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Abstract—Interpreting and debugging machine learning mod-
els is necessary to ensure the robustness of the machine learning
models. Explaining mispredictions can help significantly in do-
ing so. While recent works on misprediction explanation have
proven promising in generating interpretable explanations for
mispredictions, the state-of-the-art techniques “blindly” deduce
misprediction explanation rules from all data features, which
may not be scalable depending on the number of features. To
alleviate this problem, we propose an efficient misprediction ex-
planation technique named Bias Guided Misprediction Diagnoser
(BGMD), which leverages two prior knowledge about data: a)
data often exhibit highly-skewed feature distributions and b)
trained models in many cases perform poorly on subdataset
with under-represented features. Next, we propose a technique
named MAPS (Mispredicted Area UPweight Sampling). MAPS
increases the weights of subdataset during model retraining that
belong to the group that is prone to be mispredicted because
of containing under-represented features. Thus, MAPS make
retrained model pay more attention to the under-represented
features. Our empirical study shows that our proposed BGMD
outperformed the state-of-the-art misprediction diagnoser and
reduces diagnosis time by 92%. Furthermore, MAPS outper-
formed two state-of-the-art techniques on fixing the machine
learning model’s performance on mispredicted data without
compromising performance on all data. All the research artifacts
(i.e., tools, scripts, and data) of this study are available in the
accompanying website [1].

Index Terms—machine learning, data imbalance, rule induc-
tion, misprediction explanation

I. INTRODUCTION

Machine learning (ML) techniques, similar to other fields,
have been gaining popularity in software engineering tasks.
Defect prediction [25], [29], [30], automatic code comple-
tion [15], [51], predicting merge conflicts [44], and synthe-
sizing and repairing programs [48], [53], [56], [58] are some
examples. While these models’ overall performance is good,
interpreting and debugging them is a challenge, which also
impedes the real-world usage of these models [22], [37].

Specific characteristics of ML systems make them difficult
to debug. The opacity of the learned models, high dimensional-
ity of the input data, dependence on the data quality [8], [12]
are a few of them. Data often exhibits highly-skewed class
distributions (class imbalance), i.e., most data belong to the
majority class, and the minority class only contains a small
number of instances [52]. To complicate things even more,
imbalance not only happens at class level but also on data
features [25]. Since ML models are usually trained by mini-
mizing average training loss on all data, which is also known
as Empirical Risk Minimization (ERM), a feature imbalance
can lead to models that achieve low test error but still incur
high error on instances that contain under-represented features.
For example, Gesi et al. [25] showed that in software defect
prediction tasks, comparing with most commits, the prediction
model often performs significantly worse for the commits,
which involve a large number of modified files since the
number of training instances with a large number of modified
files is very few during training. The similar situation has been
observed in other fields as well, such as a vehicle recognition
model usually fails to detect crashed cars as a car because
of very few crashed car instances in the training dataset [57].
These varying granularities of imbalance (i.e., class vs. feature)
severely impact the robustness of models.

To ensure the robustness of the models, the explanation
generation technique has been proven to be one of the most
effective ways as it can help in explaining the rationale for
a prediction [18], [19], [24], [45], [49]. Researchers have
been trying various explanation generation techniques [45],
[49] to shed light on the global behavior of a model either
by highlighting which features are the most important or by
constructing a surrogate and simpler model that emulates a
complex model. However, except for [16], [17], none of the
work focused on explaining the mispredictions of a ML model.

In the most recent work, Cito et al. [17] proposed a
technique named EXPLAIN, which generates a set of decision
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rules based on features and mispredicted instances to explain
the reasons for mispredictions, i,e., Misprediction Explanation
(ME) rules. However, one of the limitations of EXPLAIN is
that its generated ME rules are deduced “blindly” from all
features. Since ML models can have thousands or even mil-
lions of features [6], without guiding the ME rule generation
by incorporating some form of prior knowledge, techniques
like EXPLAIN will suffer from scalability issues. Furthermore,
due to data and model drift over time [34], models must be
retrained, and ME rules also must be regenerated. Additional
time requirements for approaches “blindly” relying on all
features for rule deduction would quickly add up when done
many times over the lifetime of a model.

In another related line of work, researchers introduced vari-
ous methods to improve the model’s prediction performance on
the instances containing under-represented features [25], [57].
However, previous approaches typically require additional
annotations [17]. For example, adding additional annotated
code commits that modify a large number of files or adding
annotated crashed car pictures in the vehicle detection dataset.
While these approaches have been successful at improv-
ing the model’s performance for instances containing under-
represented features, the required additional annotated training
data is often expensive [39].

Having Observed these limitations of the existing tech-
niques, in this paper, we propose a technique called Bias
Guided Misprediction Diagnoser (BGMD), which leverages
feature imbalance as prior knowledge for generating rules
to explain misprediction. Then, we use generated rules from
BGMD to guide a novel upweight sampling method that can
improve ML model’s performance on mispredicted data with-
out requiring additional annotated instances, named MAPS
(Mispredicted Area UPweight Sampling).

Figure 1 shows the high-level overview of how BGMD and
MAPS work together to resolve the aforementioned limitations
of existing techniques. Figure. 1-(a) presents a trained model
that classifies black and white points based on two features
(x-axis and y-axis coordinates). The model predicts points in
green region as black points and white in blue region. Next,
BGMD identifies two regions (red square area in Figure. 1-(b))
that contain instances that are prone to misprediction. Then,
MAPS improves the weight of instances within the identified
regions (Figure. 1-(c)) so that the retrained model pays more
attention to these part of instances. The retrained model result
presents in Figure. 1-(d), which could perform better on the
instances that were identified by BGMD. A detailed description
of the MAPS algorithm is in Section IV.

