impact on the current
commit’s defect-proneness regardless of how far back we go
in the history.

TABLE III: Commit-level Analysis: Difference in commit
message quality of commit history between defect-introducing
commits and non defect-introducing commits

Window Size Welch’s t-test p-value Cohen’s D
Why What Good Why What Good

5 0.00045 9.39883e-06 0.00095 0.03168 0.03751 0.02911
10 7.21172e-07 1.22335e-09 2.59436e-06 0.04566 0.05053 0.04136
20 1.41449e-06 2.97021e-17 2.26556e-09 0.04514 0.06841 0.05272
50 3.89681e-07 4.90136e-21 5.14493e-10 0.04740 0.07620 0.05478

100 0.00155 8.71832e-18 1.41634e-06 0.02972 0.07131 0.04280
200 0.00544 1.35567e-10 2.87051e-06 0.02565 0.05459 0.04142
500 7.90503e-09 0.00282 0.00510 0.05599 0.02812 0.02603
800 1.68103e-32 1.32784e-20 1.66446e-19 0.11966 0.09197 0.08711
1000 5.11631e-47 5.25024e-33 9.56609e-33 0.14742 0.12043 0.11686

File-level analysis: Similar to commit-level analysis, we
calculated the Window Quality Scores for each commit win-
dow size. The only difference was that only those preceding
commits were considered that modified the files that were also
being modified by the current commit. The results are in Table
IV. Although the effect size is small, there is statistically
significant difference in the Window Quality Score between
defect-introducing commits and and non defect-introducing
commits.

7

TABLE IV: File-level Analysis: Difference in commit message
quality of commit history between defect-introducing commits
and non defect-introducing commits

Window Size Welch’s t-test p-value Cohen’s D
Why What Good Why What Good

5 2.35592e-19 3.72234e-11 1.77846e-22 0.09121 0.06700 0.10012
10 9.42900e-19 0.00079 1.13363e-14 0.09191 0.03523 0.08057
20 6.40050e-21 3.91683e-08 2.34095e-18 0.09644 0.05554 0.08948
50 1.60110e-22 4.66404e-10 2.16190e-17 0.10138 0.06378 0.08901
100 2.19140e-10 0.01863 3.63092e-08 0.07830 0.02917 0.13972
200 1.44070e-08 0.48416 0.00224 0.06268 0.00765 0.03380
500 2.32601e-19 0.02141 6.43257e-12 0.10113 0.02620 0.07755
800 1.24497e-08 0.84772 0.00049 0.06302 0.00210 0.03869

1000 1.51677e-05 0.01347 0.45646 0.04867 0.02819 0.00839

Observation 3: Preceding commit message quality in
terms of What and Why has a statistically significant
impact on the defect proneness of future commits.

Feature Importance Analysis: In this study, we wanted
to check whether our Window Quality Score in terms of
What, and Why has stronger association with defect proneness
compared to Commit Message Volume which was shown by
Barnett et al. [8] to have association with defect proneness.
The dependent variable was whether the commit is a defect-
introducing commit or not and the independent variables were
Window Quality Score in terms of What and Why, and Commit
Message Volume. The details of the regression model building
for this purpose is in Section III.

We calculated McFadden’s Adjusted R2 as a quality indi-
cator of the model because there is no direct equivalent of
R2 metric for Poisson regression. The ordinary least square
(OLS) regression approach to goodness-of-fit does not apply
to Poisson regression. Moreover, adjusted R2 values like
McFadden’s can not be interpreted as one would interpret
OLS R2 values. McFadden’s Adjusted R2 values tend to be
considerably lower than those of the R2. Values of 0.2 to
0.4 represent an excellent fit [31]. The McFadden Adjusted
R2 [31] of these models were smaller than 0.002. In our case,
this was expected since we used only one factor at a time
instead of using multiple factors for model building. Since we
care about the association of the factors with defect proneness,
not about the model’s capability to explain overall variability,
we focus on regression coefficients instead of McFadden’s
Adjusted R2.