We empirically compared BGMD with the state-of-the-art
EXPLAIN [17] technique and the result shows that BGMD
not only outperformed EXPLAIN in generating ME rules in
trms of rule coverage but also reduced 92% in rule generation
time. Furthermore, we also investigated if MAPS can success-
fully improve the ML model’s performance, specifically for
instances containing under-represented features that are prone
to misprediction. We empirically evaluated MAPS on three
software engineering tasks and five general classification tasks

Fig. 1: Overview of Mispredicted Area Upweight Sampling

TABLE I: Samples from a dataset used to train a ML model
that predicts whether a merge commit is likely to lead

conflict

parallel changed 
file num

added 
file num

developer 
num … conflicted pred

3 7 0 12 … True True
1 2 3 4 … False
1 3 2 3 … True

False
False

5 13 0 8 … False True

commit
num

and the result shows that MAPS can significantly improve the
model’s performance without requiring extra annotation data.

The key contributions of this study are:
• Introduces a scalable ML model misprediction explanation

rule generation technique named BGMD.
• Introduces a new upweight sampling method that improves

model performance on data prone to be mispredicted with-
out requiring extra annotated training data named MAPS.

• Empirically evaluates new proposed techniques with corre-
sponding state-of-the-art techniques.
The rest work is structured as follows. In Sec. II, we

introduce the necessary preliminary information. Then, in
Sec. III, we introduce BGMD. In Sec. IV, we describe how
MAPS works. In Sec. V, we show empirical evaluations and
results. Then, In Sec. VI, we make further discussions. In
Sec. VII, we review some of the related works close to our
problem. In Sec. VIII, we present threats to validity, and
finally, in Sec. IX, the conclusions are drawn.

II. PRELIMINARIES

In this section, we describe what a misprediction explana-
tion (ME) rule generation technique is and how the generated
rules can be used to explain mispredictions of a ML model.
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Imagine training a model to predict whether a merge commit
is likely to cause a conflict. The model may be based on
features such as number of commits (“commit num”), number
of added files (“added file num”), number of changed files
parallelly (“parallel changed file num”), number of involved
developers (“developer num”) and potentially dozens of addi-
tional features. Table I provides a small subset of the entire
dataset, including the true label (“conflicted”) and the model’s
prediction (“pred”). We will use it as a running example for
the rest of this section.

We use instances x ∈ X and corresponding labels y ∈ Y to
train a ML model. Let D : X → Y be the ground truth for the
dataset. Given instances (x1, y1), ..., (xn, yn) ∈ X , a trained
ML model Mθ : X → Y parameterized by θ, we define a
misprediction indicator I : x→ {0, 1} :

I(x) =

{
1 if D(x) ̸= Mθ(x)

0 if D(x) = Mθ(x)
(1)

In other words, I(x) is 1 iff when the ML model Mθ

predicts the wrong label for instance x.
Misprediction coverage: ME technique’s goal is to gener-

ate a decision list Φ, i.e., ME rules. These rules are generated
based on model training features. In the case of our running
example, these features would be all available features shown
in table I. Then ME technique generated rules identifies a sub-
dataset Φ(x), in which most of the instances are prone to be
mispredicted by the trained model:

P (Φ(x) = 1 | I(x) = 1, x ∈ X ) (2)

We refer to the value of Equation 2 as the ME coverage
of rule Φ where Φ(x) = 1 when the ME rule covers an
instance x that is mispredicted by the model. The larger value
of Equation 2 means the more mispredicted instances are
explained by decision list Φ. And decision list Φ is composed
of a set of rules:

Φ = {ϕ1 ∧ ϕ2 ∧ ...ϕn} (3)

where ϕi is a predicate based on feature i and defined as:

ϕ→ xc = c |xc ̸= c |xn ≤ c |xn > c (4)

Where each condition is a conjunction of the atomic pred-
icate of the form “x op c” where x is a feature and c is a
variable. The notation xc indicates categorical features, and
xn indicates numeric features. For example, in the running
example, the best rule list is when Φ = {commit num >
28 & added file num > 15 & developer num <= 15 &
developer > 9} which has a precision of 82% and a recall of
46%. This means that 82% of the instances identified by the
above-mentioned rule are mispredicted by the model, and the
identified instances contain 46% of all mispredicted instances.
A good ME rule should have a higher misprediction coverage,
which means both high precision and recall.

Fig. 2: Commit count frequency for dataset [43]

III. BGMD: BIAS GUIDED MISPREDICTION DIAGNOSER

In this section, we present our proposed ME rule generation
technique BGMD. First, we show an example of feature im-
balance that occurs in merge conflict prediction datasets [43].
We then introduce how BGMD exploits feature imbalances in
ML models to achieve scalable ME.

A. Data Feature Imbalance

ML model performance heavily relies on data quality [8].
However, data often exhibit highly-skewed feature distribution.
For example, figure 2 shows the frequency of the Updated
commit count feature in a merge conflict prediction data set
(we only present the Updated commit count between 1 and
150 because of the space limitation).

From figure 2, we observe that 11,379 merge commit
instances contain one update commit, but only nine merge
commit instances have 150 update commits. Additionally,
instances with less than 30 Updated commit count accounted
for 98% of all data. Thus, in the merge conflict prediction
dataset, instances with Updated commit count less than 30
belong to the majority group with respect to Updated commit
count feature, while instances with Updated commit count
over 30 belong to the minority group. The minority group of
data is usually under-represented during model training, and
as a result, the trained model is biased towards the majority
group, causing the model to perform poorly on data containing
under-represented features [25], [57]. Despite such bias, these
features should not be removed because that might negatively
impact the model’s overall performance. For example, in case
of the data shown in figure 2, Updated commit count is one of
the most important features for merge conflict prediction [36].
So removing the Updated commit count will adversely impact
the overall model’s performance. Therefore, directly removing
the biased features is not advised in literature [13], [39].

B. Bias Guided Misprediction Diagnoser

The general ME rule generation for ML model is formulated
in Section II. At a high level, the first step of BGMD is to select
a subset of features whose part of data are prone to be mis-
predicted based on imbalanced features, such as the Updated
commit count feature in the merge conflict prediction data set
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Algorithm 1 BGMD (D,A,M, δ)

Input: Labeled dataset D : X → Y;
ML model M : X → Y;
Data attributes: A;
Target coverage: δ.

Output: Misprediction explaination for model M .