Table V shows the coefficients of regression model built
for commit level analysis for different independent variables
across all window sizes. The coefficient values of our Window
Quality Scores for both What and Why are larger than that of
Commit Message Volume. We also found significant difference
between the coefficients of Commit Message Volume and What
(Welch’s t-test, p-val<6.660e-05, Cohen’s D(3.55, large)), and
between What and Why (Welch’s t-test, p-val<0.005, Cohen’s
D(1.732, large)) across all window sizes.

For file-level analysis, we saw similar results shown in Table
VI . The coefficient values of our Window Quality Scores for
file level analysis in terms of both What and Why are larger
than that of Commit Message Volume. A significant differ-

TABLE V: Commit level: Coefficients of GLM model

Window Size Coefficient of Volume Coefficient of What Coefficient of Why
5 0.00373 0.11740 0.08787

10 0.00367 0.19327 0.17434
20 0.00363 0.34908 0.14494
50 0.00361 0.44871 0.11038

100 0.00364 0.48256 0.09678
200 0.00370 0.37022 0.13113
500 0.00383 0.22888 0.50962
800 0.00390 0.25426 0.73425
1000 0.00391 0.29600 0.83342

ence was found between the coefficient of Commit Message
Volume and Why (Welch’s t-test, p-val<1.153e-06, Cohen’s
D(6.134, large)), and between What and Why (Welch’s t-test,
p-val<3.606e-05, Cohen’s D(3.095, large)).

TABLE VI: File level: Coefficients of GLM model

Window Size Coefficient of Volume Coefficient of What Coefficient of Why
5 0.00393 0.24889 0.43222

10 0.00388 0.00295 0.55609
20 0.00421 0.34908 0.59306
50 0.00485 0.12108 0.64131

100 0.00366 0.16979 0.77763
200 0.00439 0.26760 0.45286
500 0.00452 0.25065 0.44335
800 0.00416 0.28544 0.45567
1000 0.00437 0.56136 0.42511

Observation 4: What and Why information in a commit
message has a significantly higher association with defect
proneness compared to Commit Message Volume.

Impact of Commit Message Quality-interview: When asked
during the interview, majority (84.61%) of our interviewees
agreed that the quality of existing commit messages has an
impact on the code changes that they commit and has the
potential to introduce or prevent defects from getting into
the code repository. We also asked our participants if Good
commit message in general is important in preventing software
defects from being introduced into the code base. 61.53%
of them gave us a positive answer. One of the interviewees
explicitly commented that “if developers don’t write Good
commit messages, other developers may not fully understand
the code change made in that commit, which may cause
software issues”[I-1]2.
Impact of Commit Message Quality-survey: Our survey
respondents also agreed that the quality of existing commit
messages impacts the code changes they commit. 37.36%
answered “Definitely yes”, while 34.07% answered “Probably
yes”. We also asked them if Good commit messages help
ensure software quality, almost all of them (96.67%) agreed.
The results corroborated the feedback from the interviews.

Then, we asked our survey participants to rank the impor-
tance of each type of information (Why, What) in a commit
message in preventing software defects. Figure 4 shows that
both types of information (What and Why) in a commit
message have the potential to affect software defect proneness.

2S-N refers to survey participant number and I-N to interview participant
number.

8

Fig. 4: Survey respondents’ perspectives on the importance of
each type of information in preventing software defects

Observation 5: Commit message quality has an impact
on software defect proneness, and Good commit mes-
sages can help to prevent software defects.

C. Evolution of Commit Message Quality

Commit Message Quality Evolution: We conducted Spearman
correlation analysis [53] between the week numbers and the
corresponding Weekly Quality Scores (Equation 2) to analyze
the evolution of commit message quality. The overall quality
of commit messages decreases significantly over time in
terms of What (Spearman correlation coefficient=-0.79953, p-
value=1.78787e-93), Why (Spearman correlation coefficient=-
0.42674, p-value=8.51816e-20), and Good (Spearman corre-
lation coefficient=-0.80203, p-value=1.78787e-94). From the
correlation coefficients, we can see that commit message
quality in terms of What (-0.79953) and Good (-0.80203)
decreased more rapidly than Why (-0.42674). To have an
understanding of the overall evolution trend, we looked at
the Weekly Quality Scores across all projects and found that
commit message quality degrades over time. Figure 5 shows
the trends.