1: I ← I{D, M(A)}
2: BA ← ExtractBiasFeatures(A, I)
3: Atom← GenAtoms(BA)
4: Φ← [ ]
5: cvg ← 0
6: cur ← D
7: while cvg ≤ δ do
8: Φ← LearnRule(Atom, cur)
9: cur ← Filter(Φ, cur)

10: cvg ← ComputeCoverage(I, cur)
11: end while

return Misprediction Explanation Φ

(Section III-A). Then, BGMD deduces a list of explanation
rules to explain when a data contains what particular features
that the model tends to mispredict. Note that, to the best of
our knowledge, BGMD is the first method to use the feature
imbalance for model ME rule generation.

Algorithm 1 presents the procedure of BGMD method.
This procedure takes labeled data set D containing ground
truth label, all attributes A, an ML model M , and a target
ME coverage δ (percentage of mispredicted data) as inputs.
We now explain the procedure of BGMD.

Construct misprediction indication vector. The first step
(line 1 in Algorithm 1) is to build a misprediction indication
vector I : X → 0, 1 for the model M , such that:

I(x) = 1⇔ (D(x) ̸= M(x))

In other words, the extracted indication vector I maps each
input in D to a boolean value indicating whether the instance
is mispredicted by the given model M .

Extract biased features. Next, our algorithm calls a pro-
cedure named ExtractBiasFeatures (line 2 in Algorithm 1) to
select a subset of features that the trained model is biased
on, i.e., the model M performs significantly better on the
feature’s majority group than its minority group. The detail
of the procedure ExtractBiasFeatures is in Algorithm. 2.

First, ExtractBiasAttributes separates all data into mispre-
dicted and correctly predicted groups. Then, iterate each
feature in A and evaluate whether there is a significant
feature distribution difference (Mann-Whitney test, α < 0.05)
between the mispredicted and correctly predicted groups. We
use the non-parametric Mann-Whitney test since the data
population usually is not normally distributed. We consider
the model is biased towards a feature if the Mann-Whitney
test shows there is a significant difference (α < 0.05) between
mispredicted and correctly predicted instances.

Generate atomic predicates. Next, BGMD calls GenAtoms

Algorithm 2 ExtractBiasFeatures (A, I, α)

Input: Data features: A;
Mispredict indicator: I;
Significance threshold: α.

Output: Biased feature list BA.

1: BA ← [ ]
2: mispredicted ← I(x) = 1
3: correctly-predicted ← I(x) = 0
4: for feature in A do
5: MG ← mispredicted[feature]
6: CG ← correctly-predicted[feature]
7: P-value ← Mann-Whitney(MG, CG)
8: if P-value < α then
9: BA.insert(feature)

10: end if
11: end for

return Biased feature list BA

TABLE II: Example of universe atomic predicates based on
the dataset in Table I

Atomic Predicates
commit num > 3
commit num <= 3
commit num > 18
commit num <= 18
commit num > 28
commit num <= 28

add file num > 5
add file num <= 5
add file num > 15
add file num <= 15
add file num > 30
add file num <= 30

developer num > 4
developer num <= 4
developer num > 9
developer num <= 9
developer num > 15
developer num <= 15

procedure (line 3 in Algorithm 1) to generate candidate atomic
predicates of the form “x op c”, where x is a feature and
c is a constant value. If x is a categorical variable, we
generate predicates of the form xc = cj and xc ̸= cj , where
cj ∈ BA. For numerical features, we use operators ≤, > and
generate constant cj using equal frequency binning [33]. For
instance, if we have a numerical feature containing values
V = {v1, v2, ..., vn}, we first partition the (sorted) set V into
k bins where each bin has roughly equal size. The value of k
is a hyper-parameter and is set to 4 by default. Then, we use
the highest value in each bin as one of the constants in our
predicates to generate atoms of the form “xn op c”. Table II
shows the universe of atomic predicates that are generated
based on the features illustrated in Table I.

Rule Learning. During rule learning (line 8 in Algorithm 1),
we want to learn rules that are correlated with mispredictions.
This problem is equivalent to maximizing the following ob-
jective function:

precision =
|x ∈ X |Φ(x) ∧ I(x) = 1|

|x ∈ X |Φ(x)|
(5)

which tries to make identified instances by Φ contain a
higher percentage of mispredicted instances, and it corre-
sponds to the precision value of ME rule.

However, if our rule learning algorithm solely aims to
maximize precision, the BGMD may lead to a small rule

4



size that takes many iterations to converge. Moreover, it may
produce an over-fitted rule to a specific mispredicted instance
(100% precision). Generating many rules to meet the coverage
threshold would also result in producing a large number of
sub-rules in Φ. This ultimately compromises the interpretabil-
ity. Hence, instead of optimizing only on precision, our rule
learning algorithm also takes rule size and recall into account.
The recall is shown below:

recall =
|x ∈ X |Φ(x) ∧ I(x) = 1|
|x ∈ X |I(x) = 1|

(6)

which corresponds to the ratio between the identified mis-
predicted instances by generated rules and all mispredicted
instances by the given model.

Thus, our final rule learning optimization objective function
is a linear combination of precision, recall, and rule size:

Obj = λ1 · precision+ λ2 · recall + λ3 ·
1

size(ϕ)
e (7)

where parameters λ1, λ2, and λ3 are tunable hyper-
parameters and they are depends on the context and set to
1 by default. Precision is the primary factor that identifies
mispredictions instances density, i.e., reducing the number
of correctly predicted instances in identified instances. And
recall controls the coverage of all mispredicted instances, i.e.,
increasing the number of identified mispredicted instances.
Furthermore, rule size is mainly used for accelerating con-
vergence and improving the explainability of generated rules.

Main learning loop. After the initialization phase (line 1 to
6), the algorithm enters a loop (line 7 to 11) that iteratively
adds previously generated atomic predicate into a decision list
until the learned rules achieve the desired coverage δ. The
learned decision lists Φ is a list of predicates. For example,
the list Φ = [ϕ1, ϕ2] corresponds to the following explanation:

if (ϕ1) then 1 else if (ϕ2) then 1 else 0

At a high level, the learning loop synthesizes the target
decision list using a standard sequential covering method [10].
In particular, it first learns a rule ϕ1 for the whole data set, then
filters out instances satisfying ϕ1, then learns another rule ϕ2

for the remaining instance, and so on, until the target coverage
is reached. Intuitively, the predicate in the i’th branch is the
best predictor for the mispredictions in the subset of the data
not covered by the earlier predicates. The algorithm terminates
only when misprediction coverage cvg exceeds target coverage
δ, thus the output of the BGMD procedure is guaranteed to
satisfy the coverage constraint.