Fig. 5: Week-wise average commit message quality

Observation 6: The overall commit message quality
degrades over time.

Developers’ Writing Quality Evolution: We conducted Spear-
man correlation analysis [53] between the week numbers
and the corresponding Weekly Quality Scores to analyze the
evolution of commit message quality of core and non-core
developers. The results of the Spearman correlation are shown

in Table VII. For core developers, their commit message
quality in terms of containing Why information became better
over time. Meanwhile, What and the overall quality (i.e. Good)
got worse. As for non-core developers, their commit message
quality in terms of both Why and What gradually became
worse over time.

TABLE VII: Spearman correlation between week numbers and
developers’ commit message writing quality

Why What Good
Core Non-core Core Non-core Core Non-core

Correlation 0.11534 -0.28654 -0.64504 -0.65961 -0.48316 -0.63566
p-value 0.01874 2.76536e-09 3.41329e-50 3.59693e-53 1.15959e-25 2.32192e-48

Developers’ Writing Quality Evolution-interview: 46.15%
of our interviewees mentioned that they tended to write more
Good commit messages over time, with the goal of “saving
other developers’ time in reading commit messages”[I-2],
“making code base cleaner”[I-3], or“following companies’
guidelines”[I-4]. 38.46% only paid more attention to writing
What while Why was sometimes ignored. One developer com-
mented that “Writing Why information would make a commit
message unnecessarily long so that I don’t write Why”[I-5].
Thus, there are developers whose commit message writing
quality degrades over time, while half of our interviewees
believed they wrote better commit messages over time.
Developers’ Writing Quality Evolution-survey: In terms of
writing Why information in commit messages over time,
61.90% of respondents tended to write Why, while 28.57%
believed they tended to ignore writing Why. For writing What,
77.38% paid more attention to it over time while only 10.71%
tended to ignore it. Moreover, eight respondents followed
other writing styles, such as “Only writing Why or What for
complicated code changes”[S-1], “Implying What by writing
Why, including Why in code comments instead of commit
messages”[S-2] etc. The remaining respondents either did not
have a clear idea of how their commit message writing quality
changed or tended not to write commit messages at all. From
the results of our survey, we could see that more than half of
our target developers believed that they tended to write better
commit messages over time.

Observation 7: Overall commit message quality de-
grades over time, while more than half of the participating
developers believed they wrote better quality commit
messages over time.

V. DISCUSSION

Our analysis showed that What and Why are more associated
with defect proneness compared to Commit Message Volume.
This might be happening because previous commits without
What and Why information could confuse the developer who
is making the current code change. This was also mentioned
by one of the interviewees: “if developers don’t write Good
commit messages, other developers may not fully understand
the code change made in that commit, which may cause
software issues.” [I-1]. Since What and Why are associated

9

with defect proneness, one interesting future research would
be to construct defect prediction models using What and Why
as features to further boost prediction models’ performance.

In addition to having an impact on defect proneness, our
interviewees and survey respondents also shared a variety of
potential impacts of commit message quality on software. “Not
including Why or What information in commit messages would
make other developers hard to understand the code change
in the commits.” [I-6] “The understandability/readability of
the entire code base would be reduced if no Why/What”[I-7]
“The software’s handover in the future will be affected by the
commit message quality.”[I-8]. All these responses suggest the
need for future research on commit message quality’s impact
on other facets of software quality, including maintainability,
code understandability, and project success.

Most survey participants believed their written commit
message quality improves over time. However, we found the
opposite trend through our analysis (Figure 5). This is a case
where reality is different from developers’ beliefs. Devanbu et
al. [20] showed that developers’ beliefs are primarily formed
based on personal experience and do not necessarily match the
real situation. Our results provide developers with evidence
that they might have an erroneous view of their commit
messages quality, and necessary steps should be taken to
improve this situation since commit message quality has a
negative impact on software defect proneness and probably
other quality aspects as well.

In terms of writing What and Why, core developers are
doing better than non-core developers (Table VII). And sur-
prisingly, both core and non-core developers are writing
commit messages with a degrading quality of What even
though developers believe that writing Why is more difficult
compared to writing What. As one of the survey participants
mentioned, “My commit messages are focusing on the what.
The why would usually require more context and is linked in
the PR/issue, probably because creating a good Why summary
is more difficult”[S-3]. One probable reason behind this could
be that developers believe that What information can be easily
deduced from the patch, and that’s why developers are not
paying attention to ensure the What information. As one
of the participants mentioned “The Why usually cannot be
derived from the code changes. The What is obvious from the
changes in the commit”[S-4]. Further investigation is required
to understand the exact reason behind this.

Although the overall quality of commit messages in terms
of including Why remains relatively high (i.e., around 0.95 of
Weekly Quality Score), non-core developers may need to pay
more attention to including Why information when writing
commit messages. As they become core developers in the
future, most commit messages will be composed by them,
so it’s really important for them to include Why as one
survey respondent commented “There will be more bugs when
future developers change this code. Future developers will be
more afraid to change this code if it’s tricky code since they
don’t understand the author’s intent”[S-5]. Developers also
indicated that writing Why information requires the context

of the change, and it is not easy to convey that concisely in
commit messages. This highlights the need for future research
to build tools that can automatically generate summarized
Why by collecting information from the context (i.e., commit
history) of the project.

VI. THREATS TO VALIDITY

We have taken all reasonable steps to mitigate potential
threats that could hamper the validity of this study, it is still
possible that our mitigation strategies might not have been
effective.

Construct validity It is possible that our survey participants
misunderstood the questions. To mitigate this threat, we con-
ducted pilot studies with developers of different backgrounds
and experiences from the OSS community. We updated the
survey based on the feedback from these pilot studies.

We categorized the developers into core and non-core
groups based on the number of commits they contributed.
Some of the developers could have been categorized as non-
core, but in fact, they were core developers who might focus
on high-level architecture design that does not require a large
number of total commits.

Internal validity It is possible that our manual labeling
process could have introduced unintentional bias. To address
this, two authors inspected and labeled independently. A
Cohen kappa of 0.95 indicates a high reliability of our labeling.

For identifying defect-introducing commits, we used SZ-
ZUnleashed [10]. For identifying refactorings, we used
RefMiner [67]. Just like any tool, there are inherent limitations
of these tools that could lead to missing defect-introducing
commits and refactoring commits. However, these tools have
been validated and used in other studies [54], [57], [61],
making them reliable.

External validity Our conclusions may not be generalizable
to projects that do not use Java or are hosted on other version
control systems except GitHub. Moreover, we conducted our
impact and evolution analysis only on Apache projects. It is
possible that the conclusions from these analyses may not
apply to other OSS projects.

VII. CONCLUSION AND FUTURE WORK

Our result shows that along with the commit message, the
content of the associated issue report/pull request link needs to
be considered for evaluating the quality of a commit message.
Based on this observation, we developed a ML classifier
for automatically identifying whether a commit message has
What and Why information by considering both the commit
messages and the link contents. This classifier outperforms
state-of-the-art classifiers by 12% improvement in F1 score.

Our results also highlighted that prior commit messages
quality in terms of What and/or Why information is associated
with the current commit’s defect proneness. We also found
that the overall quality of the commit messages decreases over
time, while developers believe the opposite.

The results reported in this paper lay the foundation for
our future work. In addition to the future directions already

10

presented in the discussion section (Section V), future research
entails an investigation of commit message quality’s impact on
software design quality and the creation of a more compre-
hensive commit message quality dataset that covers projects
written in multiple programming languages.