C. Implementation

We implemented BGMD as a Python library that can be
installed using pip command. It takes a Pandas dataframe,
a target coverage, and a set of optional parameters and
returns a set of decision lists paired with precision, recall, F1
score, and coverage metrics. An implementation is available
in accompany website [1]

IV. MAPS: MISPREDICTED AREA UPWEIGHT SAMPLING

In this section, we present Mispredicted Area uPweight
Sampling (MAPS), which leverages the ME information gen-
erated by BGMD to improve the ML model’s performance on
instances that contains under-represented features.

A. Overview of the baseline algorithms

In this study, we use a standard ML model training method
and two sampling algorithms as baselines.

Empirical Risk Minimization (ERM) is a standard approach
to train a ML model by minimizing the average training loss.
ERM is trying to minimize the following loss function:

LERM (θ) =
1

n

n∑
i=1

ℓ(xi, yi; θ) (8)

where θ is the parameter of the trained model.
Synthetic Minority Oversampling TEchnique (SMOTE) [13]

is one of the most popular oversampling methods to improve
the model’s robustness by synthesizing instances in minority
groups. The intuition of SMOTE is that it tries to balance
the number of instances between majority group and minority
group by synthesizing artificial instances in the minority group.
So that the trained model can pay more attention to the
instances in the minority group.

SMOTE is parameterized with K neighbors (the number
of nearest neighbors it will consider) and the number N
of new instances that it wishes to create. The way SMOTE
synthesizes an instance is : (1) Randomly selects an instance
in the minority group. (2) Randomly selects any of its K
nearest neighbors belonging to the same class and generates a
temporary new instance Xtemp using the average of selected K
neighbors. (3) Randomly specifies a value lambda in the range
[0, 1]. (4) Generates and places a new instance on the vector
between the original and Xtemp, located lambda percent of
the way from the original instance. In this work, we consider
the BGMD identified data groups as the minority group since
these groups are under-represented during model training.

Just Train Twice (JTT) [39] is a upweight sampling tech-
nique that was proposed in PMLR’21 [5], whose goal is to
improve model’s robustness via fixing model’s performance
on the mispredicted instances. We selected JTT as one of the
baseline because JTT has been proven to be the state-of-the-
art technique which has been compared with several upweight
and reweight methods such as CVaR DRO [23], and Group
DRO [47]. JTT has two-stages. In the first stage, it trains a ML
model M̂ on training data and then constructs a misprediction
indication vector I on the validation data using equation 1,
such that:

I(x) = 1⇔ (D(x) ̸= M̂(x))

where D is the ground truth label for validation data.
Next, JTT retrains a final model M with validation data

by upweighting all instances in the validation data that were
mispredicted by the first trained model:
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LJTT (θ, I) =

λup

∑
I(xi)=1

ℓ(xi, yi; θ) +
∑

I(xi)=0

ℓ(xi, yi; θ)


(9)

where λup ∈ R+ is a tunable hyperparameter. The intuition
of JTT is that for instances that the first model mispredicted,
the final model should pay more attention to them. However,
increasing the model’s weight only for mispredicted data
instances can make the model overfit to them. This could
also result in the previously correctly predicted instances to
be mispredicted by the final model. This problem was also
found in our experiments and details are in Section V.

B. MAPS: Mispredicted Area uPweight Sampling
MAPS is a novel upweight sampling method proposed in

this paper based on the empirical observation that ML models
tend to perform poorly on subsets of data containing under-
represented features [25]. Therefore, MAPS first utilizes the
ME rules generated by BGMD to identify a subset of the
dataset that is prone to misprediction due to feature under-
representation and then uses up-weight sampling to make
the new model more aware of data with under-represented
features. Unlike JTT, the retrained model using MAPS avoid
focusing too much on a small subset of data that can lead
to overfitting, and instead focus more on balancing saliency
and under-represented features. The MAPS details presents in
algorithm 3
Stage 1: Mispredicted Area identification. MAPS first trains
a normal ML model M̂ . Then it identifies groups of instances
that tend to be mispredicted by using misprediction diagnosing
techniques, such as BGMD (Section III).

Φ = BGMD(xi, yi, M̂) (10)

Stage 2: Upweighting. After identifying the groups of in-
stances that first model tends to mispredict, MAPS retrains a
final model Mfinal by upweighting the identified instances
during model training, using below loss function:

LMAPS(θ,Φ) =

λup

n∑
xi∈Φ

ℓ(xi, yi; θ) +
∑
xi /∈Φ

ℓ(xi, yi; θ)


(11)

Implementation. The MAPS training method is described
in Algorithm 3. To implement the upweighted objective (equa-
tion 11), we multiply a upweight value λup on identified subset
of data. However, it’s challenging to determine a universal
upweight value λup for all models, so we tried various
upweight values and used the best performed retrained model.
Similar upweight value λup selection method was also used
for JTT. In addition, we also analyzed the impact of different
upweight value λup on MAPS in Section V-C.

V. EVALUATION

In this section, we present empirical evaluation results that
aim to answer the following research questions:

Algorithm 3 MAPS training

Input: Training set D and hyperparameter λup.
Stage one: Mispredict area identification
1. Train M̂ on D via ERM (equation 8).
2. Extract the misprediction explaining rules Φ (equation 10).
Stage two: Upweighting points meet rules
3. Construct upweighted dataset Dup containing the training
instances that meet the misprediction explain rules Φ.
4. Set λup times in loss function for Dup training instances
and one for other examples (equation 11).
5. Train final model Mfinal using LMAPS as the loss
function.

• RQ1: How does BGMD perform compared to the state-of-
the-art ME rule generation method? (Section V-A)

• RQ2: Can MAPS help improve the performance of ML
models? (Section V-B)

• RQ3: How do different upweight values affect the perfor-
mance of the model when using MAPS? (Section V-C)

To answer first research question, we compared BGMD with
the state-of-the-art ME rule generation method EXPLAIN [17]
on two SE tasks and five Kaggle [4] classification tasks. And
to answer the second question, we compared MAPS method
with a popular oversampling method (SMOTE) and a state-of-
the-art upweight-sampling method (JTT) [39].

A. ME rule generation technique comparison

ME techniques need to ensure (1) high model ME coverage
(quality) by the generated rules, and (2) less rule generation
time (efficiency).

In terms of ME coverage metric, the subset data covered by
generated ME rules should ensure that: (i) the majority of the
covered data is mispredicted by the given model (precision),
and (ii) the covered data should account for as many mispre-
dicted data by given model as possible (recall). Thus, both
precision (equation 5) and recall (equation 6) are important
for a good ME coverage metrci. Therefore, when comparing
MAPS with the state-of-the-art ME rule generation technique
EXPLAIN [17], we use F1 score as it is a harmonically
balanced value of precision and recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(12)

In terms of ME rule generation efficiency, we use rule
generation time as the evaluation metric, i.e., the less time
spent in the rule generation process, the more efficient the
technique is.

Evaluation Subjects. For evaluation, we selected the two
models that performed best in the study that proposed EX-
PLAIN [17], i.e., Decision Tree (DT) and Random Forest
(RF). To replicate the study conducted by Cito et al. [17]
and to evaluate whether our approach can be extended to
Non-SE models, we also evaluated on two publicly available
models from Kaggle [4]. We select the Kaggle models that still
have room for improvement. Thus, we select Support Vector
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TABLE III: Generated misprediction explanation rule coverage metrics by BGMD and EXPLAIN. DT represents decision
tree, RF represents random forest, SVM for Support Vector Machine.

Software
Engineering EXPLAIN BGMD

(ours) Kaggle EXPLAIN BGMD
(ours)

Task Model Prec. Recall F1 Prec. Recall F1 Task Model Prec. Recall F1 Prec. Recall F1
DT 33.08 62.46 43.25 58.40 72.99 64.89 SVM 49.24 82.60 61.70 49.24 82.60 61.70Merge Conflict

Pred. (Ruby) RF 93.02 94.83 93.91 92.06 95.84 93.91
Spam
Email DT 46.38 61.62 52.93 46.20 61.35 53.40

DT 67.64 71.45 69.49 64.56 78.76 70.96 SVM 33.13 98.58 49.60 33.13 98.58 49.60Merge Conflict
Pred. (Python) RF 98.74 95.58 97.13 98.74 95.58 97.13

Hotel
Booking DT 18.96 99.92 31.87 18.96 99.92 31.87

DT 54.47 67.14 60.15 61.06 64.33 62.65 SVM 45.90 38.48 41.86 45.90 38.48 41.86Merge Conflict
Pred. (Java) RF 89.26 94.32 91.72 92.62 90.83 91.72

Bank
Marketing DT 33.33 35.92 34.58 33.33 35.92 47.83

DT 65.25 63.17 64.19 60.25 68.68 64.19 SVM 42.19 89.54 57.36 42.19 89.54 59.51Merge Conflict
Pred. (PHP) RF 85.33 92.96 88.98 83.33 95.45 88.98

Change
Job DT 20.28 44.21 59.51 20.28 44.21 59.51

DT 30.60 19.53 23.84 31.89 31.00 31.44 SVM 55.51 47.87 49.74 48.95 83.93 62.55Bug Report
Close Time Pred. RF 7.51 38.14 12.55 41.97 40.69 41.32

Water
Quality DT 19.50 50.43 28.13 22.75 87.83 36.14

Average 62.49 69.96 64.52 68.49 73.42 70.72 Average 36.44 68.66 47.10 36.99 70.50 51.92

(a) SE models (“MCP” represents Merge Conflict Prediction;
“BRCTP” represents Bug Rreport Close Time Prediction).

(b) Non-SE models (“WQ” represents Warter Quality; “CJ”
represents Change Job; “BM” represents Bank Market; “HB”
represents Hotel Booking; and “SE” represents Spam Email).

Fig. 3: Misprediction explanation rule generation time comparison

Machine (SVM) and Decision Tree (DT). Since our goal is
to compare the effectiveness of various ME rule generation
approaches, we did not conduct hyper-parameter tuning so
that the models have room for improvement and there are
mispredicted data that can be identified by the ME rules. So
we used default hyper-parameters in all models. In total, there
are 57 hyper-parameters for the three models used in this
paper. Due to space constraints, we list them in the companion
website [3]. To remove the model variance, we used five-
fold cross-validation (train-80%, test-20%) and repeated it five
times with random seeds, and finally reported the median
value, which is a common approach used by other studies [11].

Three SE data were evaluated in EXPLAIN, which are
private to the Meta company and inaccessible to us. So,
we use two publicly accessible SE datasets: merge conflict
prediction [43] and bug report close time prediction [27].
For non-SE tasks, EXPLAIN was evaluated on two publicly
available datasets from Kaggle [4]. However, the datasets
they evaluated are too small to highlight the efficiency or
scalability of different ME rule generation techniques. So we
decided to use larger datasets (Spam Email, Water Quality,

TABLE IV: Representative rule from each technique

Rule Prec.   Rec.   F1.     Time(s)

BGMD

EXPLAIN

If line_removed>332 & developer_num>88 
& parallel_changed_file_num>12
elseif developer_num>45.0 & commit_num > 
229 & parallel_changed_file_num>12

Feature #

If line_removed > 332 & developer_num 
> 45 & commit_num>372 & 
parallel_changed_file_num > 12

elseif line_removed>332 & developer_num 
> 88 & commit_num>229 & 
parallel_changed_file_num>12

29

8

0.93   0.94   0.93     203.48

0.92    0.95   0.94     38.53

Bank Marketing, Change Job, and Hotel Booking) to compare
our approach with EXPLAIN. Details of these datasets are in
the companion website [2].