Data Availability: All the research artifacts (i.e., tools,
scripts, and data) of this study are available in [2].

REFERENCES

[1] “Apache developer guidelines.” [Online]. Available: https://www.apache.
org/dev/

[2] “Our replication package.” [Online]. Available: https://zenodo.org/
record/7042943#.YxG ROzMLdo

[3] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1199–1210.

[4] K. Agrawal, S. Amreen, and A. Mockus, “Commit quality in five high
performance computing projects,” in 2015 IEEE/ACM 1st International
Workshop on Software Engineering for High Performance Computing
in Science. IEEE, 2015, pp. 24–29.

[5] I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen, “An empirical
study of design degradation: How software projects get worse over
time,” in Empirical Software Engineering and Measurement (ESEM),
2015 ACM/IEEE International Symposium on. IEEE, 2015, pp. 1–10.

[6] Apache, “add @spi annotation (6436).” [On-
line]. Available: https://github.com/apache/dubbo/commit/
40d03b081e8a8f74fb5092163e51bdd17842cb5a

[7] ——, “Der encoder (6139).” [Online]. Available: https://github.com/
square/okhttp/commit/e736f927f82bcde9490b0e195f89d0a8884ba68b

[8] J. G. Barnett, C. K. Gathuru, L. S. Soldano, and S. McIntosh, “The
relationship between commit message detail and defect proneness in
java projects on github,” in 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR). IEEE, 2016, pp. 496–499.

[9] “https://scikit-optimize.github.io/stable/ modules/generat-
ed/skopt.bayessearchcv.html.”

[10] M. Borg, O. Svensson, K. Berg, and D. Hansson, “Szz unleashed:
an open implementation of the szz algorithm-featuring example usage
in a study of just-in-time bug prediction for the jenkins project,” in
Proceedings of the 3rd ACM SIGSOFT International Workshop on
Machine Learning Techniques for Software Quality Evaluation, 2019,
pp. 7–12.

[11] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, 2010, pp. 33–42.

[12] ——, “Automatically documenting program changes,” in Proceedings
of the IEEE/ACM international conference on Automated software
engineering - ASE ’10. Antwerp, Belgium: ACM Press, 2010, p. 33.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1858996.
1859005

[13] K. K. Chahal and M. Saini, “Developer dynamics and syntactic quality
of commit messages in oss projects,” in IFIP International Conference
on Open Source Systems. Springer, 2018, pp. 61–76.

[14] B. Chen et al., “Characterizing logging practices in java-based open
source software projects–a replication study in apache software foun-
dation,” Empirical Software Engineering, vol. 22, no. 1, pp. 330–374,
2017.

[15] D. Chen and S. E. Goldin, “A project-level investigation of software
commit comments and code quality,” in 2020 3rd International Con-
ference on Information and Communications Technology (ICOIACT).
IEEE, 2020, pp. 240–245.

[16] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen
et al., “Xgboost: extreme gradient boosting,” R package version 0.4-2,
vol. 1, no. 4, pp. 1–4, 2015.

[17] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[18] P. Cohen, S. G. West, and L. S. Aiken, Applied multiple regression/-
correlation analysis for the behavioral sciences. Psychology press,
2014.

[19] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation. IEEE, 2014, pp.
275–284.

[20] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in
empirical software engineering,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 108–119.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[22] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova, and
A. Mockus, “Detecting and characterizing bots that commit code,” in
Proceedings of the 17th international conference on mining software
repositories, 2020, pp. 209–219.

[23] M. J. Diener, “Cohen’s d,” The Corsini encyclopedia of psychology, pp.
1–1, 2010.

[24] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 422–431.

[25] J. Forman and L. Damschroder, “Qualitative content analysis,” in Em-
pirical methods for bioethics: A primer. Emerald Group Publishing
Limited, 2007.

[26] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, “Developer
initiation and social interactions in oss: A case study of the apache
software foundation,” Empirical Software Engineering, vol. 20, no. 5,
pp. 1318–1353, 2015.