Results: Table III shows the results of applying EXPLAIN
and BGMD on five SE data sets and five non-SE data sets
collected from Kaggle. In SE related models, BGMD outper-
formed EXPLAIN on all three metrics. From Table III, we
can observe that BGMD improved the explanation rule result’s
precision from 62.49 to 68.49, recall from 69.96 to 73.42,
and F1 score from 64.52 to 70.72 on average. In addition, we
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also got similar results on non-SE models. On average, the
precision of rules generated by BGMD is 36.99, recall is 70.5,
and F1 score is 51.92. However, the precision of EXPLAIN
generated rules is 36.44, recall is 68.66, and F1 score is 47.1.

For merge conflict prediction models, the BGMD’s F1 score
improves on three out of four DT learners. For example,
On Ruby data, BGMD’s F1 score is 64.89, but EXPLAIN’s
F1 score is 43.25. However, for RF-based merge conflict
prediction models, the performance of BGMD and EXPLAIN
are similar since EXPLAIN already achieved a very high F1
score (close to 0.9), leaving small room for improvement.
For bug report close time prediction models, EXPLAIN got
23.84 F1 score with DT learner and 12.55 with RF learner.
However, BGMD received 31.44 and 41.32, respectively. In
summary, BGMD generated rules from a smaller number of
biased features and performed better than EXPLAIN in terms
of rule coverage. Similar results can be observed for the
Kaggle dataset in Table III.

In addition, one thing to note is that both BGMD and EX-
PLAIN take an input parameter that denotes target recall (i.e.,
percentage of mispredicted instances covered by generated
explanation). Thus, the generated rules prioritize improving the
recall values, which hurts the precision score. This is visible
in table III where the average recall is 68.66 for EXPLAIN
for non-SE tasks, but its precision is only 36.44. The same is
visible for SE tasks. This holds true also for BGMD.

Figure 3 presents the rule generation time comparison be-
tween BGMD and EXPLAIN. The average ME rule generation
time by BGMD on SE models was 34 seconds. In contrast, the
average rule generation time by EXPLAIN was 238 seconds.
The results are significantly different (Mann-Whitney test, p-
value<5.02e-14) [41], and the effect size is large (Cohen’s D =
9.28) [20]. In terms of non-SE models, BGMD spent four sec-
onds to generate ME rules, but EXPLAIN needed 60 seconds
in average. The results are statistically significantly different
for BGMD (Mann-Whitney test, p-value<5.02e-14) [41], and
the effect size is large (Cohen’s D=9.28) [20].

Table IV provides an illustrative overview of the representa-
tive ME rules for merge conflict prediction model produced by
BGMD and EXPLAIN. BGMD spent 38.53 seconds to generate
the rules, but EXPLAIN needed 203.48 seconds. This happened
because BGMD induced rules from the identified eight biased
features out of 29. In contrast, EXPLAIN tried to infer rules
from all 29 features. Furthermore, after running a large number
of models, we observed that the rules inferred by EXPLAIN
contain the same features considered by BGMD.�
�

�
�

Observation: Compared to state-of-the-art EXPLAIN,
BGMD reduces misprediction explanation rule generation
time by up to 92% without affecting ME coverage.

B. Effectiveness of Mispredicted Area Upweight Sampling

In this section, we present the results to answer the research
question: Can MAPS fix the model’s performance? We present
the evaluation results on five SE tasks that were used in RQ1

TABLE V: “Default” denotes off-the-shelf model; “SMOTE”
is trained with SMOTE [13]; “JTT” is trained with JTT [39];
“MAPS” is trained with this paper proposed algorithm. The

darker the color, the higher the value.

Mispredicted Data All dataTask Model Algo Pre. Rec. F1. Pre. Rec. F1
Default 0.54 0.57 0.55 0.63 0.68 0.64
SMOTE 0.51 0.52 0.52 0.7 0.68 0.69

JTT 0.53 0.55 0.55 0.72 0.7 0.71DT

MAPS 0.56 0.58 0.57 0.78 0.79 0.79
Default 0.71 0.49 0.58 0.67 0.81 0.71
SMOTE 0.62 0.69 0.65 0.69 0.9 0.78

JTT 0.72 0.6 0.59 0.7 0.86 0.77

Merge
Conflict
Predic.
(Ruby) RF

MAPS 0.72 0.52 0.6 0.7 0.83 0.76
Default 0.56 0.59 0.57 0.7 0.74 0.72
SMOTE 0.56 0.61 0.58 0.7 0.75 0.73

JTT 0.58 0.58 0.58 0.7 0.72 0.7DT

MAPS 0.58 0.62 0.6 0.75 0.76 0.75
Default 0.75 0.57 0.65 0.82 0.81 0.81
SMOTE 0.64 0.73 0.68 0.78 0.81 0.79

JTT 0.75 0.56 0.64 0.82 0.84 0.83

Merge
Conflict
Predic.
(Java) RF

MAPS 0.76 0.58 0.66 0.83 0.86 0.84
Default 0.44 0.46 0.44 0.6 0.59 0.59
SMOTE 0.42 0.47 0.46 0.55 0.55 0.55

JTT 0.45 0.46 0.45 0.57 0.61 0.61DT

MAPS 0.46 0.48 0.48 0.64 0.62 0.63
Default 0.69 0.37 0.48 0.74 0.59 0.66
SMOTE 0.54 0.55 0.55 0.63 0.73 0.69

JTT 0.68 0.36 0.47 0.75 0.59 0.67

Merge
Conflict
Predic.

(Python) RF

MAPS 0.69 0.38 0.49 0.78 0.61 0.72
Default 0.52 0.54 0.53 0.73 0.82 0.77
SMOTE 0.5 0.56 0.53 0.72 0.76 0.74

JTT 0.54 0.55 0.54 0.72 0.71 0.71DT

MAPS 0.53 0.56 0.55 0.76 0.86 0.81
Default 0.7 0.5 0.58 0.7 0.88 0.75
SMOTE 0.59 0.69 0.64 0.71 0.95 0.84

JTT 0.71 0.51 0.59 0.65 0.86 0.74

Merge
Conflict
Predic
(PHP) RF

MAPS 0.72 0.52 0.61 0.73 0.91 0.82
Default 0.69 0.66 0.68 0.71 0.67 0.69
SMOTE 0.65 0.72 0.69 0.7 0.73 0.72

JTT 0.69 0.71 0.7 0.74 0.73 0.73RF

MAPS 0.71 0.7 0.71 0.75 0.71 0.73
Default 0.8 0.63 0.69 0.8 0.76 0.78
SMOTE 0.78 0.7 0.73 0.76 0.84 0.81

JTT 0.82 0.64 0.72 0.81 0.76 0.78

Bug
Report
Close
Time

Predic. XGB

MAPS 0.84 0.66 0.74 0.81 0.78 0.8

TABLE VI: Summarized information of comparing MAPS
with SMOTE [13], JTT [39] based on the result in table V

Mispredicted data All data
Won on

Prec.
Won on

Rec.
Won on

F1
Won on

Prec.
Won on

Rec.
Won on

F1
SMOTE 0 6 4 0 6 3

JTT 2 0 0 2 1 1
MAPS 9 5 6 10 4 6

in table V. Due to space constraints, we report the evaluation
results for non-SE tasks in the companion website [1]. We used
models trained with ERM as the baseline, which is named as
“default” in table V. In addition, we used oversampling method
SMOTE and upweight sampling method JTT for comparison.

To compare SMOTE, JTT, and MAPS performance, it is
important that these methods should not only improve the
model’s performance on mispredicted data, but also ensure
model’s performance on all data. Thus, in table V, we present
each method’s performance on both Mispredicted data and All
data. To remove the model variance, we used 5 fold cross-
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validation (train-80%, test-20%) and repeated 10 times with
random seeds and finally reported the median, which is a
common approach used by other studies [11].

Table VI summarizes the win times of each method on
various metrics in table V. If more than one techniques get the
highest value on a metric, we consider they all win for that
metric. For example, MAPS received highest precision on all
ten models, and JTT on two. However, in terms on Recall,
SMOTE received best performance on six, but MAPS got
the highest recall on four models. Since SMOTE balances the
data via synthesizing instances in minority groups, the trained
model is biased towards the data that has been “duplicated”
many times, i.e., the previous minority data. Moreover, the
new trained model performs worse on the majority group that
performed well before the retraining. This results in SMOTE
gaining in recall but lowering the precision. Similar affect
has been observed in prior studies involving SMOTE [13],
[38], [42]. While SMOTE outperforms MAPS in terms of
recall, MAPS has better combined results in terms of the
overall performance measured using F1. Not only does it
improve the model’s performance on mispredicted data, it
doesn’t corrupt data that was previously correctly predicted.
Based on the evaluation results shown in table VI, MAPS
won more times compared to SMOTE (Mann-Whitney test,
p-value<3.8e-2) [41] and JTT (Mann-Whitney test, p-value
< 2.5e-4) [41].�
�

�
�

Observation: MAPS significantly outperforms both state-
of-the-art techniques in improving model performance,
especially in terms of precision and F1.

C. Impact of Upweight Value on MAPS

MAPS algorithm contains an important hyper-parameter:
upweight value (λup) in equation 11, which is a number
multiplied by the ME rule identified instances. The higher the
upweight value, the retrained model pays more attention to the
identified instances. However, the best upweight value has to
be empirically determined. Thus, we investigated the impact
of weight hyper-parameter on MAPS algorithm.

Figure 4 shows four representative F1-score change patterns
when increasing the upweight value in MAPS. Note that when
the upweight value is equal to one, all data have the same
weight during model training. So for each figure in Figure 4,
the left most pair of dots is the result for the default model
without using MAPS. When the upweight value is equal to
five, the instances identified by ME rule have fives times
weight than others during model training. The higher the
upweight value, the trained ML model pays more attention
to the instances that identified by ME rule generation tools.
In each subfigure, we present the model’s F1 score changes
when using MAPS for all data and mispredicted data to show
the various upweight value’s impact when using MAPS.

Figure 4(a) is the F1 score changes for all data and
mispredicted data in the Merge Conflict Prediction (Ruby)
dataset. The chart shows that F1 score grow gradually to a

(a) MCP. (Ruby) (b) Hotel Booking

(c) BRCTP (d) Spam Email

Fig. 4: F1 score change patterns when increasing weight
times value in MAPS

plateau. Figure 4(b) is the F1 score changes for the Hotel
Booking dataset, and both F1 scores come to a plateau faster
than Figure 4(a). These two patterns are the most common
patterns when increasing upweight value in MAPS algorithm.
In addition, we also observe other F1 score change patterns.
Such as Figure 4(c), as the upweight value increases, the
mispredicted data’s F1 score increases, but all data’s F1 score
only changes a little. Figure 4(d) shows another interesting
pattern. When the weight multiply is one, the F1 score of all
data is higher than mispredicted data. But their performance
drops drastically when the upweight value is equal to three,
and all data’s performance is even worse than mispredicted
data. Then, as the weight increases, the two F1 scores begin
to grow together and exceed the initial value until they enter a
platform together. Figure 4 show the most common F1 score
change patterns. Although their patterns are different, main
trends are similar to the F1 scores increase and plateau after
a particular point.

�
�

�
�

Observation: MAPS improves model performance with
increasing upweight values. After a certain point, the im-
provement stops as the model converges in performance.

VI. DISCUSSION

In this section, we first discuss why our proposed BGMD
could perform better than the state-of-the-art model ME and
the benefits of using MAPS to improve the model’s robustness.
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A. Why BGMD works better?

Focus only on useful features. BGMD deduces the ME
rules only on biased features instead of “blindly” trying on
all features. For example, in table IV, BGMD generated rules
from eight biased features. In contrast, EXPLAIN generated
rules from 29 features. Although EXPLAIN tried to explain
misprediction using 29 features, their generated explanation
rules were based on the same eight features that BGMD
focused on. A similar situation happened on all evaluated
models that EXPLAIN tried to explain mispredictions using all
available features, but the constituent features for its generated
rules were all considered by BGMD.