[27] B. G. Glaser, “Open coding descriptions,” Grounded theory review,
vol. 15, no. 2, pp. 108–110, 2016.

[28] S. González-Carvajal and E. C. Garrido-Merchán, “Comparing bert
against traditional machine learning text classification,” arXiv preprint
arXiv:2005.13012, 2020.

[29] L. A. Goodman, “Snowball sampling,” The annals of mathematical
statistics, pp. 148–170, 1961.

[30] W. Haynes, “Bonferroni correction,” in Encyclopedia of Systems Biol-
ogy. Springer, 2013, pp. 154–154.

[31] D. A. Hensher and P. R. Stopher, “Behavioural travel modelling,” in
Behavioural travel modelling. Routledge, 2021, pp. 11–52.

[32] J. M. Hilbe, Logistic regression models. Chapman and hall/CRC, 2009.
[33] C. Izurieta and J. M. Bieman, “Testing consequences of grime buildup

in object oriented design patterns,” in 2008 1st International Conference
on Software Testing, Verification, and Validation. IEEE, 2008, pp. 171–
179.

[34] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 135–146.

[35] Á. B. Jiménez, J. L. Lázaro, and J. R. Dorronsoro, “Finding optimal
model parameters by discrete grid search,” in Innovations in Hybrid
Intelligent Systems. Springer, 2007, pp. 120–127.

[36] T.-H. Jung, “Commitbert: Commit message generation using pre-trained
programming language model,” arXiv preprint arXiv:2105.14242, 2021.

[37] Junit-Team, “Making super and sub member classes as suggested.
· junit-team/junit4@3920f3f.” [Online]. Available: https://github.com/
junit-team/junit4/commit/3920f3fe11dffc904e1ab41a9ff4fc9d36b1c25b

[38] ——, “Remove usages of frameworkmember as a raw type.
(1596).” [Online]. Available: https://github.com/junit-team/junit4/
commit/6d0fad48ce3a05b32d903d2016c24d276b6e1eb8

[39] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the apache software foundation
projects,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 2016, pp. 154–164.

[40] J. R. Landis and G. G. Koch, “An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple
observers,” Biometrics, pp. 363–374, 1977.

[41] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich con-
textual information,” in 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE, 2015, pp. 36–47.

[42] S. Liu, C. Gao, S. Chen, N. Lun Yiu, and Y. Liu, “ATOM: Commit
Message Generation Based on Abstract Syntax Tree and Hybrid
Ranking,” IEEE Transactions on Software Engineering, pp. 1–1, 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/9261989/

11

https://www.apache.org/dev/
https://www.apache.org/dev/
https://zenodo.org/record/7042943#.YxG_ROzMLdo
https://zenodo.org/record/7042943#.YxG_ROzMLdo
https://github.com/apache/dubbo/commit/40d03b081e8a8f74fb5092163e51bdd17842cb5a
https://github.com/apache/dubbo/commit/40d03b081e8a8f74fb5092163e51bdd17842cb5a
https://github.com/square/okhttp/commit/e736f927f82bcde9490b0e195f89d0a8884ba68b
https://github.com/square/okhttp/commit/e736f927f82bcde9490b0e195f89d0a8884ba68b
http://portal.acm.org/citation.cfm?doid=1858996.1859005
http://portal.acm.org/citation.cfm?doid=1858996.1859005
https://github.com/junit-team/junit4/commit/3920f3fe11dffc904e1ab41a9ff4fc9d36b1c25b
https://github.com/junit-team/junit4/commit/3920f3fe11dffc904e1ab41a9ff4fc9d36b1c25b
https://github.com/junit-team/junit4/commit/6d0fad48ce3a05b32d903d2016c24d276b6e1eb8
https://github.com/junit-team/junit4/commit/6d0fad48ce3a05b32d903d2016c24d276b6e1eb8
https://ieeexplore.ieee.org/document/9261989/

[43] S. Liu, C. Gao, S. Chen, N. L. Yiu, and Y. Liu, “Atom: Commit message
generation based on abstract syntax tree and hybrid ranking,” IEEE
Transactions on Software Engineering, 2020.