Make more attempts. Cito et al. [17] showed that with
more granular predicates on features, the generated ME rules
can get better results on misprediction coverage but need more
computation time. Thus, given the same computation time,
BGMD is able to deduce better ME rules. BGMD ignores many
features that are not helpful to explain the mispredictions.
For example, in Spam Email dataset, it contains 232 features,
and BGMD only focuses on 23 features associated with
the corresponding model’s mispredictions. Thus, shown in
Figure 3(b), EXPLAIN spent 180.79 seconds to generate ME
rules. In contrast, BGMD only took 15.74 seconds.

B. Why MAPS is a good method to fix models?

Competitive performance. According to our empirical
evaluation results in table VI, MAPS outperformed the popular
oversampling method SMOTE [13] and state-of-the-art method
JTT [39] on ten models in terms of precision and F1 score on
mispredicted data. Thus, MAPS is a competitive method to
improve the model’s robustness.

Uncompromising performance for all data: Table V
shows MAPS not only improved the model’s performance on
mispredicted data but also on all data. In contrast, although
JTT used a similar upweight sampling approach as MAPS,
it reduced the performance of four models on all data. We
attribute our success in this regard to making retrained model
pay more attention to the under-represented features instead
of focusing more on particular mispredicted instances. Thus,
MAPS can improve the model’s misprediction performance
without compromising all data prediction performance.

No extra computation: Table VI shows that SMOTE also
did well in helping the model fix performance on mispredicted
data, especially on improving recall. Furthermore, if possible,
adding more manually annotated data in minority groups
might improve model performance even more than SMOTE.
However, adding more data means more computation during
model training. One benefit of MAPS is that it does not
require extra annotated or synthesized data, which does not add
computation overhead during model training. Note that MAPS
is not an alternative to SMOTE, but a complement. Because
table VI shows that SMOTE performed best on improving the
model’s recall on both mispredicted and all data.

Model agnostic: MAPS entirely focuses on identified data
groups that are prone to be mispredicted to fix the model’s

performance on them. There are works where optimization
algorithms have been used to modify models [17]. These
works are model specific and, most of the time, combined
with internal model logic. Thus MAPS is much more general
as it can be used for any kind of model.

VII. RELATED WORK

The study in the paper relates to several topics below.
Interpret ML Models. Interpreting ML models has been

a popular topic for the past couple of years. Local inter-
pretability techniques, such as LIME [45] and Integrated
Gradients [49], use several simple, explainable models to
simulate complex models. However, the problem with local
interpretability techniques is that they can not completely
represent the complex models. On the other hand, global
interpretability techniques, such as GALE [50], DENAS [14]
and BETA [35] help to understand the distribution of the
target outcome based on the features. Some techniques try to
explain the models by generating counterfactual explanations
via modifying the inputs [18], [40], [46]. However, only a few
studies investigated explaining model mispredictions. Cito et
al. [17] proposed EXPLAIN based on rule generation. How-
ever, EXPLAIN’s rule deducing efficiency is low because it
“blindly” analyzes all features. Thus, we proposed an efficient
model ME method that leverages data feature bias in this paper.

Debugging ML Models. The goal of debugging a model is
to identify the specific groups of data on which ML model is
likely to fail and then fix the model’s performance on identified
data. Tongshuang et al. [55] presented an error analysis for
NLP models called Errudite. However, Errudite requires users
to tune the parameters in order to perform error analyses. On
the contrary, our proposed method automatically identifies the
groups of data that are prone to be mispredicted and uses a
simple and effective method to fix the model’s performance
on them. Kim et al [32] is close to our work. However,
their approach is tailored to Computer Vision, and adopting
their approach for text/source code is not trival due to the
difference between CV and text/source code. They can create
permutations of features (i.e., weather, car model, etc.). If the
object of interest remains intact, they can create new images
without changing the meaning. In our case, the meaning is
changed if the context is changed.

Select data for upweight sampling. Increasing part of data
instance’s weight during model training has been proved as an
efficient approach to improve model’s performance [9], [21],
[26], [39]. For instance, Karan et al. [26] isolates features
that differentiate subgroups within a class and then augment
the minority groups. Jonathon et al. [9] tweaks L2 regular-
ization to produce the correct weighting effect on minority
groups. Fereshte et al. [31] improves fairness and robustness
by halving the loss across all the groups. Another group of
studies identifies the groups based on fairness [7], [28], [31],
[54]. In addition, JTT identifies mispredicted instances from
a validation set through a trained model and then retrains
a model via upweighting only on mispredicted instances.
In other words, JTT is trying to make the retrained model
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focus more on mispredicted instances in the first model. In
contrast, our approach identifies the groups of data that tend
to be mispredicted because of some under-represented features
during model training. Then, we increase these identified data
weights during model training and make retrained models pay
more attention to those under-represented features.

VIII. THREATS TO VALIDITY

We have taken care to ensure that our results are unbiased
and tried to eliminate the effects of random noise, but it’s
possible that mitigation strategies may not have been effective.

Bias due to dataset: Our findings may not generalize to
all software projects since we evaluate using 10 datasets.
However, all these datasets are publicly available and have
been used in previous studies. Moreover, r considered projects
are large and significantly different in size, programming
languages, complexity. So we believe that the selected projects
adequately address the concern.

Bias due to models: This work is based on binary clas-
sification and tabular data, which are very common in ML
software. We select the models that have been used by the
papers that introduced the dataset. In the future, we will test
how our method performs in complex neural network models.

IX. CONCLUSION

We propose an efficient model-agnostic technique for gen-
erating useful and interpretable misprediction explanations for
machine learning models. We demonstrate through case stud-
ies that our proposed bias-guided misprediction explanation
technique is significantly more efficient than the state-of-the-
art technique and generates explanation rules that have higher
misprediction explanation capability. In addition, we introduce
a mispredicted area upweight sampling algorithm to improve
the model’s robustness via fixing the model’s performance on
incorrectly predicted instances containing under-represented
features. Our results show that our proposed method out-
performs the state-of-the-art techniques. We plan to conduct
studies on a broader range of tasks and datasets in the future.
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