[44] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[45] E. Loper and S. Bird, “Nltk: The natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[46] C. Lu, “But do commit messages matter? an empirical association
analysis with technical debt,” Joint Proceedings of the Summer School
on Software Maintenance and Evolution, 2019.

[47] U. A. Mannan, I. Ahmed, C. Jensen, and A. Sarma, “On the relationship
between design discussions and design quality: a case study of apache
projects,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 543–555.

[48] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans-
actions on Software Engineering, vol. 44, no. 5, pp. 412–428, 2017.

[49] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[50] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases.” in icsm, 2000, pp. 120–130.

[51] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[52] T. Mombach and M. T. Valente, “Github rest api vs ghtorrent vs github
archive: A comparative study,” 2018.

[53] L. Myers and M. J. Sirois, “Spearman correlation coefficients, differ-
ences between,” Encyclopedia of statistical sciences, vol. 12, 2004.

[54] R. Paul, A. K. Turzo, and A. Bosu, “Why security defects go unnoticed
during code reviews? a case-control study of the chromium os project,”
in 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). IEEE, 2021, pp. 1373–1385.

[55] Qualtrics, “Qualtrics XM - Experience Management Software,” sep 13
2015, [Online; accessed 2022-03-14].

[56] A. Rojarath, W. Songpan, and C. Pong-inwong, “Improved ensemble
learning for classification techniques based on majority voting,” in 2016
7th IEEE international conference on software engineering and service
science (ICSESS). IEEE, 2016, pp. 107–110.

[57] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza,
and R. Oliveto, “Evaluating szz implementations through a developer-

informed oracle,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 436–447.

[58] G. D. Ruxton, “The unequal variance t-test is an underused alternative
to student’s t-test and the mann–whitney u test,” Behavioral Ecology,
vol. 17, no. 4, pp. 688–690, 2006.

[59] E. A. Santos and A. Hindle, “Judging a commit by its cover,” in
Proceedings of the 13th International Workshop on Mining Software
Repositories-MSR, vol. 16, 2016, pp. 504–507.

[60] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[61] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact of refac-
toring on program comprehension,” in 29th International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2022, pp. 1–
12.

[62] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th In-
ternational workshop on cooperative and human aspects of software
engineering (CHASE). IEEE, 2013, pp. 89–92.

[63] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE transactions on software
engineering, vol. 37, no. 3, pp. 356–370, 2010.

[64] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang, and
W. Zhang, “On the evaluation of commit message generation models: an
experimental study,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 126–136.

[65] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes a good
commit message?” arXiv preprint arXiv:2202.02974, 2022.

[66] TIOBE, “Tiobe index,” http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html.

[67] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2020.

[68] B. Wang, M. Yan, Z. Liu, L. Xu, X. Xia, X. Zhang, and D. Yang,
“Quality assurance for automated commit message generation,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 260–271.

[69] L. Wang, Support vector machines: theory and applications. Springer
Science & Business Media, 2005, vol. 177.

[70] T. Zhang, I. C. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “Automatic
pull request title generation,” arXiv preprint arXiv:2206.10430, 2022.

[71] ——, “itiger: An automatic issue title generation tool,” arXiv preprint
arXiv:2206.10811, 2022.

12

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	Introduction
	Related Works
	Commit Message Quality Measurement and Evolution
	Evaluation of Generated Commit Message from Commit Message Generation (CMG) Techniques
	Impact of Commit Message Quality

	Methodology
	Formative Interviews
	Large Scale Online Survey
	Manual Analysis
	Commit Message Quality Analysis

	Results
	Inclusion of Why information by attaching links
	Impact of Commit Message Quality
	Evolution of Commit Message Quality

	Discussion
	Threats To Validity
	Conclusion and Future Work
	References

